Common Core Standards Curriculum Map - Mathematics / Geometry QUARTER 1

Unit 1: Geometric Foundations, Constructions, and Relationships

Vision of the Graduate:

Adaptability Communication Content Knowledge

Common Core Standards and Content to Be Learned	Essential Questions	Instructional Strategies	Assessment Formative Assessments (FA) Interim Assessments (IA) Summative Assessments (SA)
CCSS Standards for this	How does the use of the	Guided Notes	Warmups
unit:	language of geometry	Group Work	Exit Slips
Experiment with	help you to understand	Manipulatives (tactile	• Quizzes
transformations in the	more complex geometric	and web-based)	Department Unit
plane.	ideas and theorems?	 Exploratory learning 	Assessments
G-CO.1. Know precise	• In what situations would	Graphic Organizers	Department Common
definitions of angle, circle,	it be better to use a	Edit and Assess	Tasks
perpendicular line, parallel	geometric sketch as	 Peardeck 	
line, and line segment,	opposed to a formal	• Deltamath	
based on the undefined	construction?	 Desmos 	
notions of point, line,	How does the knowledge	 Geogebra 	
distance along a line, and	of theorems, postulates,	Carousel Activities	
distance around a circular	and definitions help to	Edulastic	
arc.	prove geometric	• Quizizz	
	concepts?	• Kahoot	
Make geometric		• Edpuzzle	
constructions [Formalize		• Blooket	
and explain processes]		• CK-12	
G-CO.12. Make formal		Illustrative Math	

geometric constructions
with a variety of tools and
methods (compass and
straightedge, string,
reflective devices, paper
folding, dynamic geometric
software, etc.). Copying a
segment; copying an angle;
bisecting a segment; bisecting
an angle; constructing
perpendicular lines, including
the perpendicular bisector of a
line segment; and
constructing a line parallel to
a given line through a point
not on the line.

Prove geometric theorems. [Focus on validity of underlying reasoning while using a variety of ways of writing proofs]
G-CO.9. Prove theorems about lines and angles.
Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent.

- Project based learning
- Center-based learning

G-CO.10. Prove theorems
about triangles. Theorems
include: measures of interior
angles of a triangle sum to
180°.

Content to be learned:

- A)• Know precise definitions of geometric terms (e.g., angle, circle, perpendicular line, parallel line, and line segment), based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
- B) Make formal geometric constructions with a variety of tools and methods.
 Constructions include:
 o Copying a segment/angle.
 o Bisecting a segment/angle.
 o Constructing perpendicular lines.
 o Constructing a perpendicular bisector of a line segment.

o Constructing a line

parallel to a given line		
through a point not on the		
line.		
C)· Prove theorems about		
lines and angles. Theorems		
include, but are not limited		
to:		
o Congruency of vertical		
angles.		
o Relationship between		
angles formed by		
intersection of parallel lines		
and a transversal.		
D). Prove the triangle angle		
sum theorem.		

Common Core Standards Curriculum Map – Mathematics/Geometry $\operatorname{QUARTER} 1$

Unit 2: Triangle Congruency Vision of the Graduate:

Common Core Standards and Content to Be Learned	Essential Questions	Instructional Strategies	Assessment Formative Assessments (FA) Interim Assessments (IA) Summative Assessments (SA)
CCSS Standards for this unit: Understand congruence in terms of rigid motion G-CO.6: Use Geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. G-CO.7: Use the definition	be used to solve problems?	 Graphic Organizers Edit and Assess Peardeck Deltamath Desmos Geogebra Carousel Activities Edulastic Quizizz Kahoot Edpuzzle Blooket CK-12 	 Warmups Exit Slips Quizzes Department Unit
of congruence in terms of rigid motions to show that	Given a proof, now can you use logical	Illustrative MathProject based learning	

two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

G-CO.8: Explain how the criteria for triangle congruence (ASA, SAS and SSS) follow from the definition of congruence in terms of rigid motions.

G-CO.10: Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180 degrees; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

Content to be learned:

- Interior and Exterior Angles of Triangles
- Establish the SSS, SAS, ASA, AAS, HL triangle congruence

reasoning to critique, analyze and improve the argument?

