Exercise VM: Virtual Memory

Parts of Addresses

x86 virtual addresses have three component parts.

e Bits 0 through 11 (the least significant 12 bits) are the page offset. We'll say
PAGEOFFSET for short.

e Bits 12 through 21 (the next most significant 10 bits) are the level-2 page
table index. We'll say LZPAGEINDEX for short.

e Bits 22 through 31 (the most significant 10 bits) are the level-1 page table
index. We’'ll say L1PAGEINDEX for short.

These parts are calculated in C as follows:

unsigned PAGEOFFSET(uint32_t va) {
return va & OxFFF;

unsigned L2PAGEINDEX(uint32_t va) {
return (va >> 12) & 0x3FF;

unsigned L1PAGEINDEX(uint32_t va) {
return va >> 22;

L1 Page Table L2 Page Table

d___——————*%} -—_________£> Page
>

Page

How to do this in your head? If you have an address in hexadecimal OXMNOPQRST

(where each capital letter represents a hexadecimal digit), then:

e PAGEOFFSET(0XxMNOPQRST) == OxRST. That’s just the lower 3 hex digits.

e L2PAGEINDEX(0XxMNOPQRST) == (0xOPQ & 0x3FF). That's the next 3 hex
digits, except that you need to mask off the top two bits, to get a number
between 0x000 and Ox3FF.

o L1PAGEINDEX(0XMNOPQRST) == (0xMNO >> 2). That’s the top 3 hex digits
shifted right by two. This is not as easy as the other ones. If you're confused

write it in binary.
Part A. What is:

1. PAGEOFFSET(0)? 0
2. L2PAGEINDEX(0)? 0
3. L1PAGEINDEX(0x9000)? 0

4. PAGEOFFSET(1023)? 1023

5. L1PAGEINDEX(0x10000000)? 0x40
6.
7
8
9

L2PAGEINDEX(0x10000000)? 0

. L2PAGEINDEX(0x10000FFF)? 0
. PAGEOFFSET(0x00801000)? 0
. L2PAGEINDEX(0x00801000)? 1

10.L1PAGEINDEX(0x00801000)? 2
11. PAGEOFFSET(0xO0F0089A)? Ox89A
12.L2PAGEINDEX(0x00F0089A)? 0x300
13.L1PAGEINDEX(0x00F0089A)? 3

Part B. For each question, give a virtual address that satisfies the constraints.

1.
2.
3.

Pages

PAGEOFFSET =0 0x97865000

PAGEOFFSET = 0 and L1PAGEINDEX =12 0x033FF000
L1PAGEINDEX = 8, LZPAGEINDEX = 128, PAGEOFFSET = 256
0x02080100

L1PAGEINDEX = 0, L2PAGEINDEX = 0xC, PAGEOFFSET = Ox7FF
0x0000C7FF

The x86 page size is 4KB = 2'? bytes = 4096 bytes = 0x1000 bytes.

A page is 4096 bytes of contiguous memory whose first address is a multiple of 4096.

For instance, we might refer to “physical page 0x1000.” This means the physical page

of memory comprising addresses 0x1000 through Ox1FFF.

Not every 4096 bytes of contiguous memory is a page. For example, consider 4096

bytes of memory starting at physical address 0x1800. The byte range is 0x1800 through

0x27FF. This overlaps with two physical pages: the portion from 0x1800-0x1FFF is part

of physical page 0x1000, and the portion from 0x2000-0x27FF is part of physical page
0x2000.

Any single byte belongs to exactly one page. Two contiguous bytes may belong to 1 or

2 physical pages, it depends how they’re aligned.

Virtual address translation

x86 virtual address translation uses a two-level page table. This is a two-level tree.

The tree has a single root node, called the level-1 page table, and between 0 and 1024
level-2 nodes, which are called level-2 page table pages (PTPs). Each of these nodes

occupy a single physical page.
Both L1 and L2 page tables are arrays of 1024 four-byte entries.

Each CPU has a current level-1 page table register, which holds the physical address of

the currently active level-1 page table page.

To look up the physical address corresponding to virtual address va, the processor’s
memory management unit does the following steps. This version is incomplete because

we are ignoring flags.

1. Split va into its components (PAGEOFFSET, L2ZPAGEINDEX,
L1PAGEINDEX).

2. Let /1pt be the current level-1 page table register.

3. Let I1pte = I1pt->entry[L1PAGEINDEX(va)]. That is, look up the entry at
index L1PAGEINDEX(va) in I1pt and call it /1pte.

4. Treat /1pte as the physical address of a page table page called pagetable
(a level-2 node).

5. Let I2pte = pagetable->entry[L2PAGEINDEX(va)]. That is, look up the
entry at index L2ZPAGEINDEX(va) in pagetable and call it I2pte.

