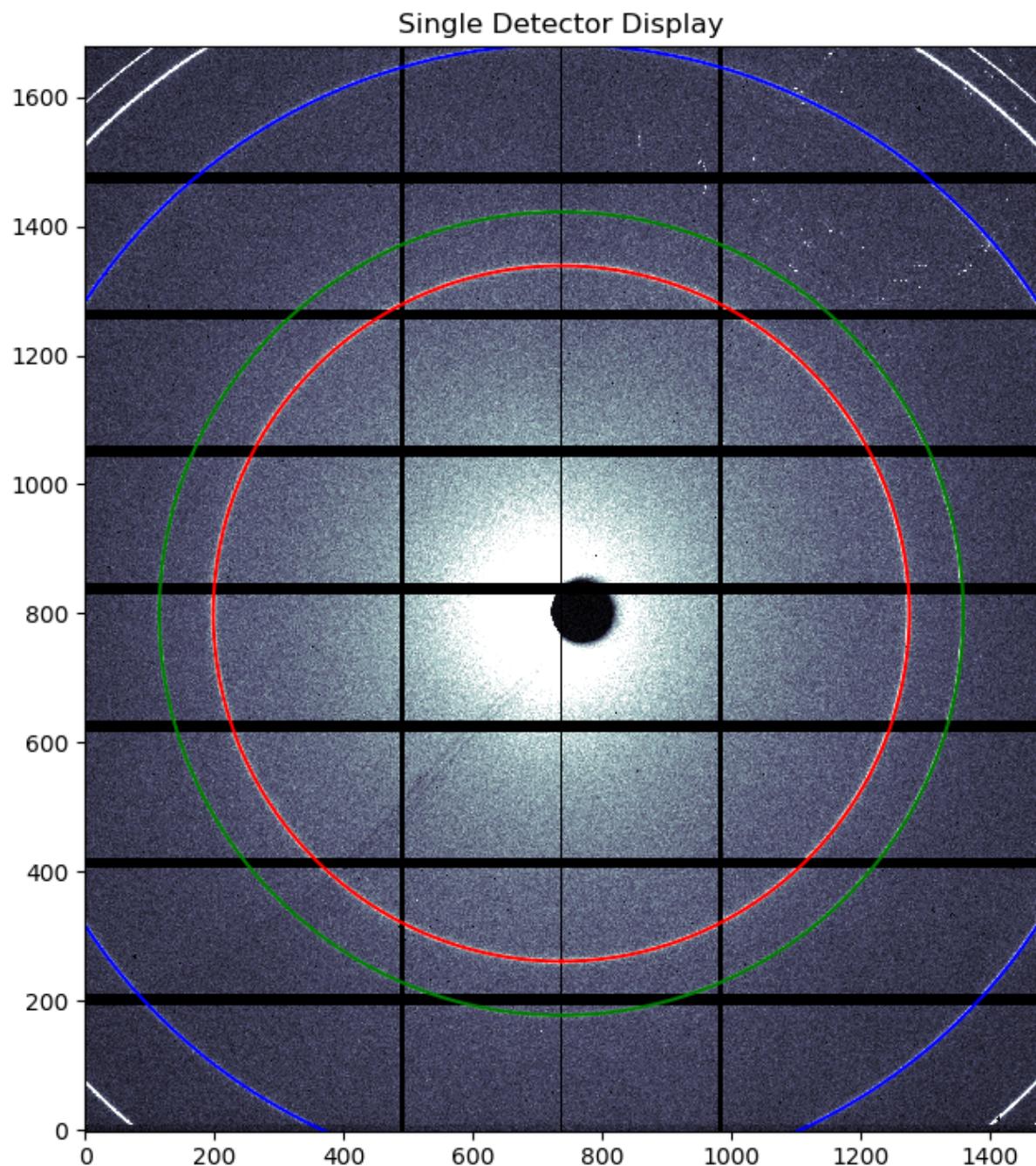


MIDAS Integration Manual


This manual covers 2D-integration using MIDAS.

NOTE: The relevant files for this manual can be downloaded from [MIDAS_Manual](#).

NOTE: Steps 1-10 are needed when first running on a new experiment with new parameters.

NOTE: Step 9 is needed whenever BinSizes or Ranges for Eta or R are changed.