 Why are AAA and SSA invalid criteria for proving triangle congruence? • Center-based learning

criteria		
 Determine if two 		
triangles are		
congruent by using		
the definition of		
congruence		
 Prove theorems and 		
solve problems		
involving		
congruence		
 Use CPCTC to apply 		
congruent triangles		
 Identify and use 		
Isosceles,		
Equilateral/Equiang		
ular Triangles		
 Identify and use 		
Bisector, Medians,		
Altitudes and		
Midsegments of		
Triangles		

Common Core Standards Curriculum Map - (Math / Geometry) QUARTER 2

Unit 3: Similarity Vision of the Graduate:

Common Core Standards and Content to Be Learned	Essential Questions	Instructional Strategies	Assessment Formative Assessments (FA) Interim Assessments (IA) Summative Assessments (SA)
CCSS Standards for this unit: Understand similarity in terms of similarity transformations. G-SRT.2. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of	 What can you conclude about similar triangles, and how can you prove that two triangles are similar? How can similar triangles be used to measure objects, and what are the benefits of using indirect measurement? How can you use triangle similarity to prove the Pythagorean Theorem? What are the similarities and differences between triangle similarity and triangle congruence criteria? 	 Guided Notes Group Work Manipulatives (tactile and web-based) Exploratory learning Graphic Organizers Edit and Assess Peardeck Deltamath Desmos Geogebra Carousel Activities Edulastic Quizizz Kahoot Edpuzzle Blooket CK-12 Illustrative Math Project based learning 	 Warmups Exit Slips Quizzes Department Unit

aidaa	- Contar based learning
sides.	Center-based learning
G-SRT.3. Use the properties of similarity transformations to establish the AA criterion for two	
triangles to be similar.	
Prove theorems involving similarity.	
G-SRT.4. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity. G-SRT.5. Use congruence and similarity criteria for triangles to solve problems and to prove relationships	
in geometric figures.	
Content to be learned:	
A)• Establish the AA, SSS, and SAS triangle similarity criteria using similarity transformations.	

B)• Determine if two		
triangles are similar by		
using the definition of		
similarity.		
C)• Explain the meaning of similarity for triangles using similarity transformations.		
D)• Prove theorems about		
triangles using triangle		
similarity; examples		
include:		
o A line parallel to one side of a triangle divides the other two proportionally.		
o The Pythagorean		
Theorem.		
E)• Prove theorems and		
solve problems involving		
similarity using congruence		
and similarity criteria.		

Common Core Standards Curriculum Map - Math/Geometry QUARTER 2

Unit 4: Right Triangle Trigonometry Vision of the Graduate:

Common Core S				Assessment
and		ssential Questions	Instructional Strategies	Formative Assessments (FA)
Content to Be	Learned			Interim Assessments (IA)
				Summative Assessments (SA)

CCSS Standards for this unit:

Define trigonometric ratios and solve problems involving right triangles.

G-SRT.6. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

G-SRT.7. Explain and use the relationship between the sine and cosine of complementary angles.

G-SRT.8. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. ★

Content to be learned:

A) • Define trigonometric ratios (sine, cosine, tangents) in right triangles by understanding that by similarity, side ratios in

- How can you apply your knowledge of triangle-relationships to find a side length or angle measure of a triangle?
- How are right triangle trigonometric ratios related to similarity?

- Guided Notes
- Group Work
- Manipulatives (tactile and web-based)
- Exploratory learning
- Graphic Organizers
- Edit and Assess
- Peardeck
- Deltamath
- Desmos
- Geogebra
- Carousel Activities
- Edulastic
- Quizizz
- Kahoot
- Edpuzzle
- Blooket
- CK-12
- Illustrative Math
- Project based learning
- Center-based learning

- Warmups
- Exit Slips
- Quizzes
- Department Unit Assessments
- Department Common Tasks

right triangles are		
properties of the angles in		
the triangle, leading to		
definitions of		
trigonometric ratios for		
acute angles.		
B)• Calculate the side		
lengths and the		
trigonometric ratios		
associated with special		
right triangles.		
Explain and use the		
• Explain and use the		
relationship between the sine and cosine of		
I		
complementary angles.		
C)• Use trigonometric		
ratios and the Pythagorean		
Theorem to solve right		
triangles in applied		
problems.★		
problems. A		
+ Apply trigonometry to		
general triangles:		
D)• Understand and apply		
the Law of Sines and the		
Law of Cosines to find		
unknown measurements in		
right and non-right		
triangles (e.g., surveying		

problems, resultant forces).		
E)• Prove the Laws of Sines and Cosines and use them to solve problems.		
F)• Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side. (contextualize)		
G)• Given a real-world situation, create and solve a system of equations. (decontextualize).		

Common Core Standards Curriculum Map - Mathematics / Geometry QUARTER 3

Unit 5: Transformations Vision of the Graduate:

Adaptability
Collaboration
Communication
Content Knowledge
Critical Thinking & Innovation

Common Core Standards and Content to Be Learned	Essential Questions	Instructional Strategies	Assessment Formative Assessments (FA) Interim Assessments (IA) Summative Assessments (SA)
--	---------------------	--------------------------	---

CCSS Standards for this unit:

Experiment with transformations in the plane.

