
Pipes, Non-blocking IO and other cool stuff 

CS61 Section Notes #10 

 
We’ll be using the section repo today. If you don’t have it handy, run  
 

$ git clone git@code.seas.harvard.edu:cs61/cs61-sections.git 

 

or, if you already have the repo, just update to the latest code: 
 

$ git pull 

 
Then, navigate to today’s material. 

 
$ cd s10 

 

A Couple More Thoughts on the Shell 

Where do the commands that come with your terminal originate from? 
 
Try typing: 
cd /; ls 

 
You will notice that (if you’re on a ‘nix’ OS) you are not in the ~/ directory. You are actually in the 
base directory of the system and you can see the bare bones of your computers operating 
system. (Look around) 
 
If you are on the appliance, you should see a directory called bin. This stands for binary and it 
includes executable programs. If you type echo $PATH, and look carefully, you will see the 
directory /bin between two colons. The PATH variable is an environment variable similar to 
the HOME (try echo $HOME) and many others that define the users environment. 
 
When the shell receives a command it searches the PATH environment variable from left to right 
and executes the first binary with a matching name; therefore, directories earlier in the PATH 
have precedence. 
 
Try running which cat this program will print the location of cat your PATH variable is using. If 
you would like to see all of the places in where you have binaries called cat run sudo 
./find_bin.sh cat.  

 

 



Passing Environment Variables, ./ vs . ./ 

Take a look at the code for environ1.sh and environ2.sh  
 

environ1.sh 
 
CLASS=cs61 

SCRIPT=environ2.sh 

echo “I <3” $CLASS 

./$SCRIPT 

environ2.sh 
 
echo $CLASS “is really cool” 

 
If you run environ1.sh what will be printed? 
 
 
 
 
Describe 1 way in which you could fix environ1.sh so that environ2 will print what we expect. 
Why does this work? 
 
 
 
Describe a second way in which you make environ1.sh print what we expect.  
 
 

 

 
Explain why the . ./ command may be dangerous? 
 
 
 
 

Exercise: Rendezvous 
 
Here are three system calls that define a new abstraction called a rendezvous. In this exercise, 
we will use the rendezvous abstraction to emulate pipes. 
 

1.​ int newrendezvous(void): Returns a rendezvous ID that hasn’t been used yet.​  
2.​ int rendezvous(int rid, int data): Blocks the calling process P1 until some other 

process P2 calls rendezvous() with the same rid (rendezvous ID). Then, both of the 
system calls return, but P1’s system call returns P2’s data and vice versa. Thus, the two 
processes swap their data. Rendezvous acts pairwise; if three processes call 



rendezvous, then two of them will swap values and the third will block, waiting for a 
fourth. 

a.​ To write a byte c to a pipe with ID p, call rendezvous(p, c). 
b.​ To read a byte from a pipe with ID p (and store the result in variable c), call c = 

rendezvous(p, -2). 
c.​ If a pipe is closed, the returned data will be -1. 

3.​ void freezerendezvous(int rid, int freezedata): Freezes the rendezvous rid. All future 
calls to rendezvous(rid, data) will immediately return freezedata. 

 
Here's an example. The two columns represent two processes. Assume they are the only 
processes using rendezvous ID 0. 
 

int result; 
result = rendezvous(0, 5); 
 

int result; 
printf("About to rendezvous\n"); 
result = rendezvous(0, 600); 

/* The processes swap data; both become runnable */ 

printf("Process A got %d\n", 
result); 

printf("Process B got %d\n", 
result); 

 
This code will print 
​ ​ ​ ​ ​  
About to rendezvous​
Process B got 5​
Process A got 600​
 
(the last 2 lines might appear in either order). 
 
How might you implement pipes in terms of rendezvous? Try to figure out analogues for the 
pipe(), close(), read(), and write() system calls (perhaps with different signatures), but only worry 
about reading and writing 1 character at a time. Can you support all pipe features? 
  
int pipe(void) { 
} 
 
void close(int rid) { 
} 
 
ssize_t read1char(int rid, char* buf) { 
 
} 
 



ssize_t write1char(int rid, char c) { 
 
} 
 
 
 
 
 
 
 
 

Exercises with pipes and non-blocking IO! 

 

In this series of exercises, we’ll get more practice using pipes and learn to use select!  

 

int select(int nfds, fd_set *readfds, fd_set *writefds, 

              ​ fd_set *exceptfds, struct timeval *timeout);​
 

●​ nfds is one greater than the maximal file descriptor number from the following three 
fd_sets.  

●​ file descriptors in readfds will be watched to see if characters become available  for 
reading, file descriptors in writefds will  be  watched  to  see  if  a  write  will  not block, 
and file descriptors in exceptfds will be watched for exceptions. 

●​ On exit, the sets are  modified  in place to indicate which file descriptors actually 
changed status. 

●​ Each of the three file descriptor sets may be specified  as NULL if no file descriptors are 
to be watched for the corresponding class of events. 

●​ The timeout argument specifies the interval that select should block waiting for a file 
descriptor to be ready 

●​ On return, select returns the number of file descriptors contained in the three returned 
descriptor sets 
 

fd_set x; 
FD_ZERO(&x) clears the set 

FD_SET( 10, &x) adds the file descriptor 10 to the set 

FD_ISSET( 10, &x) checks if the file descriptor 10 is part of the set 

 

We’ve provided template code for each of the following programs in the s10 directory. Fill in the 
marked sections. 
 

1)​ Write a program `catafter` that has the following semantics. 
 



●​ `catafter TIME FILE` waits for TIME seconds, then opens FILE, 
writes it to the standard output, and exits. If FILE isn't given, it 
reads from standard input. 

 
 
sleep(atoi(argv[1])); 
 
if agrc == 3 
{​  
​ int fd = open(argv[2], O_RDONLY) 
​ dup2(fd, STDIN_FILENO) 
​ close(fd) 
} 
 

​ execvp(“cat”, [“cat”, NULL]]) 
 
 
 
 
 

 
2)​ Write a program `runafter` that has the following semantics 

 
●​   `runafter TIME COMMAND [ARG...]` runs COMMAND after TIME has elapsed. 

 
 
 
 

 
3)​  Write a program `tripipe` that has the following semantics. 

 
●​   `tripipe a b c -- d e f g -- h i j k l` creates three processes and two pipes. The first 

process runs the program `a b c`. Its standard output goes to pipe A. The second 
process runs the program `d e f g`. Its standard output goes to pipe B. The third 
process runs the program `h i j k l`. Its standard input reads from pipe A, and its 
file descriptor 3 reads from pipe B. The `tripipe` process exits when `h i j k l` exits 
and has the same status as `h i j k l`. 

 
 
 
int main( int argc, char **argv ) { 
  char *delim = "--"; 
  int pipefd1[2]; 



  pipe(pipefd1); 
 
  argv = &argv[1]; 
  int next_delim = get_next_delimiter(argv, delim); 
  pid_t firstpid = fork(); 
  if (firstpid == -1) { 
​ perror("Could not fork!\n"); exit(1); 
  } else if (firstpid == 0 ) {​ //first child process 
​ close(pipefd1[0]); // close unused read end for first child 
​ dup2(pipefd1[1], STDOUT_FILENO); 
​ close(pipefd1[1]); //no need to keep 2 copies of pipe 
​ argv[next_delim] = NULL; 
​ execvp(argv[0], argv); 
  } 
  
  argv = &argv[next_delim + 1]; 
  int pipefd2[2]; 
  pipe(pipefd2); 
  next_delim = get_next_delimiter(argv, delim); 
 
  pid_t secondpid = fork(); 
  if (secondpid == -1) { 
​ perror("Could not fork!\n"); exit(1); 
  } else if (secondpid == 0 ) {​ //second child process 
​ close(pipefd1[0]); close(pipefd1[1]); 
​ close(pipefd2[0]); // close unused read end for second child 
​ dup2(pipefd2[1], STDOUT_FILENO); 
​ close(pipefd2[1]); //no need to keep 2 copies of pipe 
​ argv[next_delim] = NULL; 
​ execvp(argv[0], argv); 
  } 
 
  argv = &argv[next_delim + 1]; 
  next_delim = get_next_delimiter(argv, delim); 
 
  pid_t thirdpid = fork(); 
  if (thirdpid == -1) { 
​ perror("Could not fork!\n"); exit(1); 
  } else if (thirdpid == 0 ) { //third child process 
​ close(pipefd1[1]); close(pipefd2[1]); //close unused write ends 
​ dup2(pipefd1[0], STDIN_FILENO); 
​ close(pipefd1[0]); //no need to keep 2 copies of pipe 
​ dup2(pipefd2[0], 3); 



​ close(pipefd2[0]); 
​ argv[next_delim] = NULL; 
​ execvp(argv[0], argv); 
  } 
 
  close(pipefd1[0]); close(pipefd1[1]); 
  close(pipefd2[0]); close(pipefd2[1]); 
  waitpid(thirdpid, NULL, 0); 
} 
 
int get_next_delimiter( char **argv, char *delim ) { 
  int curr_pos = 0; 
  while( argv[curr_pos] != NULL && strcmp(argv[curr_pos], delim) != 0) { 
​ curr_pos++; 
  } 
  return curr_pos; 
} 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

 
 

4)​ Write a program `printfirst` that has the following semantics. 
 

●​ `printfirst` reads from file descriptors 0 [standard input] and 3. It waits until at 
least one of those file descriptors to have a readable byte. As soon as that 
happens, it picks a readable file descriptor and closes the other one. It reads 
everything from the chosen file descriptor and writes the results to the standard 
output. [This will require `select`.] 

​ ​  
​ ​ fd_set readfds; 
 



​ ​ FD_SET(STDIN_FILENO, &readfds); 
​ FD_SET(3, &readfds); 
​  

 select(4, readfds, NULL, NULL, NULL); 

 

if (FD_ISSET(STDIN_FILENO, &readfs)) { 

​ close(3); 

​ read_all(STDIN_FILENO); 

} else { 

​ close(STID_IN_FILENO) 

​ read_all(3); 

} 

​  
​  
void read_all(int fd) { 
  char ch; 
  while( read( fd, &ch, 1 ) > 0 ) 
​ printf("%c", ch); 
} 
 
 
 
 

 
5)​   Test `tripipe` using `printfirst` and `catafter`. 

​  

echo “Hello!” > tmp.txt 
echo “Goodbye!” > lala.txt 
./tripipe ./catafter 5 tmp.txt -- ./runafter 3 cat lala.txt -- ./printfirst 
 
 

 

 

 

 

 