1. The first step for integration is defining parameters for the integration. These include
 - a. detector dimensions (Number of Pixels, Pixel Size in microns),
 - b. tilts (tx,ty,tz),
 - c. BC (beam center),
 - d. Lsd (Sample to detector distance),
 - e. RhoD (maximum ring radius on the detector used to calibrate detector distortion),
 - f. p0, p1, p2, p3 (detector distortion parameters),
 - g. EtaBinSize, EtaMin, EtaMax (in degrees),
 - h. RBinSize, RMin, RMax (pixels).
2. Download the contents of the [MIDAS_Manual](#) folder including the [CeO2.txt](#) file.
3. Once MIDAS has been installed using the method described at [MIDAS Github](#), go to the folder with the downloaded files.
4. Open the file in MIDAS gui (`python ~/opt/MIDAS/gui/ff_asym.py`).
 - a. Change `NrPixelsHor`, `NrPixelsVert`, `BytesPerPx` to appropriate values (1475, 1679, 4 for pilatus, 2048, 2048 and 2 for GE).
 - b. Click `FirstFile` and select the file of interest.
 - c. (optional) If you have a **Dark** file, click `DarkFile` and select the dark or bright frame. This will be subtracted from `FirstFile`.
 - d. Click `Load Single Detector`.
 - e. Click `RingsMaterial` and enter approximate values.
NOTE: Select the correct pixel size (172 for pilatus, 200 for GE).
- f. Once you click `Continue`, select the rings of interest in the next step and click `Done`.
- g. You can now vary the `Lsd`, `BeamCenter` values next to `Load Single Detector` and double click `PlotRings` to get close to the observed rings. The final result should look close to the figure below.

5. Edit the **CeO2.txt** file to get the correct folder name and approximate values from the previous step. The file already contains good starting values.
6. Type the following command:

```
~/opt/MIDAS/FF_HEDM/bin/Calibrant Ce02.txt
```

Output:

NrTransOpt: 1

```

TransformationOptions: 0 No change.
0.162892 1773330.141331 110000.000000 225 5.411160 5.411160 5.411160
90.000000 90.000000 90.000000
Generating hkl's
Will go from 0 to 10 in h; 0 to 10 in k; 0 to 10 in l.
Thetas: 1.493862 1.725029
Number of planes being considered: 2.
The following rings will be excluded:
2Theta Tolerance: 0.160929
Dark file could not be read. Making an empty array for dark.
Reading calibrant file:
/home/Desktop/analysis//Ce02_2s_phi_0deg_000014.raw, nFrames: 10 99061000
9906100, skipping first 8192 bytes.
Number of eta bins: 180.
Out of 360 slices, 360 were in the detector
Number of calls to profiler function: 488413
Time elapsed in fitting peak profiles: 15.894508 s.
Number of function calls: 2478
Lsd 1773423.049444961827
BC 736.212401741989 801.049988394769
ty -0.459486144717
tz 0.287444660752
p0 0.000392430603
p1 -0.000106371799
p2 -0.000072635025
p3 23.966532834920
MeanStrain 0.000871019580
StdStrain 0.005393648368
Time elapsed for this file: 16.014579 s.
Total time elapsed: 16.017796 s.
*****Mean Values*****
Lsd 1773423.049444961827
BC 736.212401741989 801.049988394769
ty -0.459486144717
tz 0.287444660752
p0 0.000392430603
p1 -0.000106371799
p2 -0.000072635025
p3 23.966532834920
MeanStrain 0.000871019580
StdStrain 0.005393648368
*****Copy to par*****

```

7. Please copy the Mean Values (Lsd, BC, ty, tz, p0, p1, p2, p3) to the **CeO2.txt** file.
8. If you start far away from optimum position, you should run steps 6 and 7 multiple times until the values converge.
9. Type the following command:

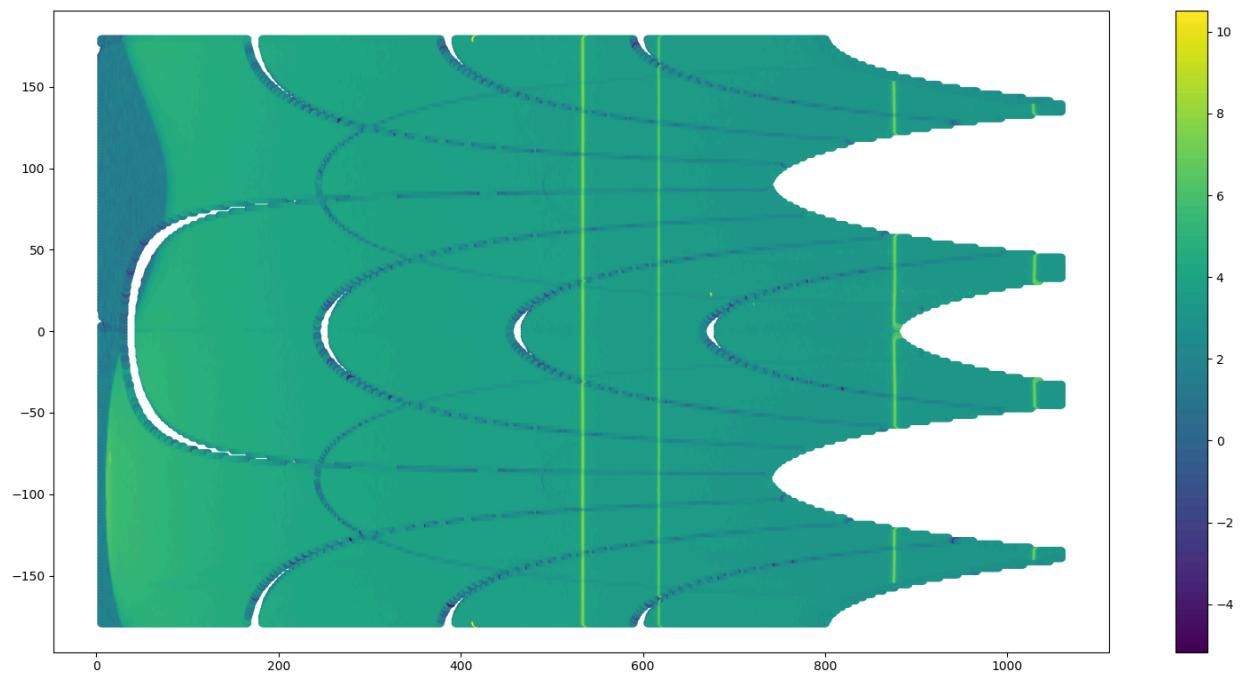
```
~/opt/MIDAS/FF_HEDM/bin/DetectorMapper Ce02.txt
```

Output:

```
Creating a mapper for integration.
Number of eta bins: 180, number of R bins: 1055.
Total Number of bins 6090885
Total time elapsed: 15.999297 s.
```

10. This will create two files: **Map.bin** and **nMap.bin**. These are used for quick calibration later on. Steps until here are needed to be done once per experiment.
11. Type the following command to integrate one file:

```
~/opt/MIDAS/FF_HEDM/bin/Integrator Ce02.txt Ce02_2s_phi_0deg_000014.raw
```


Output:

```
Map size in bytes: 97454160, each element size: 16, total elements: 6090885.
nMap size in bytes: 1519200, each element size: 8, total elements: 759600.
NrTransOpt: 1
TransformationOptions: 0 No change.
Number of eta bins: 180, number of R bins: 1055.
Processing frame number: 1 of 10 of file Ce02_2s_phi_0deg_000014.raw.
Processing frame number: 2 of 10 of file Ce02_2s_phi_0deg_000014.raw.
Processing frame number: 3 of 10 of file Ce02_2s_phi_0deg_000014.raw.
Processing frame number: 4 of 10 of file Ce02_2s_phi_0deg_000014.raw.
Processing frame number: 5 of 10 of file Ce02_2s_phi_0deg_000014.raw.
Processing frame number: 6 of 10 of file Ce02_2s_phi_0deg_000014.raw.
Processing frame number: 7 of 10 of file Ce02_2s_phi_0deg_000014.raw.
Processing frame number: 8 of 10 of file Ce02_2s_phi_0deg_000014.raw.
Processing frame number: 9 of 10 of file Ce02_2s_phi_0deg_000014.raw.
Processing frame number: 10 of 10 of file Ce02_2s_phi_0deg_000014.raw.
Total time elapsed: 3.163270 s.
```

12. This will create two files for each frame: 2D cake and 1D integration. If you want to output a sum of all the frames, add the following line to the **CeO2.txt** file:

```
SumImages 1
```

13. If you plot the first frame output (log scale), it should look close to the following figure:

