
PM Neato

1/29/2024 - Update the paragraph below with a description of what
this project is. You can use information from any links to
Instructables or other tutorials🤡

 Mr. Burnham Notes

-- >🤡

Date As part of this description, add the link to the
Instructable

 Mr. Burnham Notes

Prerequisite & Baseline Knowledge:
< Replace This Text/Paragraph/Section With Your Explanation Of What The User
Should Already Know - Provide an Example text here

●​ know how to do this ← the "this" should be a link to where to learn more
●​ and this..🤡
●​ and also this would help🤡

Explain any overarching concept that people need to know about this project.
Have you ever read a tutorial and realized midway through that it’s beyond your level of
experience? The author forgot to mention the skills you need to complete this tutorial,
and now you’re frustrated because you’ve wasted time on something you can’t use yet.
-- >

Parts & Software used in this project:
< Replace This Text/Paragraph/Section With Your Overview Or Introduction to the
Parts and Software - This section and paragraph is to list out the parts and software,
where to get them or how to access them. This paragraph is to say something about
any hard to get or hard to access parts or software. You don't want the reader to jump
into this project without understanding what parts may be hard to get or software to
access.🤡
-- >

Hardware components

 Item # Description / Link

1

2

3

4

5

6

Software components
●​ List the software needed, with an explanation and likes of access, download, or

sign up for a free /trial account.
●​ More links…
●​ Include and or link to github to point to software and other electronic files.

Additional Electronic Files and Links
●​ List the links to other files. These are items like 3D Print STL files, Laser cut files,

code examples.
●​ More links…
●​ Include and or link to github to point to software and other electronic files.

< Replace This Text/Paragraph/Section With Your Explanation of the parts & software,
how they work and what to think about when using them - Provide a brief explanation of
the actual parts and what they do and how to use them so an explanation of how the
particular sensor works or particular motor controller works or particular
electromagnetic theories and how they work. -- >

Project Overview:
< Replace This Text/Paragraph/Section - Do a deep dive in explaining the purpose and
goals of the project, and what the reader will know and be able to do… - This paragraph
is an intro to getting started on the specific project. The reader has gotten this far, they
are ready to start… get them going with some explanations and then jump into the
steps.

Do the following in this introduction and/or in the steps:

●​ Think of any questions the reader will have, and try to answer them here in the
introduction or in each of the steps. Remember, this is your 2-3 time thinking
about and trying this lab/tutorial, but your audience may never have seen or
learned about this topic. Try to proactively answer any questions they will have.

●​ On all of your images, make sure to provide a detailed caption that really tells the
user what they're seeing and WHY.

●​ If you are posting code, make sure it is selectable if it is a small snippet, but if not
make sure there is a link to a github site so your readers can cut and paste it.

●​ If a step seems too complicated or has multiple topics, then it probably should be
split into multiple steps. It's OK to have lots of steps.

●​ Make sure you provide a time frame for each step. How long should it take your
reader to do?

-- >

Step 1: <Step Title >
< Replace This Text/Paragraph/Section - Give an Overview for the Step - This
paragraph is an intro to getting started on the specific project. The reader has gotten
this far, they are ready to start… get them going with some explanations and then jump
into the steps.

-- >

Overview:
Give an overview for this step. Include a "Why are we doing this step in this order". This
can be a short or long or multiple paragraphs.

●​ This Step will include… < list what they are going to accomplish >

●​ This Step should take about N minutes to complete.

Tools, Components & Software Used:
List any tools, components or software used in this step. Describe how to prepare these
items.

●​ list them
●​ here…

Let's Get Started:
Now tell them what they are doing, and how to do it… This is the details of the step.
This is probably a few paragraphs or sub-steps. It can be a mix of paragraphs and bullet
points. Pictures or videos are also good to have.

