Занятие 5 Базовый уровень. Цифровой ввод. Линия

Благодарность слушательнице курса «Основы робототехники» Антроповой Анастасии за помощь в разработке и испытаниях программ для следования по линии

В качестве основы для разработки алгоритмов езды по линии использовалась статья «Следование по линии - руководство по использованию датчиков», статья https://cxem.net/uprav/uprav40.php

Цифровой ввод – команда digitalRead

Arduino Uno может считывать два уровня напряжения: **+5 В** (*HIGH*, логическая 1) и **0 В** (*LOW*, логический 0) любым своим входом: как цифровыми D0...D13, так и аналоговыми A0...A5

Примечание: используя кодирование информации, можно подать на входы и более сложную информацию, например, с цифрового датчика температуры DS18B20

Для считывания уровня напряжения на пине Arduino используется команда

digitalRead(номер пина);

она выдает состояние HIGH, если на пине +5 В или состояние LOW, если на пине 0 В

Примечание: перед использованием на пине команды *digitalRead* обязательно нужно настроить этот пин в блоке *setup* как входной, используя команду *pinMode(номер пина, INPUT)*;

ение цифрового ввода:

- подключение к контроллеру отдельных кнопок или их набора (создание клавиатуры) для управления и ввода информации
- датчики линии на роботах
- датчики прикосновения на роботах на основе кнопок «усики» робота
- концевые выключатели на станках с ЧПУ и 3D принтерах, определяющие минимумы и максимумы движения рабочих инструментов по трем осям (X, Y, Z) на основе кнопок или оптических датчиков

Практическое занятие 1. Опрос датчика линии

Нужные компоненты:

- датчик линии
- провода штырек-разъем: красный провод на +5 B, синий или черный провод (GND), провод любого другого цвета сигнальный
- 1. Соберите конструкцию для установки датчика линии на робота по образцу
- 2. Подсоедините провода к штырькам датчика линии:

Vcc – красный провод

Gnd – синий или черный провод

D0 – сигнальный провод другого цвета

3. подключите датчик линии к контроллеру проводами:

5V – красный провод

Gnd – синий или черный провод

D2 – сигнальный провод другого цвета

4. запустите среду разработки Arduino IDE, откройте пример программы для определения состояния кнопки (нажата или отжата) *Файл / Примеры / Digital / Button*

5. переведем комментарии к данной программе на русский язык:

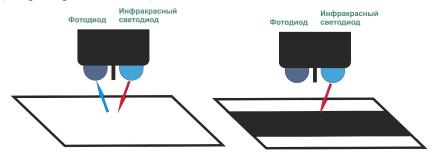
```
const int buttonPin = 2;
                        // номер пина, к которому подключена кнопка
const int ledPin = 13;
                         // светодиод на плате Arduino
int buttonState = 0;
                         // переменная для хранения статуса кнопки (нажата или не нажата)
void setup() {
pinMode(ledPin, OUTPUT); // пин 13 – выходной (управление светодиодом)
pinMode(buttonPin, INPUT); // пин 2 – входной (чтение кнопки)
}
void loop(){
buttonState = digitalRead(buttonPin); // читаем состояние кнопки и записываем в переменную
buttonState
                                       // если в переменной buttonState высокий уровень
if (buttonState == HIGH) {
  digitalWrite(ledPin, HIGH);
                                       // зажжем светодиод
}
 else {
                                       // иначе
  digitalWrite(ledPin, LOW);
                                       // погасим светодиод
}
```

В данной программе используется команды *if*, *else* (если, иначе). Они работают так:

```
if (условие) {
    // выполнить, если условие выполняется
}
else {
    // выполнить, если условие не выполняется
}
```

Примеры условия:

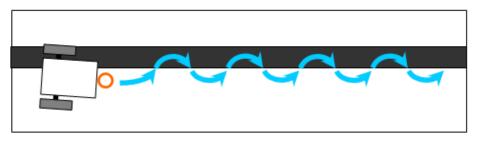
- x = 10 выполняется, если переменная x равна 10
- x > 10 выполняется, если переменная x больше 10
- x != 10 выполняется, если переменная x не равна 10
- 6. Подключите контроллер к компьютеру, загрузите программу *Button* и попробуйте работу: при нажатии/отпускании кнопки светодиод L на плате Arduino должен загораться или потухать


Примечание 1: таким способом можно управлять включением/выключением внешних светодиодов, моторов и т.д.

