
R General Usage Rubric (CS499/599, Toby Dylan Hocking)
Boldfaced CH numbers refer to chapters in Tao Te Programming by Patrick Burns.

Preview: https://github.com/tdhock/cs499-599-fall-2020/raw/master/Burns-Tao-Te-Programming.pdf

Buy: https://www.burns-stat.com/documents/books/tao-te-programming/

All of these are common "mistakes" in R coding, please avoid them and you will become a better programmer. CH2

●​ -5 if you create a variable with the same name as any base R function that you are also using in your code. (this is

technically possible, but very confusing) solution: use a more informative name that is specific to your

application. You can get a list of all base R functions by running the following shell command
Rscript --vanilla -e "do.call(c, lapply(search(), ls))"

○​ BAD: c <- 0.5, mean <- mean(some.numbers)

○​ GOOD: decay.constant <- 0.5, cluster.mean <- mean(some.numbers)

●​ -5 for single-letter variable names, or other un-informative variable names (temp, foo, bar). solution: use an

informative (self-documenting) name ideally with a type suffix. CH31

○​ BAD: x <- rnorm(10), temp <- rnorm(10)

○​ GOOD: random.data.vec <- rnorm(10)

●​ -5 for variable names and/or identifiers containing numbers/digits where names or another programming

technique could be used instead. solution: use informative (self-documenting) variable/identifier names or

another programming technique. CH31

○​ BAD: index1, index2, my.list[[6]], my.mat[, 3].

○​ BAD: my.list <- list(); my.list[[1]] <- data.table(id=1); my.list[[2]] <- data.table(id=2); do.call(rbind, my.list)

○​ BAD: rbind(data.table(id=1), data.table(id=2))

○​ GOOD: index.to.keep, index.to.remove, my.list[["squared error"]], my.mat[, "tot.ss"],

●​ -5 for repeating constants in your code. (this is error-prone, and confusing for readers of your code) solution:

declare a variable with that constant and use that variable several times. (the name of the constant should

document its purpose/usage) Think: if I wanted to change that constant, in how many places would I need to

change it? (the answer should be one) See discussion

https://en.wikipedia.org/wiki/Magic_number_(programming)#Unnamed_numerical_constants and CH54, CH45

○​ BAD: X.train <- X[1:100,]; y.train <- y[1:100]

○​ GOOD: N.train <- 100; X.train <- X[1:N.train,]; y.train <- y[1:N.train]

○​ BETTER: train.indices <- 1:100; X.train <- X[train.indices,]; y.train <- y[train.indices]

●​ -5 for repetitive code blocks / variable names that could be replaced by a loop or another less repetitive

programming technique. solution: use for loop and a list with named elements, or a list of data tables, or another

programming technique (repetition can and should always be avoided in programming). CH29, CH4

○​ BAD repeated numbers of clusters: result2 <- kmeans(X, 2); result3 <- kmeans(X, 3)

○​ GOOD: result.list <- list(); for(n.clusters in 2:3) result.list[[paste(n.clusters)]] <- kmeans(X, n.clusters)

○​ BAD repeated set names: train.err.vec <- computeErr(data.mat[set=="train",])​
valid.err.vec <- computeErr(data.mat[set=="valid",])​
data.table(total.error=c(sum(train.err.vec), sum(valid.err.vec)), set=c("train", "valid"))

○​ GOOD: data.table(error=computeErr(data.mat), set)[, .(total.error=sum(error)), by=set] ​
OR set.err.list <- list(); for(set.name in unique(set)) {​
 set.err.list[[set.name]] <- data.table(set, total.error=sum(computeErr(data.mat[set==set.name,]))​
}​
do.call(rbind, set.err.list)

○​ BAD repeated linkage types: result.complete <- hclust(X, "complete"); result.single <- hclust(X, "single")

○​ GOOD: result.list <- list(); for(linkage in c("complete", "single")) result.list[[linkage]] <- hclust(X, linkage)

○​ BAD repeated column names:
ARI_kmeans = list()

https://github.com/tdhock/cs499-599-fall-2020/raw/master/Burns-Tao-Te-Programming.pdf
https://www.burns-stat.com/documents/books/tao-te-programming/
https://en.wikipedia.org/wiki/Magic_number_(programming)#Unnamed_numerical_constants

for(k in 1:20){
 kc = kmeans(x = data_without_label,centers = k)
 ari = adj.rand.index(kc$cluster,data$V1)
 ARI_kmeans[[k]] = c(k,ari) #K,ARI repetition 1
}
ARI_kmeans = do.call(rbind,ARI_kmeans)
ARI_kmeans = data.frame(ARI_kmeans)
colnames(ARI_kmeans) = c('K','ARI') #K,ARI repetition 2

○​ GOOD:
kmeans_dt_list = list()
for(k in 1:20){
 kc = kmeans(x = data_without_label,centers = k)
 ari = adj.rand.index(kc$cluster,data$V1)
 kmeans_dt_list[[k]] = data.table(k,ari) #k,ari defined here (no repetition)
}
kmeans_dt = do.call(rbind,kmeans_dt_list)

●​ -5 for lack of consistent indentation. Solution: use consistent indentation which makes it easy to see the

structure of your program (for loops, ggplots, etc).

○​ BAD:
some.list <- list()
for(data.i in something){
some.list[[data.i]] <- compute(data.i)
}

○​ GOOD:
some.list <- list()
for(data.i in something){
 some.list[[data.i]] <- compute(data.i)
}

●​ -5 for using a for loop containing scalar-scalar operations (inefficient) where vector-scalar operations without a

for loop could be used (efficient). Not very strict on this one (will only take points away if a for loop is used

instead of a more efficient vectorized operation that has already been discussed in class). Please ask

google/classmates/myself if you are doing scalar operations inside of a for loop and you don't know of the

efficient/good way to do the same thing using vector operations.

○​ BAD/INEFFICIENT: sum.squares <- 0; for(i in 1:length(x)) sum.squares <- sum.squares + x[i]^2

○​ GOOD/EFFICIENT: sum.squares <- sum(x^2)

●​ -5 for using quadratic time accumulation (inefficient). solution: linear time list of data tables (efficient). See

discussion https://tdhock.github.io/blog/2017/rbind-inside-outside/ and CH16, CH47

○​ BAD/INEFFICIENT: df <- NULL; for(...) df <- rbind(df, new.df)

○​ GOOD/EFFICIENT: df.list <- list(); for(...) df.list[[id]] <- new.df; df <- do.call(rbind, df.list)

●​ -5 for lines of code that are very wide (more than 80 characters) or impossible to read. solution: use

intermediate variables or line breaks.

GGPLOT RESULTS

●​ -5 for plots which are impossible/difficult to read because text is too small or going off plotting area. solution:

increase text size and/or plotting area size.

●​ -5 for using two different visual properties for the same data variable, which is potentially confusing. Solution:

only use one visual property per data variable.

○​ BAD: aes(color=algorithm) + facet_grid(. ~ algorithm), which results in the plot below, potentially

confusing because the "kind" data variable is used for both facets and colors.

https://tdhock.github.io/blog/2017/rbind-inside-outside/

○​ GOOD/solution: use one or the other (not both). In this case it is probably better to remove aes(color)

and use facet_grid(labeller=label_both).

●​ -5 for plots which are impossible/difficult to read for people who are red-green color-blind. solution: do not use

red and green on the same figure. See https://daltonlens.org/colorblindness-simulator to simulate what your

image would look like to a color blind person, and https://colorbrewer2.org for color palette suggestions (but

please avoid the suggestions that have red and green in the same palette).

●​ -5 for plots which are impossible/difficult to read because of missing/confusing axes/panel labels. solution: make

sure there is a title for each axis which explains what it plotted on that axis.

○​ Below example confusing because "x" and "y" axes labels do not add any information for the reader.

solution: "observation" and "distance" would be good axes labels.

https://daltonlens.org/colorblindness-simulator
https://colorbrewer2.org

○​ Below confusing because panel title is number from 1 to 6. Solution: use

facet_wrap(labeller=label_both) and more informative values so we get panel titles like "image: 10 PCs"

or "image: original.

BAD:

●​ -5 for plots which are impossible/difficult to read because no legend/labels for decoding color/fill/etc. solution:

use a legend or direct labels to show what the different colors/etc mean.

●​ -5 for plots with un-informative / irrelevant /potentially confusing legends. Solution: remove a legend when it

does not add any information, or is not relevant to answering the question. Or keep and edit the legend so that it

is relevant/informative/not confusing.

○​ BAD example 2: aes(color=cluster.id) when cluster.id has only 3 values/categories (1, 2, 3), but is type

numeric or integer, so ggplot gives you a numerical legend by default, which is confusing because the

value 2.5 is shown on the legend, but there is no value 2.5 in the data.

○​ GOOD/solution to example 2: use aes(color=factor(cluster.id)) to get a categorical legend.

●​ -5 for using constants on the right-hand/value side of aes that will result in a potentially confusing legend with a

title such as "colour." solution: if you want a legend then use a data variable instead, with a name that

corresponds to what you want showing up on the axis/legend title, like aes(color=some_variable), not

aes(color="some constant"). If you don't want a legend, then specify the constant outside of the aes.

○​ BAD example 1: geom_point(aes(size=2)) gives size legend which has only one value=2 and name "size"

so is un-informative.

○​ GOOD/solution to example 1: remove that legend by moving size outside the aes, geom_point(size=2).

○​ BAD example 2: geom_point(aes(color="complete")) or geom_point(aes(color="blue")) gives the

confusing legend below with title "colour"

○​ GOOD/solution to example 2: geom_point(aes(color=algorithm)) or geom_point(color="blue")

●​ -5 for missing aes(group) which results in jagged geom_line, with several y values for a single x value. BAD:

Solution: use aes(group=some_variable) so that several different non-jagged lines are drawn instead (each line has one y

value per x value).

GGPLOT CODE

●​ -5 for using multiple geoms in a ggplot when you could use a single geom with a bigger data set. CH35

○​ BAD: geom_line(aes(x, y), data=DT[algorithm=="kmeans"], color="blue")+

geom_line(aes(x, y), data=DT[algorithm=="hclust"], color="red")

○​ GOOD: geom_line(aes(x, y, color=algorithm), data=DT)+

scale_color_manual(values=c(kmeans="blue", hclust="red"))

●​ Other common mistakes may appear here in the future as needed.

Other suggestions
●​ stringr::str_match (double colon package notation) is preferable to library(stringr), so readers of your code can

easily see in what package each function you use is defined.

●​ setwd("C:/...") with an absolute path should be avoided. Relative paths are more portable (I could potentially

run the code without modification on my computer)

●​ return(something) at the end of a function is un-necessary in R (potentially confusing). return(something) is ok

for early return, but for the end of the function just use something (no return)

●​ dataset <- some_fun(dataset) is potentially confusing / error-prone because dataset means one thing before

that line of code, and something else after. It is better to give unique variable names (avoid over-writing the

same varaible with another value), GOOD: transformed_data <- some_fun(original_data)

●​ The base pipe |> (always available in recent R versions) should be preferred to the magrittr pipe %>%

Java General Usage Rubric (CS249, Michael Leverington, not used for

grading CS499/599, but good guidelines to learn/follow)

1.​ use of non-self-documenting or single-letter variable: -1 per declaration or use
2.​ missing or non-aligned curly braces: -1 per pair/occasion
3.​ use of unnecessary language prepends (e.g., java.lang. or SomeNodeType.): -1 per occasion
4.​ redundant boolean test: -1 per occasion

a. e.g., if(<boolean expression> == false)
b. e.g., if(<boolean expression> == true)

5.​ second, or subsequent, if statement that should logically be else: -2 per occasion
6.​ any data/state change in array brackets or in method parameters: -2 per occasion

a. e.g., value = array[index++];
b. e.g., value = someMethod(otherValue, myValue--);
c. note: array[index + 1] or someMethod(otherValue, myValue – 1) are

appropriate and acceptable
7.​ declaration of variable within any loop: -2 per occasion

a. e.g., for(int index = 0; ...)
b. e.g., while(someCondition)
 {
 int newValue = someValue;
 ...

8.​ use of incomplete for loop (e.g., for(; index < 5; index++)): -2 per occasion
9.​ use of if/else in place of single Boolean return statement: -2 per occasion
10.​any code on the same line as a curly brace: -2 per occasion
11.​use of 1 or 0 (or any other numbers) in place of true or false: -2 per occasion
12.​ use of literals (e.g., ints, chars, etc.) when constants or variables should be used: -2 per

occasion
a. Note that in most cases, String literals are more readable than constants or variables so
String literals are recommended unless the same String value is used in several places

13.​use of break anywhere but in a switch operation: -2 per occasion
14.​use of unspecified try/catch: -2 per occasion
15.​use of return; (without value): -3
16.​use of continue anywhere: -3 per occasion
17.​any I/O in a method not specified for I/O operations: -3 per occasion
18.​use of methods in parameter/argument lists: -3 per occasion
19.​use of methods in array brackets: -3 per occasion
20.​creation or use of empty if or else blocks: -3 per occasion
21.​placement of main method in any ADT class: -3 per occasion
22.​code more than 80 characters: -3 per five lines
23.​use of “var” for data typing: -3 per occasion
24.​use of ternary operator: -3 per occasion
25.​use of unspecified Java or other utility methods and/or data: -5 per occasion
26.​--- new items will be added as needed ---

	R General Usage Rubric (CS499/599, Toby Dylan Hocking)
	Other suggestions
	Java General Usage Rubric (CS249, Michael Leverington, not used for grading CS499/599, but good guidelines to learn/follow)