●​ Paragraphs describing the step
●​ Pictures describing the step
●​ Blocks and links to code. Your code should be nice to look at. It should look like

code, so you could put it in a table cell and color the background and change to a
monospaced font like Courier New, which is the typical default for a computer
terminal font, but you might like other fonts. I currently like Roboto Mono or
something like Helvetica Neue. See this Google Docs code font tip

●​
What Should be Working/Done:
This is just a last paragraph to tell the reader what they should have accomplished, what
should be complete, what should be working… AND how they will know. Is there some
test to run, is there some mechanical capability the item should have? Just make sure
they are done with this step before they move on.

Step 2: <Step Title >
< Replace This Text/Paragraph/Section - Give an Overview for the Step - This
paragraph is an intro to getting started on the specific project. The reader has gotten
this far, they are ready to start… get them going with some explanations and then jump
into the steps.

Overview:
Give an overview for this step. Include a "Why are we doing this step in this order"
Tools, Components & Software Used:
List any tools, components or software used in this step. Describe how to prepare these
items

https://medium.com/@keshidong.dev/how-to-format-code-in-google-doc-833e28b304f1

Let's Get Started:
Now tell them what they are doing, and how to do it… This is the details of the step.
This is probably a few paragraphs or sub-steps. It can be a mix or paragraphs and bullet
points

What Should be Working/Done:
This is just a last paragraph to tell the reader what they should have accomplished, what
should be complete, what should be working… AND how they will know. Is there some
test to run, is there some mechanical capability the item should have? Just make sure
they are done with this step before they move on.
-- >

Software:

Related and "What's Next?"
< Replace This Text/Paragraph/Section With Your "Dig Deeper" Plan - This where you
provide a paragraph on what you think your or reader should do next. Describe what
your plan to do or what they should do to learn more, dig deeper, or how to expand their
learning on this topic.

●​ List links
●​ list another…

-- >

< Delete this before you are done > Project Parking Lot - "What's
Next", Stuff To Save, Delete or Reorganize:
Each day you work on this project, you should spend some time here moving and
organizing topics you have put here… Think of this as the "What am I doing next" section

●​ Save lots of Photos - Choose images that will be useful to illustrate your
instructions

●​

-- >

Daily Blog Of Work and Project Progress:

Mr Burnhams "blog"

5/15/2024 - updated the "top NEATO page"
https://sites.google.com/view/steam-clown-mechatronics/robot-club/robot-cars/neato-robots
added neato build scripts for the Raspberry Pi and the crap top.

https://raw.githubusercontent.com/jimTheSTEAMClown/neatoRovers/main/Neato-RaspberryPi-
Ubuntu-Build.sh

https://raw.githubusercontent.com/jimTheSTEAMClown/neatoRovers/main/Neato-Craptop-Ubu
ntu-Build.sh

But I'm testing the linux command code
sudo apt install build-essential
sudo apt install ros-humble-xacro
sudo apt install python3-rosdep2
mkdir neato
cd neato
mkdir ros
cd ros
mkdir src
git clone https://github.com/cpeavy2/botvac_node.git
git clone https://github.com/cpeavy2/neato_robot.git
git clone https://github.com/kobuki-base/cmd_vel_mux.git
git clone https://github.com/kobuki-base/kobuki_velocity_smoother
git clone https://github.com/stonier/ecl_tools

Lexi ✨ & Lijia ✨

★​Day 1: Repair and Pinout
○​ Today we repaired our neato by resoldering the wires that were previously cut

because there was a mistake with which wires to cut so they had to be
resoldered. Then we had to cut holes to make way for wires to be soldering to

https://sites.google.com/view/steam-clown-mechatronics/robot-club/robot-cars/neato-robots
https://raw.githubusercontent.com/jimTheSTEAMClown/neatoRovers/main/Neato-RaspberryPi-Ubuntu-Build.sh
https://raw.githubusercontent.com/jimTheSTEAMClown/neatoRovers/main/Neato-RaspberryPi-Ubuntu-Build.sh
https://raw.githubusercontent.com/jimTheSTEAMClown/neatoRovers/main/Neato-Craptop-Ubuntu-Build.sh
https://raw.githubusercontent.com/jimTheSTEAMClown/neatoRovers/main/Neato-Craptop-Ubuntu-Build.sh
https://github.com/stonier/ecl_tools

our battery connector and we also found this reddit page that seemed to have the
pinout for the battery connector and it also had a video that showed the circuitry
in the battery so this should help with figuring out how to interface with the
battery.