Примечание 2: опрос кнопок может быть использован в проектах для ввода информации в контроллер (аналогично клавиатуре компьютера) или создания пульта управления по радио (Bluetooth, Wi-Fi и т.п.) роботом.

Использование цифровых датчиков линии для движения по линии

Принцип работы датчика линии:


- если свет от ИК светодиода отразился от белого фона и попал на фотодиод на цифровом выходе датчика одно состояния (например, 0 B, LOW)
- если свет от ИК светодиода не попал на фотодиод на цифровом выходе датчика другое состояния (например, 5 B, HIGH)

Можно осуществить движение робота с одним таким датчиком по линии (если быть точнее, по границе линии), используя следующий алгоритм:

- Если датчик на светлом фоне повернуть влево
- Иначе (если датчик на темном фоне) повернуть вправо

Траектория езды робота при этом показана на рисунке:

Практическое занятие 3. Проверка и настройка датчиков

- 1. Подключите датчик линии к контроллеру. Контакт VCC к 5V, Gnd к Gnd, D0 к одному из цифровых пинов
- 2. Откройте пример *Digital / Button*. Замените пин, к которому подключена кнопка (*int buttonPin* = 2;) в примере на тот, к которому подключен датчик линии. Загрузите программу в контроллер
- 3. Попробуйте датчик над темной и светлой поверхностью. Датчик должен быть слегка поднят над поверхностью, но расстояние от ИК светодиода и приемника (голубой и черный маленькие стеклянные полусферы на датчике) до поверхности не более 5 мм
- 4. Если датчик и на светлой, и на темной поверхности реагирует одинаково (состояния светодиодов на датчике и контроллере не меняются), настройте датчик, поворачивая отверткой подстроечные резистор на нем до тех пор, пока состояния светодиодов над темной и светлой поверхностью не будут меняться

По результатам испытаний видим, что когда датчик над светлой поверхностью и светодиод на нем горит, светодиод на контроллере наоборот, погасает. И наоборот, над темной поверхностью светодиод на контроллере загорается. Исходя из загруженной в контроллер программы видно, что над светлой поверхностью датчик посылает сигнал LOW, а над темной – HIGH

Общая информация по езде по линии

Так как для всех вариантов, кроме езды на пяти датчиках, будут использоваться только пины для вращения моторов вперед, можно прописывать только их. Пример для езды вперед:

```
analogWrite (LF, speed_left);
analogWrite (RF, speed_right);
```

Так как моторы на роботе могут быть разными, задаются значения скоростей отдельно для левого мотора, отдельно для правого. При этом к скоростям могут добавляться: soft — для слабого поворота, hard — быстрый поворот, very_hard — очень быстрый поворот

Ситуация, когда датчик на черной линии – логическая 1, когда на белом поле – логический 0

Опрос датчиков линии (цифровой выход) происходит аналогично опросу кнопки — Φ айл / Примеры / Digital / Button. Для того, чтобы избежать путаницы в состояниях, определим точно, какое состояние соответствует черному (в нашем случае —высокий уровень HIGH), какое — белому (низкий уровень LOW) под датчиком и проведем следующее определение:

```
#define BLACK HIGH
#define WHITE LOW
```

Данные определения пишутся там же, где все переменные – до блока setup. Обратите внимание, что в данном случае ; на конце не ставится. Данная команда определяет для контроллера, что BLACK – то же самое, что HIGH, а WHITE – то же самое, что LOW. Например, после такого определения строки:

```
if (left_pin == HIGH)
if (left_pin == BLACK)
```

будут одинаковы. Но работа с большим количеством условий удобнее, когда однозначно определены состояния датчиков – на черной линии BLACK или на белом поле WHITE.

