
Name: mcp-381-cswg-workshop-git-repository-layout-and-workflow
Title: Git Repository Layout and Workflow
Status: Draft -- anyone can edit.

See the MCP index to create or find documents, or mcp-0-readme for an overview.
The headers above are machine-readable; please preserve format.

Text checkins (10 mins)

●​ Steve
○​ Good progress on https://github.com/stevegt/aidda/tree/main/x/x3
○​ starting to suspect that one or more of the following are true:

■​ aidda should be a grokker subcommand
●​ otherwise we have some fragility in aidda's dependence on

grokker's library functions.
●​ Go's hashing in go.sum makes this much less fragile than it would

be in most languages, but the dependence is still there.
■​ grokker should be renamed aidda
■​ grokker and/or aidda becomes a promisegrid node

●​ merge in code from https://github.com/stevegt/x/tree/dev/grid-cli
■​ as opposed to building a giant monolith, the current functionality of

grokker and aidda becomes callable functions and apps in promisegrid
●​ because grid functions are hash-addressable, this avoids the

above fragility
●​ essentially this moves the benefits of hashing from go.sum into

grid addresses; more general, less fragile
●​ lets aidda, grokker, and other things that interact with them do so

safely without having to build everything into one big monolithic
binary

●​ more "UNIX-like" -- little tools and functions that can be composed
to make larger things

■​ related conversation at
https://chatgpt.com/share/e/f6bee125-b3c3-4a53-856d-7d2e93539f12

●​ JJ
○​ Graduation: 1 down, two to go
○​ House across the street was demolished.
○​ Gdocs program
○​ On boarding
○​ 1.5 more weeks of my club. Blog will be affected.

●​ Richard
●​ Donaldo

http://mcp.systems
http://bit.ly/nom-mcp
https://github.com/stevegt/aidda/tree/main/x/x3
https://github.com/stevegt/x/tree/dev/grid-cli
https://chatgpt.com/share/e/f6bee125-b3c3-4a53-856d-7d2e93539f12

○​ Create agenda below
■​ Practiced Ticketing

○​ How to turn off email notifications on Gitea
■​ You 'could' unwatch a specific repo

●​ But not really useful for monorepo setup
■​ Settings > Account > Manage Email Addresses > "Only Email on

Mention" or "Disable Email Notifications"
○​ "Create Business for Makers" course last week

■​ Mostly review content
■​ Goal to launch a maker business, 3d printing, laser cut, print making,

digital product, etc.
○​ Starting Climate Change AI course on Thursday
○​ Considering attending FAB24 in Puebla, Mexico in August?!

■​ https://fab24.fabevent.org/

Git Repository Layout and Workflow (40 mins)

●​ Overview of Git workflows:
○​ https://gitea.t7a.org/cswg/general/issues/3
○​ Developer-Based Naming

■​ Branches are named after developers, common in small teams.
●​ Pros: Easy to track individual contributions.
●​ Cons: Not scalable for larger teams; multiple devs on similar

features; lacks focus on development stages.
■​ How can individuals have their own experimental features?

●​ Use username-prefixed branch names similar to
mob-consensus tool

○​ username/feature
○​ username/bugnumber_some_description

●​ a good convention is to always prefix branch names with your
username, i.e. not do:

○​ mycrazyidea_2
○​ bugnumber

○​ Functional/Stage-Based Branch Naming
■​ Branches named by their function or development stage, such as feature,

development, staging, and production.
●​ Pros: Supports structured workflows, ideal for parallel

development and continuous integration.
●​ Cons: More complex, requires strict merge protocols to maintain

stability.
■​ the mob-consensus tool also makes use of username prefixes for feature

work as well, e.g.
●​ username/feature

https://fab24.fabevent.org/
https://gitea.t7a.org/cswg/general/issues/3
https://gitea.t7a.org/general/core/src/branch/master/bin/mob-consensus
https://gitea.t7a.org/general/core/src/branch/master/bin/mob-consensus

●​ An example Mono Repo Structure from general/core
○​ /project Folder

●​ 000 - internal tools
●​ 001 - training related
●​ 002 - server/infra related
●​ …