6. Treat I2pte as the physical address of a data page called page.

7. The answer is physical address page + PAGEOFFSET(va).

In C pseudocode, we might write it this way. Again, this version is incomplete because

we are ignoring flags.

typedef struct data_page {
uint8 t data[4096];
} data_page;

typedef struct pseudo 12ptp {
data_page *entry[1024];
} pseudo_ptp;

typedef struct pseudo_liptp {
pseudo_12ptp *entry[1024];
} pseudo_liptp;

uint8 t *pseudo_virtual memory translate(uint32_t va, pseudo 1llptp *1lptp) {
unsigned L1PAGEINDEX = va >> 22;
pseudo_ptp *pagetable = llptp->entry[L1PAGEINDEX];

unsigned L2PAGEINDEX = (va >> 12) & Ox3FF;
data_page *page = pagetable->entry[L2PAGEINDEX];

unsigned PAGEOFFSET = va & OxFFF;
return &page->data[PAGEOFFSET];

}

Flags
The lower 12 bits of every entry are used for flags. These flags determine whether

pages exist and set access permissions.
The flags are:
PTE_P ==

Present. If set, this virtual page is present in physical memory. If not set, the page

doesn’t exist (and the rest of the entry isn’t used).
PTE_W ==

Writable. If set, this virtual page may be written. If not set, any attempt, by the kernel

or by a process, to write to this virtual page will cause a page fault.
PTE_U ==

User accessible. If set, this virtual page may be accessed by unprivileged user
processes. If not set, any attempt by a process to read or write this virtual page will

cause a page fault. The kernel can still use the page.
The combination of these flags has value 0x7. Remember this value.
With flags, the lookup procedure is as follows.

1. Split va into its components (PAGEOFFSET, L2PAGEINDEX,
L1PAGEINDEX).

2. Let/1_ptbe the current level-1 page table.

3. Let/1_pte=I1_pt->entry[L1PAGEINDEX(va)]. That is, look up the entry at
index L1PAGEINDEX(va) in I1_pt and call it /1_pte.

4. If (I1_pte & PTE_P) == 0, the address is not present. Induce a page fault
exception.*

5. Otherwise, clear the lowest 12 bits of /1_pte and treat the result as a
physical address of a page table page called pagetable (a level-1 node).

6. Let pte = pagetable->entry[L2PAGEINDEX(va)]. That is, look up the entry
at index L2PAGEINDEX(va) in pagetable and call it pte.

7. If (pte & PTE_P) == 0, the address is not present. Induce a page fault
exception.

8. If (pte & PTE_W) == 0 and the lookup is for a write, the access is not
allowed. Induce a page fault exception.

9. If (pte & PTE_U) == 0 and the lookup is for a process (rather than the

kernel), the access is not allowed. Induce a page fault exception.
10. Otherwise, clear the lowest 12 bits of pte and treat the result as the
physical address of a data page called page.

11. The answer is physical address page + PAGEOFFSET(va).

*(Actually, PTE_W and PTE_U checks also occur on the /1_pte too.)
Again in C pseudocode:

typedef struct data_page {
uint8_t data[4096];
} data_page;

typedef struct pseudo_12ptp {
uint32_t entry[1024];
} pseudo_ptp;

typedef struct pseudo 1liptp {
uint32_t entry[1024];
} pseudo_liptp;

uint8 t *pseudo_virtual memory_ translate(uint32_t va,
pseudo_l1 page_table_page *11 _pagetable) {

unsigned L1PAGEINDEX = va >> 22;

uint32_t 11_pte = 11 _pagetable->entry[L1PAGEINDEX];

if (!(11_pte & PTE_P))

return NULL;

pseudo ptp *pagetable = (pseudo ptp *)(1l1l pte & OxFFFFFO@Q); // ==

PTE_ADDR(11_pte)

unsigned L2PAGEINDEX = (va >> 12) & Ox3F;
uint32_t pte = pagetable->entry[L2PAGEINDEX];
if (!(pte & PTE_P))
return NULL;
data_page *page = (data_page *)(pte & OXxFFFFF000);

unsigned PAGEOFFSET = va & OxFFF;

return &page->data[PAGEOFFSET];
}

Example
Assume that the contents of physical memory are as follows. The “Contents” are 4-byte
integers. The “Index”es treat the page as an array of four-byte integers, so “Physical

Address” always equals “Physical Page + 4 x Index.” Contents not given are 0.

Physical Index (Physical Contents
Page Address)
0x1000 O (0x1000) 0x2007
0x2000 O (0x2000) 0x3007
0x3000 O (0x3000) 1

1 (0x3004) 2

2 (0x3008) 3

Assume that the current L1 page table has physical address 0x1000.
Q1. Which physical address corresponds to virtual address 0x0?

A1. The physical address 0x3000. Here PAGEOFFSET = L2PAGEINDEX =
L1PAGEINDEX = 0. Index 0 (L1PAGEINDEX) in the L1 PTP holds 0x2007. Mask away
the flags and the PTP is at 0x2000. Index 0 (L2PAGEINDEX) in the PTP holds 0x3007.
Mask away the flags and the data page is at 0x3000.

Q2. How many different physical pages are accessible through this L1 page table?

A2. Exactly one, the physical page at address 0x3000.
Q3. How many virtual addresses are accessible (a byte load from that address will not

cause a page fault)?

A3. 4096: one page’s worth.

Q4. What will happen if the kernel attempts to access virtual address 0x30007?

A4. A page fault. Even the kernel is subject to virtual memory translation.

Example Questions

Now assume the same memory contents, but that the current L1 page table has

physical address 0x2000.

Q5. Which physical address corresponds to virtual address 0x0?

Q6. Which physical address corresponds to virtual address 0x1007?

Q7. Which physical address corresponds to virtual address 0x10507?

Q8. Which physical address corresponds to virtual address 0x20407?

Q9. How many different physical data pages are accessible through this L1 page table?

Q10. How many virtual addresses are accessible (a byte load from that address will not

cause a page fault)?

Scroll down when you're ready for answers.

Answers

A5. 0x0. Index L1PAGEINDEX = 0 in the level-1 page table page holds 0x3007. Mask
away the flags and look up index L2ZPAGEINDEX = 0 in the level-2 PTP: you'll get the
value 1. The page is present (PTE_P == 1), so no fault. Its address is 0.

A6. 0x100.

A7. None (page fault). The entry at index L2ZPAGEINDEX = 1 in the level-2 PTP has
value 2; (2 & PTE_P) == 0 so the page is not present.

A8. 0x40. The entry at index LZPAGEINDEX = 2 in the level-2 PTP has value 3. This is
present. It's not a problem that it maps to the same physical page as L2ZPAGEINDEX =
0!

A9. Exactly one, the physical page at address 0.
A10. 8192. Virtual addresses 0—0xFFF and 0x2000—-0x2FFF are all accessible. It’s true
that only 4096 physical addresses are accessible, but each pa is accessible from two

different vas.

Exercises

Consider this different memory map.

Physical Index (Physical Contents
Page Address)
0x1000 0 (0x1000) 0x7007
1 (0x1004) 0x8007
0x2000 0 (0x2000) 0x1007
3 (0x200C) 0x3007
0x3000 128 (0x3200) 0xA007
0x6000 0 (0x6000) 0x2007
1 (0x6004) 0x8007
0x7000 0 (0x7000) 0x9007
0x8000 0 (0x8000) 0x2007
1 (0x8004) 0x2007
2 (0x8008) 0x2007
3 (0x800C) 0x2007

Part C. Assume the current level-1 page table has physical address 0x2000. For each

virtual address, give the corresponding physical address (or FAULT if accessing the

address would cause a fault).

1. 0x00000000 0x7000
0x00000001 0x7001
O0x00000FFF Ox7FFF
0x00001000 0x8000
0x00C08003 FAULT
0x00C80003 0xA003
0x00COOFO00 FAULT
0x00001F00 0x8F00

© N o o &~ w N

Part D. Assume the current level-1 page table has physical address 0x2000. For each
physical address, give all virtual addresses that map to that physical address (or NONE

if no virtual address maps to that physical address).

1. 0x00007000 0x00000000
0x00000000 NONE
Ox0000AFFF 0xO00C80FFF
0x00008888 0x00001888
0xA0000000 NONE
0x00008001 0x00001001

N o g M w0 D

0x0000A002 0x00C80002

Part E. Assume the current level-1 page table has physical address 0x1000.

1. How many different physical data pages may be addressed using this
level-1 page table? 2 (at 0x9000 and 0x2000)

2. How many accessible virtual addresses exist for this level-1 page table?
5 x 2M2 == 0x5000

Part F. Assume the current level-1 page table has physical address 0x6000.

1. Give a physical address that is inaccessible from this level-1 page table

(has no corresponding virtual address). One example: 0x100000FF

. Write C statements that, if executed under this L1 page table, would make
the physical address you named accessible at some virtual address you
choose. (Remember that all addresses used in C programs are virtual.)

*(uint32_t *)0x00400004 = 0x10000007

. Give the virtual address you chose for the last part.

0x000010FF

	Exercise VM: Virtual Memory
	Parts of Addresses
	Pages
	Virtual address translation
	Flags
	Example
	Example Questions
	Answers
	Exercises