Движение по линии на одном датчике

Примечание: значения скоростей здесь и далее даны ориентировочно, их нужно подбирать самостоятельно для своего конкретного робота

Вариант	Ситуация	Что делать	Названия и примеры значений скоростей
0	датчик на белом поле	ехать вправо	speed_left = 150 0
1	датчик на линии	ехать влево	0 speed_right = 150

Примечание: возможно, здесь и далее придется сделать вариант вперед-влево и вперед-вправо. В этом случае на один мотор надо подавать бOльшую скорость, на другой (где был O – меньшую)

Движение по линии на двух датчиках

Рассматривается вариант, когда датчики находятся на расстоянии бОльшем ширины линии

Вариант	Ситуация	Что делать	Названия и примеры значений скоростей
0 0	оба датчика на белом	ауаті прамо	speed_left = 150
	поле	ехать прямо	speed_right = 150
1 0	левый датчик на линии	AVOTI DIIANAI DIIADA	speed_left_soft = 25
		ехать вперед влево	speed_right = 150
0 1	правый датчик на линии	ехать вперед	speed_left = 150
		вправо	speed_right_soft = 25
1 1	оба датчика на линии	_	этот вариант не учитывается

Движение по линии на трех датчиках

Третий датчик используется для определения съезда с линии:

два крайних датчика при срабатывании на линии немного корректируют положение робота на линии

центральный датчик при срабатывании вне линии дает команду использовать бОльшую скорость для возврата на линию (направление приложения определяется по тому, какой из крайних датчиков сработал)

Вариант	Ситуация	Что делать	Названия и примеры значений скоростей
0 0 0	все датчики на белом поле	робот сошел с линии	этот вариант не учитывается
0 1 0	центральный датчик на линии, крайние на поле	ехать прямо	speed_left = 150 speed_right = 150
1 1 0	робот немного сдвинут влево	повернуть немного вправо	speed_left = 150 speed_right_ soft = 40
0 1 1	робот немного сдвинут вправо	повернуть немного влево	speed_left_soft= 40 speed_right = 150
100	робот сильно сдвинут влево	повернуть сильно вправо	speed_left = 150 speed_right_hard = 0
0 0 1	робот сильно сдвинут вправо	повернуть сильно влево	speed_left_hard = 0 speed_right = 150
111	все датчики на линии	робот на перекрестке	этот вариант не учитывается

Движение по линии на пяти датчиках

Добавляются еще два датчика по краям, срабатывание одного из которых показывает, что робот очень сильно сошел с линии и необходимо приложить сильное воздействие, чтобы вернуть его обратно. Вплоть до разворота на месте (то есть подачи сигналов на пины вращения моторов назад). Таким образом, везде придется прописывать состояния для всех четыре пинов драйвера. Пример для медленного разворота

```
analogWrite (LF, speed_left);
analogWrite (LB, 0);
analogWrite (RF, speed_right);
analogWrite (RB, 0);
```

Вариант	Ситуация	Что делать	Названия и примеры значений скоростей
00000	все датчики на белом поле	робот сошел с линии	этот вариант не учитывается
00100	центральный датчик на	OVOTY DITOROY	speed_left = 150
	линии, крайние на поле	ехать вперед	speed_right = 150
01100	AHARKO AHARO	HODONIATE AHORIZA DHODO	speed_left_soft = 150
	слегка слева	повернуть слегка влево	speed_right = 80
00110	anapira armana	HODOWINEL AHADISA DHIQADA	speed_left_soft = 80
	слегка справа	повернуть слегка вправо	speed_right = 150

01000	средне слева	повернуть налево с нормальной скоростью	speed_left_normal = 50 speed_right = 150
00010	средне справа	повернуть направо с	speed_left = 150
00010	ередне справа	нормальной скоростью	speed_right_normal = 50
11000	сильно слева	порежнуті наперо силі но	speed_left_hard = 10
		повернуть налево сильно	speed_right = 150
0 0 0 1 1 c	сильно справа	поравиля направо силино	speed_left = 150
		повернуть направо сильно	speed_right_hard = 10
10000	очень сильно слева	200200111/71 04 110 1020	speed_left_back = 30 (на LB)
		развернуться налево	speed_right = 150
0 0 0 0 1	очень сильно справа	nonnanu/Ti ag Halinana	speed_left = 150
		развернуться направо	speed_right_back = 30 (на RB)
11111	все датчики на линии	робот на перекрестке	этот вариант не учитывается