★​Day 2: Battery Pain
○​ We spent the entire day trying to fix our neato’s battery connector as it got

messed up and we had to take a while trying to resolder some jumpers to the
pins in an attempt to repair but we still have a bit to go in getting it actually
hooked up to a real connector that will work with the battery.

★​Day 3: It has been Restored!
We spent the entire day fixing up our neato after doing a lot of the work for the
battery yesterday and after having to swap batteries due to our’s having a faulty
connector it worked! So then we sealed it up and FINALLY our Neato was
working. So now we need to actually work on the connector stuff.

★​Day 4: Wires
○​ This class period was spent creating the connection between the Neato and and

raspberry pi. We started by preparing many wires by stripping the ends and then
soldering them to the proper ends. Once that was done 5 of the wires were
screwed into the proper place. The last part was soldering the rest of the wires to
the power converter to ensure that we were delivering the appropriate amount of
current. Unfortunately our first switch had to be replaced.

★​Day 5: Craptop
○​ After booting up the raspberry pi, we got a laptop and got a Ubuntu image onto a

sd card for the raspberry pi. We replaced the sd card, and then got the new one
to boot up as well despite running into issues. We also managed to get all the
necessary VIAM stuff onto the devices.

★​Day 6 : SSH Pain
○​ As we attempted to follow Camp Peavy HomeBrewed robot pdf, we ran into a

couple issues. Although we got Turtle and previous installations to work,a certain
packet was unable to be found by the raspberry pi leading to issues. Despite it
being active we could only get the raspberry pi to connect to the craptop. Despite
that we made substantial progress.

https://www.reddit.com/r/batteries/comments/s0zbn4/what_is_the_pinout_of_this_neato_liion_battery_i/

★​Day 7: SSH Working!
○​ We talked to Camp Peavy who has done this before, and he was able to help us

by allowing us to realize that we were messing up the ssh command because the
first part of it is actually a username field which made it so we couldn’t log in
properly since we had “ubuntu” in there like how it did in his book. He also helped
us install openssh-server on the pi which we were able to do just by doing sudo
apt update and upgrade and then attempting to install. Now we just have to go
through the rest of the book and hopefully all goes well, however we’ll likely get
stuck on installing prerequisites for Camp’s github package because Mr.
Burnham has talked about one of them failing.

5/18/2024 - it's important to document the exact commands, so
someone like me a=can try it and check to see if it works. Can you
document the actual ssh linux commands you are using🤡

 Mr. Burnham Notes

★​ Day 8:
○​ ssh [username]@[ipadress]
○​ * username and ipaddress field should be replaced
○​ We made more progress by beginning implementing the github stuff from the

book however we ran into some issues when building some programs specifically
when building nav2_util, neato_driver, neato_node packages. (nav2_util is only
on the workstation whereas neato_driver and neato_node are on both the Pi and
the Workstation and have errors on both) So we’ll need to figure out what’s up
with those tomorrow.

★​Day 9: Colcon pain
○​ Today we attempted to install the Colcon package multiple times to no avail.

Currently we are now working on installing all the dependencies in an attempt to
fix this issue. This involves messaging Camp Peavy once again for advice, and
possibly the creation of a new script to install all of the necessary material.

