
Створення керуючого автомата на основі жорсткої логіки в середовищі
ISIS Proteus VSM

1.Теоретичне підґрунтя

Для організації системи контролю механічного цеху, використовуємо
запірний пристрій, який застосовується для замикання дверей (дверний
замок) з метою запобігання викраденню, він представлений на рисунку 1.1.

Рисунок 1.1 Пульт керування дверним замком

Для керування роботою даного дверного замка (див. рис.1.1)
використовуємо керуючий автомат на жорсткій логіці, тобто з неможливістю
подальшого його перепрограмування.

У цій роботі керуючий автомат створюється на основі побудови графа
станів цього автомата (рисунок 1.2).
Граф станів – це чітка хронологічна послідовність виконання необхідних дій
покроково (послідовно), тобто в кінці графу станів отримується відповідний
необхідний результат (двері відчиняться), але з умовою правильного вводу
вхідних аргументів (в даному випадку це послідовний і правильний ввід

https://uk.wikipedia.org/wiki/%D0%94%D0%B2%D0%B5%D1%80%D1%96

кнопок на пульті керування для відчинення дверей (рис1.1)), також на графі
станів графічно представлено поведінку роботи керуючого автомата у
випадку неправильного вводу вхідної інформації, але в цьому разі
необхідний результат не забезпечиться (двері залишатимуться зачиненими) і
виконається відповідна блокуюча дія, або тривожний сигнал, що дасть
інформацію про спробу зламу дверей (тобто не був введений правильний
вхідний код, який відомий тільки тим особам, що пов’язані з роботою
даного цеху).
Також важливо те, що перехід від першого стану до останнього стану, тобто
до повністю виконаної функції (коли двері відчиняться) буде здійснюватися
при послідовному вводі вхідних аргументів (тобто натиснувши декілька
кнопок одночасно, в тому числі і коли серед них будуть ті кнопки, що треба,
то все одно буде сприйматися автоматом, як неправильний вхідний сигнал і
переходу до наступного стану (рис.1.2) не відбудеться). Отже двері
відкриються тільки при натисненні першої правильної кнопки і витисненні
її, а вже потім натисненні другої правильної кнопки і її витисненні).
 Граф станів роботи даного дверного замка зображений на рисунку 1.2.

Рисунок 1.2 Граф станів

П1 – правильний перший аргумент (натиснута потрібна перша кнопка),

П2 – правильний другий аргумент (натиснута потрібна друга кнопка),

Н1 – неправильний перший аргумент (якась інша перша кнопка, яка є

неправильна, тому вона повинна бути ненатиснута, отже інвертована),

Н2 – неправильний другий аргумент (якась інша друга кнопка, яка є

неправильна, тому вона повинна бути ненатиснута, отже інвертована),

D – аргумент, що вказує на стан дверей (тобто, двері повинні бути

замкнутими).

 – аргумент, що вказує на стан дверей (тобто, двері повинні бути

відчиненими).

Розглянувши граф станів (рис.1.2), можна детальніше його аналізувати:

Отже, – означає початковий стан автомата, (тобто, ніхто нічого на пульті
керування ще не вводив), початковий стан описується двійковим числом 00,
про що більш детально буде вказано дещо пізніше.

Із стану до стану можна перейти при необхідних вхідних
аргументах: D (тобто, необхідно щоб двері були замкнуті, бо тоді нема сенсу

їх відкривати), (тобто, необхідно щоб не було натиснуто неправильну
першу кнопку, або декілька кнопок одночасно, бо, як видно з рисунка 1.2,
при натисненні неправильної першої кнопки Н1 переходу до наступного

стану не буде, а залишимось знову на), П1 (тобто, необхідно щоб була
натиснута перша правильна кнопка і зразу витиснута).

Отже при вводі цих трьох аргументів і переході до стану далі необхідно

перейти до стану і вже вводити наступні вхідні аргументи (рис.1.2): D

(тобто, необхідно щоб двері і надалі були замкнуті), (тобто, необхідно
щоб не було натиснуто неправильну другу кнопку, або декілька кнопок
одночасно, бо, як видно з рисунка 1.2, при натисненні неправильної другої
кнопки Н2 переходу до наступного стану не буде, а відбудеться повернення в

початковий стан), П2 (тобто, необхідно щоб була натиснута друга
правильна кнопка).

Отже при переході в стан виконується функція Y (двері відкриються).

Ще передбачено той випадок, коли двері хтось відчинить зсередини,
тоді не має сенсу їх далі відкривати (коли вони вже відкриті), то на цей

випадок передбачений спеціальний стан , тобто коли (двері хтось

відчинив зсередини), тоді стан апарату повертається із стану до
(рис.1.2).

Як видно з рисунка 1.2, для виконання функції Y (тобто, для того, щоб двері

відчинилися), треба пройти три стани (, ,), і є ще один додатковий

стан на випадок, коли хтось двері відчинить зсередини. То загалом є
чотири стани, які описуються кодом стану (двійковим числом), тобто так як
є тільки чотири стани, то використовується двохбітний код, так, як його

достатньо щоб описати четвертий стан який буде 11. Код першого стану

буде 00, другого стану буде 01, третього стану буде 10 і четвертого

стану буде 11. Оскільки кожен стан описується двохбітним кодом, то для
запису кожного коду стану (пам’яті скінченого автомата) необхідно
використати два RS тригери.

2. Хід виконання роботи
2.1 Вибір вхідної інформації

Отже для прикладу організуємо роботу керуючого апарата, таким чином,
щоб двері відчинились при натисненні кнопки 1 і зразу її витисненні, а вже
потім натисненні кнопки 3, так, як показано на (рисунку 2.1).

Рисунок 2.1 Послідовний ввід кнопок (спочатку натиснемо кнопку 1,

наступну кнопку 3)

Так, як в нас тільки два вхідних аргументи (дві кнопки), то з графу

станів (рис. 1.2), видно що для переходу з початкового стану в стан ,
необхідно натиснути кнопку 1 і зразу її витиснути, так ми перейдемо в стан

, а вже потім натиснувши кнопку 3, ми перейдемо з стану до стану

і в результаті двері відчиняться. Як було зазначено раніше ще

передбачено той випадок, коли хтось відкрив двері з середини (стан),

тоді повернемося знову в стан .

 Так як використовуються тільки чотири стани (кожен стан має
двохбітний двійковий код від 00 до 11), то для їх запису достатньо
використати два RS тригери. І перехід до наступного стану залежить від
вмісту коду попереднього стану і натисненні правильної кнопки.

Дані вмісту тригерів для всіх можливих станів заносимо в таблицю
станів (табл. 1.1).

Таблиця 1.1

Cтан
Код

стану

до

до

після

після

Код

стану
Cтан

 00 0 0 1

0 0 0 0 0 0 00

 00 0 0 1 0 × × 1 0 0 1 0 0 1 01

 01 0 1 × × 1 0 1 1 0 0 1 1 0 10

 01 0 1 × × × 1 × 0 1 0 1 0 0 00

 10 1 0 × × × × 0 0 1 0 1 0 0 00

 11 1 1 × × × × 0 0 1 0 1 0 0 00

Як видно з таблиці, перший рядок – це неможливість переходу від

початкового стану до стану , так як (тобто натиснута
неправильна перша кнопка), і в результаті залишаємось надалі в першому

стані .

Другий рядок показує перехід від стану до стану , при

(тобто натисненні першої правильної кнопки), (при цьому не

натиснута будь-яка інша кнопка) і (тобто двері залишаються

зачинені), стан має код 01, тому необхідно встановити перший RS трігер

(надати логічну одиницю на вхід).

Третій рядок показує про перехід від стану до стану , при

(тобто натисненні другої правильної кнопки), (при цьому не

натиснута будь-яка інша кнопка) і (тобто двері залишаються

зачинені), стан має код 10, тому необхідно встановити другий RS трігер

(надати логічну одиницю на вхід) і онулити перший RS трігер

(надати логічний нуль на вхід).

Четвертий рядок показує про неможливість переходу від стану до

стану так як (тобто натиснута неправильна друга кнопка) і в

результаті повертаємось в початковий стан , отже необхідно онулити

перший RS тріггер (надати логічну одиницю на вхід).

П’ятий рядок показує про повернення з стану в початковий стан

при випадку, коли хтось відчинив двері з середини, тобто , отже
необхідно онулити другий RS тріггер (надати логічну одиницю на вхід

).

Шостий рядок показує про випадок відкривання дверей з середини

(стан), коли перебуваємо в будь-якому іншому стані, тоді з будь-якого

стану, відбувається повернення в початковий стан а отже необхідно

онулити всі два RS трігери (подати логічну одиницю на входи

).

Для графічної побудови керуючого автомата дверним замком, запишемо
за допомогою таблиці 1.1, його аналітичний вираз (рівняння за допомогою
яких потім будемо будувати в програмі ISIS).

Отже встановлення входу () першого RS трігера, буде згідно

таблиці 1.1, тільки в рядку №2, тому

Онулення входу першого RS трігера, буде згідно таблиці 1.1,

тільки в рядку №3,4,5,6, отже можливий в чотирьох різних рядках,
тому між ними стоятиме елемент АБО (знак елемента АБО -)

Встановлення входу () другого RS трігера, буде згідно таблиці

1.1, тільки в рядку №3, тому

Онулення входу другого RS трігера, буде згідно таблиці 1.1,

тільки в рядку №4,5,6, отже можливий в трьох різних рядках, тому
між ними стоятиме елемент АБО

2.2 Організація роботи в середовищі ISIS

Для побудови симуляції пульта керування дверним замком в програмі
ISIS, використовуючи інструмент “Компоненти” (в лівій верхній частині
інтерфейса програми), вибираємо необхідні компоненти з папки “выбрать из
библиотек” (на рисунку 2.2, показано як кнопка Р).

