
This document is public
Chrome Translate running under
Content-Security-Policy
Master issue: crbug/164547

Created: 2013-03-11
Last modified: 2013-04-19
toyoshim@chromium.org

Background and Objective
CSP: Content-Security-Policy is a new scheme to protect a web from XSS attacks. Simply
said, the spec allows a server to request a browser to limit injecting JavaScript from
external security origin.
This is fine for typical cases. But Chrome Extensions and some embedded features are
implemented by JavaScripts and it needs to inject external JavaScripts which may break
server providing CSP.
Chrome Extensions uses an isolated world and runs Extensions’ JavaScripts inside the world.
They expand the isolated world to own independent CSP and it make it possible Extensions
works under strict CSP. In this proposal, I try to apply a similar scheme to an embedded
feature, Chrome Translate though it requires some technical challenges.

Current Design

Chrome embedded Translate

1.​ Chrome injects boot scripts into v8 main world, then run them

a.​ Fetch element.js script from https://translate.google.com/translate_a/
b.​ Merge it with an internal resource translate.js

http://crbug.com/164547
mailto:toyoshim@chromium.org
http://www.w3.org/TR/CSP/
https://translate.google.com/translate_a/

c.​ Inject them into v8 main world
2.​ Injected element.js appends a script tag with src=”<translate server>/main.js”

a.​ Browser fetch the specified main.js script from the translate server
b.​ Run main.js in v8 main world context

3.​ main.js appends a script tag with src=”<translate server>/element_main.js”
a.​ <translate server> contains random prefix which balances server loads
b.​ Browser fetch the specified element_main.js from the server
c.​ Run element_main.js in v8 main world context

4.​ element_main.js performs actual web contents translation

Chrome Translate Extension

Problems under CSP restriction in Chrome embedded Translate

If a server requests to apply strict CSP rules, Chrome can inject boot scripts directly into
page contents, but script tags appended by element.js and main.js do not work.

●​ Chrome fails to load main.js from a translate server due to CSP restriction
●​ Of course, element_main.js can not be loaded due to lack of main.js as its loader

Problems under CSP restriction in Chrome Translate Extension
If a server requests to apply strict CSP rules, the first appended script tag can load main.js
under independent CSP defined for the Extension. But main.js can not work to load
element_main.js.

●​ Chrome fails to load element_main.js from a translate server due to main world CSP

Note: This is a story where the Extension is deployed with proper manifest v2 which defines
proper content_security_policy field. Currently, the Extension is deployed without it, so
loading main.js also fails.

New design proposals

http://developer.chrome.com/extensions/contentSecurityPolicy.html

Straightforward way (still doesn’t work like the Extension)

1.​ Chrome injects boot scripts into v8 isolated world, then run them

a.​ Fetch element.js script from https://translate.google.com/translate_a/
b.​ Merge it with an internal resource translate.js
c.​ Create new v8 isolated world for Chrome embedded Translate
d.​ Inject them into v8 isolated world

2.​ Injected element.js appends a script tag with src=”<translate server>/main.js”
a.​ Browser fetch the specified main.js script from the translate server
b.​ Run main.js in v8 main world context

3.​ main.js appends a script tag with src=”<translate server>/element_main.js”
a.​ <translate server> contains random prefix which balances server loads
b.​ Browser fetch the specified element_main.js from the server
c.​ Run element_main.js in v8 main world context

4.​ element_main.js performs actual web contents translation

This scheme is not enough to work under CSP restriction. The same problem of the
Extension with own CSP exists. We should find out right way to avoid this problem.

Discussion
Plan A)

1.​ Integrate element.js and main.js as a part of boot scripts
2.​ Chrome injects them as a boot scripts into an isolated world directly, then load

element_main.js into main world via script tag under independent CSP

This will work if element_main.js doesn’t load other scripts via script tags any more.

Note: After discussion with Translate team, I decide not to adopt this plan.
Fetching main.js is important to shutdown Translate service immediately on a
sudden surge in demand. Embedding element.js into Chrome looks safe and make
the design simpler.

Plan B)
1.​ Integrate element.js into translate.js in Chrome resources
2.​ Inject integrated translate.js into isolated world, and run it there

https://translate.google.com/translate_a/

a.​ translate.js should be modified to fetch main.js by using XHR
b.​ eval main.js in isolated world. It will append script tag for element_main.js,

and it works under independent CSP

Firstly, I’m going to adopt Plan B for Chrome embedded Translate. But it also doesn’t work
because of two reasons.