G-CO.2. Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).

G-CO.4. Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

G-CO.5. Given a geometric figure and a rotation, reflection, or translation,

- After a transformation (rotation, dilation, translation, reflection) has taken place on the coordinate plane, where does the image lie and what does it look like?
- What tools or methods would you use to construct a figure under a reflection, translation, rotation, and dilation?
- Compare dilation to rigid motions, how are they similar? How are they different?
- Where would you find transformations in the real world?

- Guided Notes
- Group Work
- Manipulatives (tactile and web-based)
- Exploratory learning
- Graphic Organizers
- Edit and Assess
- Peardeck
- Deltamath
- Desmos
- Geogebra
- Carousel Activities
- Edulastic
- Quizizz
- Kahoot
- Edpuzzle
- Blooket
- CK-12
- Illustrative Math
- Project based learning
- Center-based learning

- Warmups
- Exit Slips
- Quizzes
- Department Unit Assessments
- Department Common Tasks

draw the transformed figure		
using, e.g., graph paper,		
tracing paper, or geometry		
software. Specify a		
sequence of		
transformations that will		
carry a given figure onto		
another.		
Understand similarity in		
terms of similarity		
transformations.		
transformations.		
G-SRT.1. Verify		
experimentally the		
properties of dilations given		
by a center and a scale		
factor:		
a. A dilation takes a line		
not passing through the		
center of the dilation to a		
parallel line, and leaves a		
line passing through the		
center unchanged.		
b. The dilation of a line		
segment is longer or shorter		
in the ratio given by the		
scale factor.		
Content to be learned:		

- A) Represent, construct, and draw transformations (reflections, translations, dilations, and rotations) in the plane using a variety of tools, such as transparencies and geometry software.
- B) Describe transformations as functions that take points in the plane as inputs and give other points as outputs.
- C) Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
- D) Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
- E) State a sequence of transformations that will carry a given figure onto

another.		
F)• Verify experimentally the properties of dilations given by a center and a scale factor:		
o The dilation of a line segment is longer or shorter depending on the scale factor.		
o Dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.		

Common Core Standards Curriculum Map - Mathematics/Geometry QUARTER 3

Unit 6: Polygons Vision of the Graduate:

Adaptability Collaboration Communication Content Knowledge

Common Core Standards and Content to Be Learned	Essential Questions	Instructional Strategies	Assessment Formative Assessments (FA) Interim Assessments (IA) Summative Assessments (SA)
CCSS Standards for this	 How can different 	• Guided Notes	 Warmups
unit:	quadrilaterals in the	• Group Work	• Exit Slips
Durana ara ara atui a tha a uana	coordinate plane be	 Manipulatives (tactile 	• Quizzes
Prove geometric theorems	identified and verified?	and web-based)	 Department Unit
[Focus on validity of	 What are the 	 Exploratory learning 	Assessments
underlying reasoning while	similarities and differences	 Graphic Organizers 	 Department Common
using a variety of ways of	of squares, rectangles,	Edit and Assess	Tasks
writing proofs].	rhombi, kites, trapezoids	 Peardeck 	
G-CO.11. Prove theorems	and parallelograms?	• Deltamath	
about parallelograms.	 How would you use 	• Desmos	
Theorems include: opposite	the various properties of	 Geogebra 	
sides are congruent, opposite	quadrilaterals to calculate	 Carousel Activities 	
angles are congruent, the	missing sides and angles?	• Edulastic	
diagonals of a parallelogram	 How do you use the 	• Quizizz	
bisect each other, and	number of sides of a	• Kahoot	
conversely, rectangles are	polygon to calculate the	• Edpuzzle	
parallelograms with	interior and exterior angle	• Blooket	
paranelogianis with		• CK-12	

congruent diagonals.	measures and their sums?	Illustrative Math	
**************************************		 Project based learning 	
Use coordinates to prove		• Center-based	
simple geometric		learning	
theorems algebraically			
[Include distance formula;			
relate Pythagorean			
Theorem].			
G-GPE.4. Use coordinates			
to prove simple geometric			
theorems algebraically. For			
example, prove or disprove			
that a figure defined by four			
given points in the coordinate			
plane is a rectangle; prove or			
disprove that the point $(1, \sqrt{3})$			
lies on the circle centered at			
the origin and containing the			
point (0, 2).			
G-GPE.5. Prove the slope			
criteria for parallel and			
perpendicular lines and use			
them to solve geometric			
problems (e.g., find the			
equation of a line parallel or			
perpendicular to a given			
line that passes through a			
given point).			
G-GPE.6. Find the point on			
a directed line segment			
a unected fine segment			

between two given points		
that partitions the segment		
in a given ratio.		
G-GPE.7. Use coordinates to		
compute perimeters of		
polygons and areas of		
triangles and rectangles,		
e.g., using the distance		
formula.★		
Experiment with		
transformations in the		
plane.		
F		
G-CO.3. Given a rectangle,		
parallelogram, trapezoid, or		
regular polygon, describe		
the rotations and		
reflections that carry it		
onto itself.		
Apply geometric concepts		
in modeling situations.		
in modeling ordations.		
G-MG.3. Apply geometric		
methods to solve design		
problems (e.g., designing an		
object or structure to		
satisfy physical constraints		
or minimize cost; working		
with typographic grid		
systems based on ratios).★		

