Honors Algebra II

Quadratic Functions & Equations

Honors Algebra II Curriculum

	\frown			
LOWAR	- 1	316		WAS
Power (199	
	\smile			

P.O. #2: Graph and Interpret Quadratic Functions (P.O. #2 Proficiency Rubric)

P.O. #3: Solve and analyze quadratic functions algebraically in context including Complex Numbers (P.O. #3 Proficiency Rubric)

Academic Vocabulary

Enduring Understandings Students understand that

Students understand that...

- The vertex of a parabola will represent the maximum point of the function, which will help to understand maximum and minimum values in real-life situations.
- No matter how you choose to solve a quadratic function for real solutions, you are always looking for where the function crosses the x-axis. These points on the graph are significant in many real-world applications.
- Solutions that exist can exist beyond the real number system. All quadratic functions are a transformation on the parent function f(x)=x2.
- The domain and range of quadratic functions can be relative to a situation.

Essential Questions

- How does understanding how to find the vertex of a quadratic function help in making decisions in real-life applications?
- What are the advantages of a quadratic function in vertex form? In standard form?
- How is any quadratic function related to the parent quadratic function f(x)=x2?
- How does solving for x in quadratic functions compare to solving for x in linear

functions? Why do we analyze quadratic functions?

- How can quadratic functions maximize profits or minimize cost?
- Why does the degree of an equation reveal the number of solutions to the equation?
- To what extent are solutions to quadratic equations real?
- How are the real solutions of a quadratic equation related to the graph of the related quadratic function?