The first reason is JavaScript isolation itself. main.js defines various variables for error
messages which depends on user locale. But it is in the isolated world. On the other hand,
element_main.js runs in the main world. So it can not use defined variables. Of course, it is
not impossible to communicate between the two world, but it needs a kind of tricky code.

The second reason is critical. element_main.js still needs XHR connections to translate page
contents. But, XHR connections can be disabled by CSP, too. If the page owner specify
connect-src ‘self’, it doesn’t work at all.

Plan C) - Run everything in an isolated world -
1.​ Hook appendChild method of the first head element in the isolated world

a.​ to insert passed CSS links into DOM tree to inject it in the main world
b.​ to load and run passed JavaScripts in the isolated world by using XHR

Chrome Implementation Details

Isolated World ID Management
Currently, isolated world ID management depends on Chrome Extensions. To use it outside
Chrome Extensions, I should move management logic outside extensions directory.

place:
src/chrome/renderer/extensions/user_script_slave.cc

src/chrome/renderer/reserved_isolated_world_ids.h [added]
method and enum:

int UserScriptSlave::GetIsolatedWorldIdForExtension(
const Extension* extension,
WebFrame* frame);

enum IsolatedWorldIDs {
​ ISOLATED_WORLD_ID_GLOCAL = 0,
​ ISOLATED_WORLD_ID_TRANSLATE,
​ ISOLATED_WORLD_ID_EXTENSIONS
};

logic:
If an isolated world ID is already assigned for specified extension’s Extension ID, it
returns the assigned ID. Otherwise, assign new incremented ID which starts from the
fixed value. Assigned ID and Extension ID are binded together, then stored to a map.
The fixed value was 1, but now IsolatedWorldIDs defines the fixed number as
ISOLATED_WORLD_ID_EXTENSIONS so that ISOLATED_WORLD_ID_TRANSLATE is
reserved for Chrome Translate.

CL:
​ https://codereview.chromium.org/12583016

Adopt an Isolated World for Chrome Translate

Extension Groups
place:

src/chrome/renderer/extensions/extension_groups.h
logic:

Use a specific ExtensionGroups ID and no extension APIs should be available in the
group.

CL:
https://codereview.chromium.org/14022005

Content Security Policy
place:

src/chrome/renderer/translate/translate_helper.cc
logic:

Apply an independent content security policy script-src ‘self’ ‘unsafe-eval’
for the isolated world. ‘unsafe-eval’ is needed to emulate script tag injection which is
needed to load and run scripts fetched via https from a Google Translate server.

CL:
https://codereview.chromium.org/14022005

Security Origin
place:

src/chrome/renderer/translate/translate_helper.cc
logic:

Apply an independent security origin https://translate.googleapis.com.
Originally, external scripts are provided from the server and run with the origin. It is

https://codereview.chromium.org/12583016
https://codereview.chromium.org/14022005
https://codereview.chromium.org/14022005

needed to use XHR from the script for emulating script tag injection and performing
translation.

CL:
https://codereview.chromium.org/14022005

Adopt Isolated World
Just call WebFrame::executeScriptInIsolatedWorld() instead of WebFrame::executeScript()
with proper arguments, chrome::ISOLATED_WORLD_ID_TRANSLATE and
extensions::EXTENSION_GROUP_INTERNAL_TRANSLATE_SCRIPTS. Independent content
security policy and security origin are assigned on starting page translation by calling
WebFrame::setIsolatedWorldContentSecurityPolicy() and
WebFrame::setIsolatedWorldSecurityOrigin().

Alternate Ideas

Component Extensions
In a review, mpcomplete@ let me know interesting approach which uses Component
Extensions. The Component Extensions is a kind of a Chrome Extensions which has a special
privilege to access private Extension APIs. Using this scheme, we can use all benefits of
Chrome Extensions, and collaborate with native implementation through private APIs.
This approach sounds good, but needs more reconstruction of Translate feature. So, I give
up to adopt this approach for now.

https://codereview.chromium.org/14022005
https://codereview.chromium.org/12583016/

	This document is public
	Chrome Translate running under Content-Security-Policy
	Master issue: crbug/164547
	Background and Objective
	Current Design
	Chrome embedded Translate
	Chrome Translate Extension
	Problems under CSP restriction in Chrome embedded Translate
	Problems under CSP restriction in Chrome Translate Extension

	New design proposals
	Straightforward way (still doesn’t work like the Extension)
	Discussion

	Chrome Implementation Details
	Isolated World ID Management
	Adopt an Isolated World for Chrome Translate
	Extension Groups
	Content Security Policy
	Security Origin
	Adopt Isolated World

	Alternate Ideas
	Component Extensions