★​Day 10: Dark Magic and More Colcon pain
○​ This time we’re deciding to take matters into our own hands since we figured out

we weren’t actually missing any dependencies so we looked up the error
message outline and found a small fix that almost allowed the build for nav2_util
here’s the link to that fix. Basically go into service_client.hpp located in
<ws>/src/navigation2/nav2_util/include/nav2_util/ go down to line 49 and add
`.get_rmw_qos_profile()` after `SystemDefaultQoS()` but before the comma and
that should allow you to build to about 70%. Make sure to save the file before
building again to make sure it works.

https://github.com/ros-navigation/navigation2/issues/3447

○​ We then did something a little risky, we weren’t able to find any other help from
the internet so we went ahead and thought outside of the box, we saw an error
message was complaining about a function being private, because of this we
then had to edit another package (tf2_ros) to make the function public. Even
though the script was read-only we forced the text editor to be able to edit the file
by using the following command to open a text editor instance that could edit the
file needed `sudo gedit
/opt/ros/humble/include/tf2_ros/tf2_ros/transform_listener.h`. Then we moved the
function `subscription_callback` in the private section of the TransformListener
class defined on line 158 and the 2 lines above it, as they are also part of the
function into the public section on line 107 underneath the last function of the
public section `~TransformListener`

○​ For the next fix we did something similarly risky and used the same command
from last fix (`sudo gedit
/opt/ros/humble/include/tf2_ros/tf2_ros/transform_listener.h`) to edit the same
function that we moved into the public section and we added the virtual keyword
to the beginning of the function (so now it looks like virtual void
subscription_callback(...) which then allows the override keyword to work
properly since that keyword requires the original function to be virtual.

○​ We then had some errors when it came getting header files for nav2_util, it
seems for some reason that humble’s instance of nav2_util doesn’t have all the
files needed so we ran another risky command `sudo nautilus
/opt/ros/humble/include/nav2_util` in order to open a file browser at humble’s
copy of the package so that way we can copy the missing header files to the
package. However we still appear to be missing things so we’ll have to diagnose
what went wrong tomorrow.

○​ We essentially dealt in programming equivalent of dark magic today

★​Day 11: Chronic Colcon pain
○​ After updating we got a new error and deleting lines 64 - 74 in

<ws>/src/navigation2/nav_2_lifecycle_manager/src/lifecycle_manager.cpp
seemed to fix it so now we’re back in the same place. The error seemed to be
that there were two seemingly unused variables being assigned to the return
result of a nonexistent function so just deleting them fixed it

○​ Underneath the function std::string get_plugin_type_param(around line 154) we
wrote some code from the header file from the nav2_util package we built that
seemed to be missing in humble’s version of the same header which was
causing another error the command we used to open the file was `sudo gedit
/opt/ros/humble/include/nav2_util/node_utils.hpp` and the code we wrote was
`/**​
 * @brief Sets the caller thread to have a soft-realtime prioritization by​
 * increasing the priority level of the host thread.​
 * May throw exception if unable to set prioritization successfully​
 */​
void setSoftRealTimePriority();`

○​ The previous fix didn’t work on it’s own, I suspect that for whatever reason the
copy of nav2_util was outdated or cut off somehow such that the complete
package wasn’t there since I had to take the compiled binary that was made
when we managed to finish building nav2_util ourselves and put it into
opt/ros/humble/lib I used the command `sudo nautilus /opt/ros/humble/lib` in
order to be able to copy the compiled binary that we had located at
<ws>/install/nav2_util/lib/libnav2_util_core.so to that location so it could replace
the old binary humble has.

○​ We now had a similar error to the first error we encountered on this journey, so
now we just opened
<ws>/src/navigation2/nav2_behavior_tree/include/nav2_behavior_tree/bt_service
_node.hpp we went down to line 75 and added `.get_rmw_qos_profile()` after
`SystemDefaultQoS()` but before the comma just like the first error.

○​ Also for some reason our terminal seems to inconsistently crash and sometimes
the computer also freezes when the craptop is building the libraries, not sure why
this is happening other than the computer is bad.