Рисунок 2.2 Представлення інструмента “Компоненти”

Вибираємо резистори з паки “Resistors → 0.6W Metal Film →
MINRES10R” (див. рис 2.3)

Рисунок 2.3 Вибирання резисторів в папці “ Resistors”

Вибираємо кнопки для керування керуючим автоматом з паки “
Switches & Relays → BUTTON” (див. рис 2.4)

Рисунок 2.4 Вибирання кнопок керування в папці “Switches & Relays ”

Створюмо необхідну різницю потенціалів, для цього використовуємо
інструмент “Терминал” (в лівій частині інтерфейса програми), вибираємо
необхідні компоненти “POWER”, тобто джерело енергії (з напругою +5V)
(рисунок 2.4 a) і “GROUND”, тобто заземлення (рисунок 2.4 б).

а б

Рисунок 2.5

На робочому полі програми створюємо симуляцію керуючого пульта
(підключаємо від джерела енергії (POWER) до кнопок керування необхідну
різницю потенціалів, що представлено на рисунку 2.6 (фактично рисунок 2.6
відповідає рисунку 1.1, тільки в схематичному вигляді).

Рисунок 2.6

Складаємо комбінаційну схему, для цього вибираємо елемент , (тобто
першу неправильну кнопку – це буде елемент АБО, входи якого будуть всі

кнопки крім першої правильної кнопки (кнопки 1), тобто вихід має бути
інверсований), що представлено на рисунку 2.7

Вибираємо елемент , (тобто другу неправильну кнопку – це буде
елемент АБО, входи якого будуть всі кнопки крім другої правильної кнопки

(кнопки 3), тобто вихід), що представлено на рисунку 2.8.

Рисунок 2.7

Рисунок 2.8

Для організації пам’яті скінченого автомата (як відомо раніше, в нас є
чотири стани, то відповідно в двійковому коді це число 11), отже потрібно
два RS трігери, які вибираємо використовуючи інструмент “Компоненти”
(вибираючи з папки “Modeling Primitives → DTFF”) (рис. 2.9), та
розміщуємо їх на робочому полі програми (рис.2.10)

Рисунок 2.9

Рисунок 2.10

Для симуляції стану (), (коли можливо хтось відкрив двері з
середини) використовуємо підключення окремої кнопки “ДВЕРІ” що
представлено на рисунку 2.11.

Для встановлення першого RS трігера, як відомо з табл. 1.1 (

), використовуємо п’яти вхідний елемент “І”, який
знаходиться в папці “Modeling Primitives → AND_5” (див. рис.2.12)

Рисунок 2.11

Рисунок 2.12

Підключаємо входи до елемента (“AND_5”) (рис.2.13)

Рисунок 2.13

Для онулення першого RS трігера, як відомо з табл. 1.1 (

), використовуємо

чотирьох вхідний елемент “АБО”, який знаходиться в папці “Modeling
Primitives → OR_4” (див. рис.2.14), що складається з чотирьох елементів
“І”:

 – перший елемент “ ”

 – другий елемент “ ”

 – третій елемент “ ”

 – четвертий елемент “ ”

Повне представлення першого RS трігера з його входами (Reset і
Setting) зображено на рисунку 2.15

Для встановлення другого RS трігера, як відомо з табл. 1.1 (

), використовуємо п’яти вхідний елемент “І”, який
знаходиться в папці “Modeling Primitives → AND_5” (див. рис.2.12)

Представлення підключення елемента , до другого RS трігера
зображено на рисунку 2.16

Для онулення другого RS трігера, як відомо з табл. 1.1

, використовуємо трьох вхідний
елемент “АБО”, який знаходиться в папці “Modeling Primitives → OR_3”
(див. рис.2.14), що складається з трьох елементів “І”:

 – перший елемент “ ”

 – другий елемент “ ”

 – третій елемент “ ”

Повне представлення підключення другого RS трігера з його входами
(Reset і Setting) зображено на рисунку 2.19

Для того щоб передбачити стан (хтось відкрив двері з середини),

тобто повернутися в початковий стан (ми маємо онулити всі RS
трігери), тому підключаємо до кожного входу “RESET” з RS трігерів до
інверсованого входу з кнопки “ДВЕРІ” (рис. 2.18)

Для виводу інформації застосуємо логічний елемент “І”, входами якого

є вихід і , вихід елемента “І” підключимо до світлодіода зеленого
кольору, який знаходиться в папці “Optoelektronics → LEDs →
LED_GREEN” (див. рис. 2.20).

Повне представлення керуючого автомата дверним замком
представлене на рисунку 2.21.

Рисунок 2.14

Рисунок 2.15

Рисунок 2.16

Рисунок 2.18

Рисунок 2.19

Рисунок 2.20

Рисунок 2.21