○​ /u Folder
■​ User miscellaneous project folder

○​ Other stuff
■​ Makefile
■​ /bin
■​ /train - CSV based training tracking
■​ …

●​ Choosing our Workflow:
○​ The main purpose of cswg/general is for issues and internal docs, not code

■​ we should primarily be using cswg/general only to replace the TODO
notes we've been putting in docs

■​ we may not even have anything in ./bin, since everyone is running a
different O/S

○​ Protect the main branch same as general/core
■​ Steve only maintainer with write access to main

●​ Best we have until we have a good consensus tool we trust
○​ Everyone creates their own development branch

■​ This way it stays a shared repo with individual branches, versus creating
forks

■​ Pros:
●​ Now less worrying on "breaking stuff"
●​ No need to deal with pull requests
●​ Shared issue tracking

■​ Cons:
●​ Accidentally committing big blobs of data
●​ Using pull requests would be good practice for contributing to

projects outside of this team
○​ Starting a New Projects

■​ If the project 'deserves' its own repo, then it does not go in cswg/general
●​ a project "deserves" its own repo if any of the following are true:

○​ will be released on github
○​ is already on github
○​ is cdint-specific

■​ Otherwise add it to the /project Folder
●​ A new project started by creating an issue
●​ Then, a folder is named based on issue # created.

https://gitea.t7a.org/general/core/src/branch/master

●​ Example:
https://gitea.t7a.org/cswg/general/src/branch/donaldo/project/001

○​ Merging strategy
■​ Merging during code review
■​ Mob sessions

●​ e.g. mob-consensus tool
○​ currently a shell script, should be merged with aidda while

converting to Go
■​ Async strategies

●​ Considerations for thought:
○​ should we be using forks instead of branches?

■​ pros:
●​ the main purpose of cswg/general is for issues anyway, not code

○​ we should primarily be using cswg/general only to replace
the TODO notes we've been putting in docs

●​ would be more like github-style projects
●​ would be easier for new people to adopt
●​ no repo proliferation (easier to keep track of where code is)
●​ one issue set

■​ cons:
●​ mob-consensus and other tooling would want to work differently
●​ repo proliferation
●​ forks would each have own issue sets (but this works the same as

github -- convention is to not create issues in forks)

Hands-on activity: Create a Developer Branch on cswg/general (30 min)
Move to after workshop as needed

1.​ Add your SSH key to Gitea
a.​ Open terminal
b.​ cat ~/.ssh/id_rsa.pub

2.​ Clone Repo
a.​ cd lab/
b.​ git clone ssh://git@gitea.t7a.org:3022/cswg/general.git
c.​ cd general

3.​ Check what branch you're on
a.​ git branch -a

4.​ Create a new branch
a.​ git checkout -b $USER
b.​ git status

5.​ Try to git push
a.​ git push

6.​ Set a new upstream
a.​ git push --set-upstream origin $USER

https://gitea.t7a.org/cswg/general/src/branch/donaldo/project/001
https://gitea.t7a.org/general/core/src/branch/master/bin/mob-consensus
https://gitea.t7a.org/cswg/general
mailto:git@gitea.t7a.org

7.​ Create your folder
a.​ mkdir -p project/003
b.​ cd project/003
c.​ touch README.md

8.​ Commit & Push changes
a.​ git status
b.​ git add README.md
c.​ git status
d.​ git commit -m "Create placeholder for #3"
e.​ git push

9.​ Done! 🎉

Questions & Next Steps

○​ Feedback questions
○​ Follow-up items

■​ Review with Rebecca
■​ Create cswg/general README.md

Plan next workshop (10 mins)

●​ go to workshop proposals (mcp-369), follow the instructions there, replace this bullet
point with the link to the new doc

https://www.youtube.com/watch?v=8r5Cp66k4PA
https://docs.google.com/document/d/1HPvIs4qEMEZaYHvDpHkg7SXfkgLnm3W-KqAL_oSX9_I/edit?pli=1

