
Тестовое задание: Создание системы для обработки жалоб клиентов с
интеграцией публичных API

1. Интеграция с публичными API
Задача:​
 Разработать API для обработки жалоб клиентов с использованием публичных API.
Функционал:

1.​ Принимать POST-запросы с текстом жалобы (например, {"text": "Не приходит
SMS-код"}).

2.​ Отправлять текст жалобы на внешний API для анализа тональности (например,
Sentiment Analysis by APILayer).

3.​ Сохранять данные в SQLite с полями:

id (уникальный идентификатор, автоинкремент).
text (текст жалобы).
status (open/closed, по умолчанию open).
timestamp (время создания записи).
sentiment (positive/negative/neutral).
category (техническая/оплата/другое, по умолчанию другое).

4.​ Возвращать JSON-ответ с полями:

id
status
sentiment
category (если определена).

Технические требования:
Использовать FastAPI (Python) или Express (Node.js).
Реализовать обработку ошибок:

При недоступности внешнего API сохранять sentiment: "unknown".
Возвращать HTTP-статусы 500 для внутренних ошибок.

Исходный код разместить на GitHub/GitLab с инструкцией:
Установка зависимостей (requirements.txt/package.json).
Запуск приложения.
Примеры запросов через curl или Postman.

Примеры API для интеграции (обязательно):
Анализ тональности: Sentiment Analysis by APILayer (100 бесплатных

запросов/месяц).
Опционально (доп. баллы):

Спам-фильтр: Spam Check by API Ninjas (50 запросов/день).
Геолокация по IP: IP API (без регистрации).

2. Определение категории жалобы с помощью ИИ
Задача:​
 Автоматически определять категорию жалобы (техническая, оплата, другое) с
использованием:

OpenAI API (GPT-3.5 Turbo) или

https://apilayer.com/marketplace/sentiment-analysis-api
https://api-ninjas.com/api/spamcheck
https://ip-api.com/

Mistral-7B через Hugging Face (в Google Colab).
Требования:

Категория определяется сразу после сохранения жалобы в базу.
Для OpenAI: использовать промпт вида:

Определи категорию жалобы: "текст_жалобы". Варианты: техническая, оплата,
другое. Ответ только одним словом.

Обновлять поле category в базе данных.
Если определение невозможно, сохранять category: "другое".

3. Автоматизация в n8n
Задача:​
 Настроить workflow в n8n, который:

1.​ Каждый час проверяет новые жалобы через API бэкенда (фильтр: status=open и
timestamp за последний час).

2.​ Для жалоб категории техническая:

Отправляет уведомление в Telegram-бота (создать через @BotFather).
Меняет статус на closed.

3.​ Для жалоб категории оплата:

Добавляет запись в Google Sheets (дата, текст жалобы, тональность).
Меняет статус на closed.

Требования:
Использовать триггер schedule trigger и HTTP-запросы к API бэкенда.
Для Google Sheets: использовать сервисный аккаунт и OAuth2.
Предоставить скриншот рабочего workflow в n8n (включить узлы: HTTP-запрос,
Telegram, Google Sheets, обновление статуса).

Дополнительные указания:

1.​ В README репозитория указать:
○​ Настройку переменных окружения (API-ключи, токен бота).
○​ Пример .env файла.

Часовой пояс и локация

• В каком часовом поясе вы находитесь?

• Готовы ли вы работать в часовом поясе, отличном от вашего?

• Есть ли у вас возможность синхронизироваться с командой в определенные часы
(например, 2–4 часа в день)?

Опыт работы

• Какой у вас опыт в [укажите сферу, например, разработке, маркетинге, управлении
проектами]?

https://t.me/BotFather

• Какие задачи в предыдущих проектах/должностях были для вас наиболее сложными?

• Есть ли у вас портфолио или кейсы, которыми можно поделиться?

Доступность и время

• Сколько часов в неделю вы готовы уделять работе?

• Предпочитаете ли вы гибкий график или фиксированные рабочие часы?

• Как планируете совмещать эту работу с другими обязательствами (если есть)?