○​ Also for some reason after the latest crash the computer is going through the
process of rebuilding most of the packages I think maybe stuff got corrupted or
something and so now it has to be rebuilt

○​ Now for some reason we are seeing the same errors as before this could be due
to us using apt update and upgrade after modifying libraries that would be
affected by them so while building I guess DO NOT update or upgrade when
making these changes

○​ We had to implement the same fixes we did earlier in order to build previous
packages that were undone so really DO NOT update or upgrade when building
with all these patches

○​ While waiting for nav2_behavior_tree to build, we noticed some… weird
behaviors. Some of the stuff like the terminal crashing and the computer freezing
like mentioned earlier seemed to only happen with this package and at one point
the computer even seemed to restart. I have no idea how this happened or if the
computer is just wigging out today but… yikes.

★​Day 12: geometry_msgs
○​ We figured out how to fix the terminal from crashing, at least to an extent. When

running colcon build you need to add –parallel-workers <amount> which helps
the computer with memory issues from the packages. Obviously if you increase
the amount it is more intensive but goes by faster and decreasing it makes it run
worse. We personally went with 4 so our command was `colcon build
–parallel-workers 4`

○​ We had an issue where geometry_msgs for some reason didn’t have a section of
itself, specifically the polygon_instance_stamped bit of geometry_msgs just didn’t
exist for some reason, so we cloned the repository for it and rebuilt the package
and spliced in the stuff that was missing so that way it would work as intended
instead of dying.

★​Day 13: Shutdown
○​ We made a shutdown button for our raspberry pi! We followed the hard option of

the tutorial Mr. Burnham gave us however the file directory specified in the
service file didn’t suit us since we required sudo so instead of `/usr/bin/python3
/home/pi/blink.py` our file directory was `/usr/bin/sudo /usr/bin/python3
/home/<user>/pi/shutdown.py` We also changed the command used in the
shutdown script from `/usr/bin/sudo /sbin/shutdown -h now` to
`/usr/sbin/shutdown -h now` we did also change the if condition from `if
GPIO.input(shutdown_pin) == False` to `if not GPIO.input(shutdown_pin)` since
while it is equivalent, using not instead of `== False` is a bit more elegant in my
opinion

○​ When running Colcon build again, we noticed that building nav2_behavior_tree
would take up all of our memory, causing the terminal to crash. Although we got
up to 51%, we still have a long way to go. In an attempt to solve this issue we
used ‘colcon build –parallel-workers 8’ as we found out our cpu has 8 cores and
therefore there should be only 8 parallel workers.

○​ We then tried to build nav2_behavior_tree by itself since it appears to take a ton
of ram to build that package so we used the following command to build that one

by itself before trying to build them all at once again `colcon build
–parallel-workers 8 –packages-select nav2_behavior_tree`

★​Day 14: New Packages 🥳 💯!!!
○​ We now have a command that will allow us to only work on packages that still

need to be worked on which is very useful since we constantly run out of memory
by rebuilding already built packages so now we have modified our build
command to be `colcon build –parallel-workers 8 –packages-skip-build-finished`

○​ We then ran into an error when building nav2_collision_monitor where we had to
change line 84 from `timer_ = this->create_timer(` to `timer_ =
this->create_wall_timer(`.

○​ After a while we noticed that we were missing something from another package
and so we went down a change of package dependencies that weren’t installed
for some reason and had to use the command ‘git clone’ for the following repos in
order to build our own version of rclcpp so that way we can get a function that
was missing. The repos we cloned were `https://github.com/ros2/rcutils`,
`https://github.com/ros2/rosidl` (specifically rosidl_runtime_c),
`https://github.com/ros2/rosidl_dynamic_typesupport`, and of course
`https://github.com/ros2/rclcpp`. We then had to use `sudo nautilus` in order to
copy the newly built files over, hopefully you know how to copy the binaries and
header files by now so that we don’t have to go over it in vivid detail.

