Pipes, Non-blocking 10 and other cool stuff

CS61 Section Notes #10
We'll be using the section repo today. If you don’t have it handy, run
$ git clone git@code.seas.harvard.edu:cs6l/cs6l-sections.git
or, if you already have the repo, just update to the latest code:
$ git pull
Then, navigate to today’s material.
$ cd s1o

A Couple More Thoughts on the Shell

Where do the commands that come with your terminal originate from?

Try typing:
cd /; 1s

You will notice that (if you're on a ‘nix’ OS) you are not in the ~/ directory. You are actually in the
base directory of the system and you can see the bare bones of your computers operating
system. (Look around)

If you are on the appliance, you should see a directory called bin. This stands for binary and it
includes executable programs. If you type echo $PATH, and look carefully, you will see the
directory /bin between two colons. The PATH variable is an environment variable similar to
the HOME (try echo $HOME) and many others that define the users environment.

When the shell receives a command it searches the PATH environment variable from left to right
and executes the first binary with a matching name; therefore, directories earlier in the PATH
have precedence.

Try running which cat this program will print the location of cat your PATH variable is using. If
you would like to see all of the places in where you have binaries called cat run sudo
./find_bin.sh cat.

Passing Environment Variables, ./ vs . ./
Take a look at the code for environ1.sh and environ2.sh

environ1.sh environ2.sh

CLASS=cs61 echo $CLASS “is really cool”

SCRIPT=environ2.sh
echo “I <3” $CLASS
./$SCRIPT

If you run environ1.sh what will be printed?

Describe 1 way in which you could fix environ1.sh so that environ2 will print what we expect.
Why does this work?

Describe a second way in which you make environ1.sh print what we expect.

Explain why the . ./ command may be dangerous?

Exercise: Rendezvous

Here are three system calls that define a new abstraction called a rendezvous. In this exercise,
we will use the rendezvous abstraction to emulate pipes.

1. int newrendezvous(void): Returns a rendezvous ID that hasn’t been used yet.

2. intrendezvous(int rid, int data): Blocks the calling process P1 until some other
process P2 calls rendezvous() with the same rid (rendezvous ID). Then, both of the
system calls return, but P1’s system call returns P2’s data and vice versa. Thus, the two
processes swap their data. Rendezvous acts pairwise; if three processes call

rendezvous, then two of them will swap values and the third will block, waiting for a
fourth.

a. To write a byte c to a pipe with ID p, call rendezvous(p, c).

b. To read a byte from a pipe with ID p (and store the result in variable c¢), call ¢ =

rendezvous(p, -2).
c. Ifapipe is closed, the returned data will be -1.
3. void freezerendezvous(int rid, int freezedata): Freezes the rendezvous rid. All future

calls to rendezvous(rid, data) will immediately return freezedata.

Here's an example. The two columns represent two processes. Assume they are the only
processes using rendezvous ID 0.

int result; int result;
result = rendezvous (0, 5); printf ("About to rendezvous\n");
result = rendezvous (0, 600);

/* The processes swap data; both become runnable */

printf ("Process A got %d\n", printf ("Process B got %d\n",
result) ; result) ;

This code will print

About to rendezvous
Process B got 5
Process A got 600

(the last 2 lines might appear in either order).
How might you implement pipes in terms of rendezvous? Try to figure out analogues for the

pipe(), close(), read(), and write() system calls (perhaps with different signatures), but only worry
about reading and writing 1 character at a time. Can you support all pipe features?

int pipe(void) {
}

void close(int rid) {

}

ssize_t read1char(int rid, char* buf) {

ssize_t write1char(int rid, char c) {

}

Exercises with pipes and non-blocking 10!

In this series of exercises, we’ll get more practice using pipes and learn to use select!

int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

e nfds is one greater than the maximal file descriptor number from the following three
fd_sets.

e file descriptors in readfds will be watched to see if characters become available for
reading, file descriptors in writefds will be watched to see if a write will not block,
and file descriptors in exceptfds will be watched for exceptions.

e On exit, the sets are modified in place to indicate which file descriptors actually
changed status.

e Each of the three file descriptor sets may be specified as NULL if no file descriptors are
to be watched for the corresponding class of events.

e The timeout argument specifies the interval that select should block waiting for a file
descriptor to be ready

e On return, select returns the number of file descriptors contained in the three returned
descriptor sets

fd_set x;

FD_ZERO(&x) clears the set

FD_SET(10, &x) adds the file descriptor 10 to the set

FD _ISSET(10, &x) checks if the file descriptor 10 is part of the set

We've provided template code for each of the following programs in the s10 directory. Fill in the
marked sections.

1) Write a program catafter’ that has the following semantics.

e catafter TIME FILE" waits for TIME seconds, then opens FILE,
writes it to the standard output, and exits. If FILE isn't given, it
reads from standard input.

sleep(atoi(argv[1]));

if agrc ==

{
int fd = open(argv[2], O©_RDONLY)
dup2(fd, STDIN_FILENO)
close(fd)

}

execvp(“cat”, [“cat”, NULL]])

2) Write a program ‘runafter’ that has the following semantics

e ‘runafter TIME COMMAND [ARG...] runs COMMAND after TIME has elapsed.

3) Write a program “tripipe” that has the following semantics.

e tripipeabc--defg--hijkl creates three processes and two pipes. The first
process runs the program "a b c¢’. Its standard output goes to pipe A. The second
process runs the program ‘d e f g'. Its standard output goes to pipe B. The third
process runs the program "hij k I'. Its standard input reads from pipe A, and its
file descriptor 3 reads from pipe B. The “tripipe’ process exits when "hij kI exits
and has the same status as "hijkI.

int main(int argc, char **argv) {
char *delim ="--";
int pipefd1[2];

pipe(pipefd1);

argv = &argv[1];

int next_delim = get_next_delimiter(argv, delim);

pid_t firstpid = fork();

if (firstpid == -1) {
perror("Could not fork\n"); exit(1);

} else if (firstpid == 0) { [ffirst child process
close(pipefd1[0]); // close unused read end for first child
dup2(pipefd1[1], STDOUT_FILENO);
close(pipefd1[1]); //no need to keep 2 copies of pipe
argv[next_delim] = NULL;
execvp(argv[0], argv);

}

argv = &argv[next_delim + 1];

int pipefd2[2];

pipe(pipefd2);

next_delim = get_next_delimiter(argv, delim);

pid_t secondpid = fork();

if (secondpid == -1) {
perror("Could not fork\n"); exit(1);

} else if (secondpid == 0) { //second child process
close(pipefd1[0]); close(pipefd1[1]);
close(pipefd2[0]); // close unused read end for second child
dup2(pipefd2[1], STDOUT_FILENO);
close(pipefd2[1]); //no need to keep 2 copies of pipe
argv[next_delim] = NULL;
execvp(argv[0], argv);

}

argv = &argv[next_delim + 1];
next_delim = get_next_delimiter(argv, delim);

pid_t thirdpid = fork();
if (thirdpid == -1) {
perror("Could not fork'\n"); exit(1);
} else if (thirdpid == 0) { //third child process

close(pipefd1[1]); close(pipefd2[1]); //close unused write ends

dup2(pipefd1[0], STDIN_FILENO);
close(pipefd1[0]); //no need to keep 2 copies of pipe
dup2(pipefd2[0], 3);

close(pipefd2[0]);
argv[next_delim] = NULL;
execvp(argv[0], argv);

}

close(pipefd1[0]); close(pipefd1[1]);
close(pipefd2[0]); close(pipefd2[1]);
waitpid(thirdpid, NULL, 0);

}

int get_next_delimiter(char **argv, char *delim) {
int curr_pos = 0;
while(argv[curr_pos] != NULL && strcmp(argv[curr_pos], delim) != 0) {
Curr_pos++;

}

return curr_pos;

}

4) Write a program ‘printfirst’ that has the following semantics.

e printfirst’ reads from file descriptors 0 [standard input] and 3. It waits until at
least one of those file descriptors to have a readable byte. As soon as that
happens, it picks a readable file descriptor and closes the other one. It reads
everything from the chosen file descriptor and writes the results to the standard
output. [This will require “select’.]

fd_set readfds;

FD_SET(STDIN_FILENO, &readfds);
FD_SET(3, &readfds);

select(4, readfds, NULL, NULL, NULL);

if (FD_ISSET(STDIN_FILENO, &readfs)) {
close(3);
read_all(STDIN_FILENO);

}else {
close(STID_IN_FILENO)
read_all(3);

void read_all(int fd) {
char ch;
while(read(fd, &ch, 1)>0)
printf("%c", ch);

5) Test “tripipe’ using “printfirst” and “catafter’.

echo “Hello!” > tmp.txt
echo “Goodbye!” > lala.txt
tripipe ./catafter 5 tmp.ixt -- ./runafter 3 cat lala.txt -- ./printfirst