Content to be learned:		
 Identify polygons by 		
their properties and		
attributes		
 Apply angle sum 		
theorems to find		
measures of interior		
and exterior angles of		
polygons		
 Identify and apply 		
properties of		
parallelograms and		
special parallelograms		
 Identify and apply 		
properties of kites and		
trapezoids		

Common Core Standards Curriculum Map - Mathematics/ Geometry QUARTER 4

Unit 7: 2-D and 3-D Measurements and Modeling Vision of the Graduate:

Common Core Standards and Content to Be Learned	Essential Questions	Instructional Strategies	Assessment Formative Assessments (FA) Interim Assessments (IA) Summative Assessments (SA)
CCSS Standards for this	 How is surface area and 	 Guided Notes 	• Warmups
unit:	lateral area the same	Group Work	Exit Slips
Apply geometric concepts in modeling situations.	and how are they different?In what ways can the	Manipulatives (tactile and web-based)Exploratory learning	 Quizzes Department Unit Assessments
G-MG.1. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).★	 use of calculating volume be applied to real world situations? What are the connections between two-dimensional and three-dimensional 	 Graphic Organizers Edit and Assess Peardeck Deltamath Desmos Geogebra Carousel Activities 	Department Common Tasks
G-MG.2. Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).★	 figures? What does the dissection of a three dimensional figure produce? When is it appropriate to use the formulas for 	 Edulastic Quizizz Kahoot Edpuzzle Blooket CK-12 Illustrative Math 	
Explain volume formulas	area, surface area and	 Project based learning 	

and use them to solve
problems.

G-GMD.1. Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.

G-GMD.3. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.★

Content to be learned:

- Develop and apply formulas for areas and perimeters of parallelograms, trapezoids, triangles, rhombuses, and kites
- Develop and apply formulas for circumference and area of a circle
- Develop and apply formulas for volume of prisms, cylinders,

volume of geometric figures?

 What are the differences between units of area and units of length? • Center-based learning

	pyramids, and cones		
•	Develop and apply		
	formulas for volumes		
	and surface areas of		
	spheres		

Common Core Standards Curriculum Map - Mathematics/Geometry QUARTER 4

Unit 8: Relationships in Circles

Vision of the Graduate:

Content Knowledge			
Common Core Standards and Content to Be Learned	Essential Questions	Instructional Strategies	Assessment Formative Assessments (FA) Interim Assessments (IA) Summative Assessments (SA)
CCSS Standards for this unit: Understand and apply theorems about circles. G-C.1. Prove that all circles are similar.	 What is the relationship between central angles, arc length and circumference? What is the relationship between the circumference and 	 Guided Notes Group Work Manipulatives (tactile and web-based) Exploratory learning Graphic Organizers Edit and Assess 	 Warmups Exit Slips Quizzes Department Unit Assessments Department Common Tasks
G-C.2. Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent	 diameter of a circle? What are the properties of circles and their relationships among angles, lines, and line segments in and around circles? How can the area of a circle be used to find the area of a sector? 	 Peardeck Deltamath Desmos Geogebra Carousel Activities Edulastic Quizizz Kahoot Edpuzzle Blooket CK-12 Illustrative Math 	

where the radius intersects	 Project based learning	
the circle.	Center-based learning	
	9011001 041004 1041111119	
Find arc lengths and areas		
of sectors of circles		
[Radian introduced only as		
unit of measure].		
G-C.5. Derive using		
similarity the fact that the		
length of the arc		
intercepted by an angle is		
proportional to the radius,		
and define the radian		
measure of the angle as the		
constant of proportionality;		
derive the formula for the		
area of a sector.		
Content to be learned:		
Identify the "alatics ship between		
relationship between		
chords, secants,		
tangents, point of		
tangency, central		
angle, minor arc, major arc, semicircle,		
adjacent arcs and		
congruent arcs		
Develop and apply the		
formula for area of a		
iorriula ior area or a		

sector, area of a		
segment and arc		
length		
 Identify and apply 		
segment relationship		
theorems in circles		