○​ In a attempt to fix more missing package dependencies repos were cloned
‘https://github.com/ros2/rcl’, ‘https://github.com/ros2/rcl_interfaces’ (specifically
service_msgs), ‘https://github.com/ros2/rosidl_core’ (specifically
rosidl_core_generators), We already had rosidl_generator_type_description and
rosidl_pycommon from when we cloned the rosidl repo and because of that we
didn’t need to clone another repo for those 2 packages.

○​ We found that rosidl_generator_type_description and rosidl_pycommon had
some weird file formatting compared to the other packages so we found that for
the lib folders the folder inside the local folder that has the name of the package
gets put in humble’s local folder and the folder inside the lib folder with the
package name gets put in humble’s lib folder

★​Day 15:
○​ Today we are having to undo the rest of our work, since a section of the book is

wrong. After contacting Camp Pevy on LinkedIn we managed to identify the
source of our issues. Nav2 must not be compiled from source!!!! This is
because when compiling by source the default branch does not necessarily
match the distro of ros you’re using and therefore when compiling from source it
will create a bunch of errors if you have a different distro than the default branch
so compiling from source was the source of all our problems that `sudo apt install

https://github.com/ros2/rcutils
https://github.com/ros2/rosidl
https://github.com/ros2/rosidl_dynamic_typesupport
https://github.com/ros2/rclcpp
https://github.com/ros2/rcl
https://github.com/ros2/rcl_interfaces
https://github.com/ros2/rosidl_core

ros-humble-navigation2` and `sudo apt install ros-humble-nav2_bringup` fixed.
Then updating Ubuntu we went on to follow all of the commands
from‘https://github.com/cpeavy2/botvac_node’ on both laptop and raspberry pi4.

○​ We started from page 143 and connected the raspberry pi 4 to the neato using a
short USB type A to Micro USB cable, and a short USB-A to USB-C to connect
the battery to the Pi4 Power supply

★​Day 16:
○​ We attempted to follow the book's instructions.You don't need to create a new

user .

★​Day 17:
○​ We attempted to fix some of the issues that came up when trying to run the

commands needed to get the neato up and running. We weren’t able to fully
diagnose why the usb connection wasn’t working but in the meantime we fixed
the issue with velocity_smoother. We edited the file at
`~/ros2_ws/install/botvac_node/share/botvac_node/launch/include/velocity_smoo
ther.launch.py` and we added the import `from ament_index_python.packages
import get_package_prefix` and then we changed line 42 (after adding the import
it looks like this `executable = exe_name`) to `executable =
get_package_prefix(pkg_name) + “/lib/” + pkg_name + “/” + exe_name`. Which
fixed the error by specifying to the computer where the executable is.

★​Day 18:
○​

Alex & Charley:
○​ Day 1: Disarmament

○​ We resoldered the incorrectly cut wires back together, then we
drilled a hole for the wires to be put through. Charley suggested
using the speaker, so another hole needs to be drilled.​

●​ Day 2: Diconnectent
○​ we disconnected the speaker to connect it to the raspberry pie and

melted a hole for the speaker wire to go through

https://github.com/cpeavy2/botvac_node

●​ Day 3: Batterrytainement
○​ We worked on the battery, which was faulty and not wanting to charge.

We got a replacement battery that we were told to “borrow” from another
team. We will get our own later on.

●​ Day 4: Connection

○​
●​ Day 5: Wiring

○​ We finished the main soldering parts for the Neato Vacuum,
which includes the switch and

●​ Day 6: E
○​ There wasn’t much done today, I didn’t get the image onto my

raspberry pi. I did work a bit on the Ubuntu laptop. Battery for
the rover seems to not want to charge.

●​ Day 7: Ubuntu
○​ I finished up the setup for the ubuntu laptop, and started a bit

on the raspberry pi.
●​ Day 8 - Day 11:

○​ Attempting to finish the installation on the raspberry pi.
●​ Day 12 - 15:

○​ Followed the instructions on the github, as the book was
wrong. Lexi messed up, but it was more of the book's fault
than anything. Now we wait for the battery to charge

●​ Day 16 - 18?:
○​ So Lexi couldn’t get it to work, and time is running out. It is

charged, but the connection isn’t working properly.

Reference and Appendix:

https://www.bristol.ac.uk/esu/media/tutorials/design-principles/page_08.htm

https://www.reddit.com/r/learnprogramming/comments/yf9zb2/what_makes_a_good_tutorial/

How to Make an Actually Good Tutorial
https://uwaterloo.ca/centre-for-teaching-excellence/catalogs/tip-sheets/key-strategies-effective
-tutorials

https://www.webdew.com/blog/tutorial-video-examples

https://dailyblogtips.com/11-essential-tips-to-writing-the-ultimate-tutorial/

https://codingwriter.com/how-to-write-better-tutorials-part-1/

https://dev.to/savvasstephnds/in-your-own-opinion-what-makes-a-tutorial-beginner-friendly-mg4

https://medium.com/@keshidong.dev/how-to-format-code-in-google-doc-833e28b304f1

Notes Mr. Burnham Notes

https://www.bristol.ac.uk/esu/media/tutorials/design-principles/page_08.htm
https://www.reddit.com/r/learnprogramming/comments/yf9zb2/what_makes_a_good_tutorial/
https://uwaterloo.ca/centre-for-teaching-excellence/catalogs/tip-sheets/key-strategies-effective-tutorials
https://uwaterloo.ca/centre-for-teaching-excellence/catalogs/tip-sheets/key-strategies-effective-tutorials
https://www.webdew.com/blog/tutorial-video-examples
https://dailyblogtips.com/11-essential-tips-to-writing-the-ultimate-tutorial/
https://codingwriter.com/how-to-write-better-tutorials-part-1/
https://dev.to/savvasstephnds/in-your-own-opinion-what-makes-a-tutorial-beginner-friendly-mg4
https://medium.com/@keshidong.dev/how-to-format-code-in-google-doc-833e28b304f1

	PM Neato
	Prerequisite & Baseline Knowledge:
	Parts & Software used in this project:
	Hardware components
	Software components
	Additional Electronic Files and Links

	Project Overview:
	Step 1: <Step Title >
	Step 2: <Step Title >
	Software:

	Related and "What's Next?"
	< Delete this before you are done > Project Parking Lot - "What's Next", Stuff To Save, Delete or Reorganize:

	Daily Blog Of Work and Project Progress:
	Lexi ✨ & Lijia ✨
	★​Day 1: Repair and Pinout
	★​Day 2: Battery Pain
	★​Day 3: It has been Restored!
	★​Day 4: Wires
	★​Day 5: Craptop
	○​After booting up the raspberry pi, we got a laptop and got a Ubuntu image onto a sd card for the raspberry pi. We replaced the sd card, and then got the new one to boot up as well despite running into issues. We also managed to get all the necessary VIAM stuff onto the devices.
	★​Day 6 : SSH Pain
	★​Day 7: SSH Working!
	★​ Day 8:
	★​Day 9: Colcon pain
	★​Day 10: Dark Magic and More Colcon pain
	★​Day 11: Chronic Colcon pain
	★​Day 12: geometry_msgs
	★​Day 13: Shutdown
	★​Day 14: New Packages 🥳 💯!!!
	★​Day 15:
	★​Day 16:
	★​Day 17:
	★​Day 18:
	Alex & Charley:
	●​Day 2: Diconnectent
	●​Day 3: Batterrytainement
	●​Day 4: Connection
	●​Day 5: Wiring
	●​Day 6: E
	●​Day 7: Ubuntu
	●​Day 8 - Day 11:
	●​Day 12 - 15:
	●​Day 16 - 18?:

	Reference and Appendix:

