
Week 4 - Project Direction (Deliverables: TEAMMATES) 3
Targeting Resident Assistant / Hall comm publicity [Evolve] 3

Product Name: 4
Target User Profile: 4
Problem Addressed: 4
Link of Document 4

Week 5 - Project Direction (Deliverables: Tutorial Sharing of User Stories) 5
Deliverables: 5
iP BCD-Extension 5
User Stories 5

Week 6: Feature List 6

Week 7 - tP Briefing and v1.1 8

Week 8 - Finishing 1.2 Iteration 11
Agenda 11
Informal Demo 11
v1.2b things 11
DG/UG Standardisation 11

Week 9: v1.2 Features Demo 13
Exporting of information 13
Adding a new resident 13
Deleting a resident 13

Week 10: Project Post-mortem, UG/DG 15
Do a postmortem of the previous iteration 15
UG/DG: 15

Week 11: v1.3 Features Demo 16
Listing all student groups 16
Viewing of hall events 17
Assigning of residents to events 18
Adding of hall events 20
Editing of hall events 21
Deleting of hall events 22
Clearing attendees list of events 23
Filtering of residents by events 25

Admin Info
Team ID: CS2103T-T11-2
Tutorial Document Link: Tutorial Link
Tutorial Zoom Link: Tutorial Zoom

https://docs.google.com/document/d/1rEaOIEk6wHwcJK4FazyUtU9y5cBe3dfvoMuJ3nOO1PE/edit
https://nus-sg.zoom.us/j/94673861015?pwd=UGJRS0pVYXlublBUK2pzdWpZbkRnUT09


iP Dashboard: IP Dashboard
tP Dashboard: TP Dashboard
Project Site: Project Site

https://nus-cs2103-ay2021s1.github.io/dashboards/contents/ip-progress.html
https://nus-cs2103-ay2021s1.github.io/dashboards/contents/tp-progress.html
https://ay2021s1-cs2103t-t11-2.github.io/tp/


Week 4 - Project Direction (Deliverables: TEAMMATES)
- Targeting Resident Assistant / Hall comm publicity [Evolve]

- 300 contacts
- Contact automation, need to contact people, manually call?
- Based on events such as paying rent, electrical bills, dinner and dance.

Maybe block event, filter by faculty, filter by cca, filter by demerit points, filter
by level.

- CRUD their contacts:
- Functionalities:

- Demerit Points (1 full fledged feature)
- Student, date, reason (Alcohol, equipment abuse, sexual

offences)
- CCA (1 full fledged feature)

- CCA Attendance Tracker
- Maintenance contacting and scheduling (1 full fledged feature)

- Add on, date, reason, and room
- Tagging + EZ export + Filter

- Filter: Blocks / Faculty / CCA / Demerits / Level / Gender /
Nationality (1 full feature)

- Easily export to a human readable format
- Past records by batch (1 small feature)

- Past CCA members, past roommates, past batches, past level
- Events (1 full fledged events)

- Block Event
- Hall Event
- Level events

- KIV
- Booking of facilities (1 full fledged features)

- KIV
- Room bidding / Room allocation

- Too complicated to test in PE
- KIV: Keep it simple first, if we have nothing left to add, we add

this -Yan Cheng
- Customizing room ranges / blocks
- ‘Settings’ kind of concept

- Thumbs up by YanCheng, Kok Siang
- TODO: Evolve it more

Deliverables:
By 04 Sep 2020:
Submit your product name, target user profile, the value proposition, and the public link to
your collaborative project notes via TEAMMATES. You'll receive an email from TEAMMATES
with the submission link. Only one member needs to submit on behalf of the team. All
members can view/update the submission.



Product Name:
- Hall-y! Your smart hall management contact application.

Target User Profile:
- NUS Hall Administrative Staff (in charge of students staying in the block)

Problem Addressed:
- Difficult to keep track of and contact 100 students especially with day-to-day

activities, like CCAs, events.
- Update hall records (such as demerit points and CCA points) for further reference
- Track maintenance information for students’ rooms, including their maintenance staff

and job done
- Track hall event attendance (some events need to be attended or else there will be

consequences)

Link of Document
- Hall-y CS2103T Project

https://docs.google.com/document/d/1VnuWq0AIUKuXKtZodG9w5VbVOJ47WIcSCpd4ZHoar60/edit


Week 5 - Project Direction (Deliverables: Tutorial Sharing of User Stories)

Deliverables:
User Stories

- List a bunch of user stories
- Prioritise

iP BCD-Extension
Thuya: C-FlexibileDataSource
Kok Siang: C-Priority
Jiefeng - C-FriendlierSyntax
BiaoYi - C-Update
YanCheng - C-Help

User Stories
User Stories

User Stories

User story format: As a {user type/role} I can {function} so that {benefit}

Step 1: Define the target user as a persona:
Jeff is a hall administrative staff, he interacts with a lot of hall residents, namely NUS
students. And every day is an interesting day, because there are a lot of activities going
around, CCA’s, events and other interesting stuff.

Step 2: Define the problem scope:
- Hall-y helps Tommy keep track of all the residents' contacts in the hall. It does not

cover communicating with contacts.
- As a hall resident officer, basically there are too many residents in hall, and every

Step 3: List scenarios to form a narrative:
- First use:

- He just started using Hall-y, he downloads it and launches it to check out what
it can do.

Step 4: List the user stories to supports the scenarios:

https://docs.google.com/spreadsheets/d/17IZnzy8m8mF4Gapb05dkzVqw0j6KPeOWDJZnXnaKm9o/edit?usp=sharing


Week 6: Feature List

Residents:
Contact info

1) Email <Class>
2) Phone numbers

a) Home Number
b) Mobile Number

3) Telegram handles (KIV)
4) Residential Address

Person info
1) Name <Class>
2) Gender
3) Nationality

Academic info
1) Matric Number <Class>
2) Matriculation year <Class> (low prio drop if needed)
3) Faculty <Enum> (postponed)

Residential info
1) Block
2) Room number
3) Demerit point (KIV)

Exporter Class
- UI that we can show the list of exported classes

- Or we can change this to saving a file
- we need the internal classes in charge of molding the data
- export interface

- Emails, phone numbers
- interface exportable

Delegation:
- Take 3 bullet points

- Integrate it into the current user guide draft

5 areas:
1) Create (Thuya)
2) Read (Biao Yi)
3) Edit (Kok Siang)
4) Delete (Jiefeng)
5) Export (Yan Cheng)

TODO by:
- Tuesday Night (wednesday changes)



Saturday

Feature list of Hall-y 1.2:
1) Management of residents’ record:

a) Create residents’ record
b) Read residents’ record
c) Edit residents’ record
d) Delete residents’ record

2) Exporting of contact info
a) Export in mass email format (any simple format)
b) Phone numbers (any simple format)
c) Telegram handles (any simple format)



Week 7 - tP Briefing and v1.1

An attempt to TLDR the tP requirements. Read this for more info. No bell-curve btw.

1. Product Design (5m)
a. Evaluated by tutor (demo and UG) and peers (peer testing and UG)
b. No need for High in all areas – will minus for feature flaws

2. Implementation (10m)
a. Code Quality

i. Cover logging/exceptions/assertions/defensive coding
ii. SLAP, DRY, and other things as in coding standard

b. Effort
i. Step 1: Effort for entire project i.e. how much from AB3. Graded by

tutors and peers, seems like most get max here. May rebut using DG
Appendix (IDK what this is, probably will release info in future weeks)

ii. Step 2: Peer evaluation. You may rebut if you disagree. Tutor/Damith
will determine from evidence too.

3. Project Grading (10m) – in P.E., grading works in 70-30, 70% for your stronger
aspect

a. Developer Testing
i. How many bugs found in your product/section – will be split if the

section is from team
ii. Test code
iii. Minus for not handling real user behaviour, product differs from UG,

weird product behaviours
b. System/Acceptance Testing

i. How many bugs you found in another product
4. Documentation (10m)

a. Whole DG and UG, graded by tutor and peers
b. How much effort is due to you
c. Minus for UG, DG bugs found in during PE

5. Project Management (5 + 5 = 10m)
a. Process

i. Do iteratively, use and reach milestones, define/assign/track issue on
issue tracker

ii. Reach 60% of milestone can already
b. Team tasks

i. General chores like issue tracker, general misc info in UG/DG
ii. Merge code in 4 out of 6 weeks(7,8,9,10,11,12)

18 Sep – tP Briefing Notes
Read Appendix[E]: Project Schedule Tracking and then recommended to do 1 as team
activity i.e. in AboutUs page, each person add their own name. So can practice the
workflow

https://nus-cs2103-ay2021s1.github.io/website/admin/tp-grading.html


This is a non-exhaustive list; you may define additional roles.

● Team lead: Responsible for overall project coordination.
● Documentation (short for ‘in charge of documentation’): Responsible for the

quality of various project documents.
● Testing: Ensures the testing of the project is done properly and on time.
● Code quality: Looks after code quality, ensures adherence to coding

standards, etc.
● Deliverables and deadlines: Ensure project deliverables are done on time and

in the right format.
● Integration: In charge of versioning of the code, maintaining the code

repository, integrating various parts of the software to create a whole.



● Scheduling and tracking: In charge of defining, assigning, and tracking project
tasks.

● [Tool ABC] expert: e.g. Intellij expert, Git expert, etc. Helps other team member
with matters related to the specific tool.

● In charge of[Component XYZ]: e.g. In charge of Model, UI, Storage, etc. If you
are in charge of a component, you are expected to know that component well,
and review changes done to that component in v1.3-v1.4.

Biao yi - Documentation
Thuya - [Git] expert / Integration
Jie Feng - Testing / Team Lead
Kok Siang - Deadlines and deliverables
Yan Cheng - Scheduling and tracking /Code quality

Take out tagging feature

● Plan the next iteration. As you know, you should follow the breadth-first
iterative process. Therefore, first you must decide what functionalities should
be in the product if you had only two weeks to implement it. You have done
that already when you chose user stories for v1.2, translated that to features,
and even drafted the UG based on those features. You can tweak that plan
further at this point if you wish, given that you now have some idea of how
fast the team can work when using the prescribed workflow.

○ Aim to produce a workingMVP at the end of this iteration even if the
functionalities are not polished (polishing can be done in a later
iteration).

○ If possible, break the iteration into two increments i.e., aim to produce
an even simpler but working version after one week.

○ Avoid depth-first implementations: "I'll do the back-end part of feature X
in this iteration" is not acceptable as that is not in the spirit of iterative
development. Remember, we are pretending this to be the last iteration;
why would you implement the back-end part of a feature in the last
iteration?
It is OK to add simpler versions of bigger features, but not OK to add
partial features that can't be used yet.

● Divide the work among the team members i.e., the work required for the
current iteration.

● Reflect the above plan in the issue tracker by assigning the corresponding
issues (create new issues if necessary) to yourself and to the corresponding
milestone. For example, the user story pertaining to the increment show a

place holder for photo, showing a generic default image should be
assigned to Jake and to milestone v1.2

https://en.wikipedia.org/wiki/Minimum_viable_product


Optionally, you can define a mid-v1.2 milestone to keep track of things to be
done within the first half of the milestone

Week 8 - Finishing 1.2 Iteration

Agenda
1) Close 1.2 - push to Monday
2) Prepare informal demo for tutorial

a) As we don't have in-class tutorials this semester, do the following in lieu of a
live demo:

b) [one member] Run your app using the version tagged v1.2. Take screenshots
of each available feature in action. Add those screenshots to your
collaborative project notes document with an appropriate heading e.g., v1.2
features demo. Alternatively, you can screen-record a demo, upload it to
somewhere, and post the link in the project notes document.

3) OP Consult - discuss on Wed again. Prep/Brainstorm needed
a) Demo format / presentation flow / tagline
b) Pitch format / presentation flow / tagline

4) Discuss DG UG, 1.2b
a) Standardisation of DG UG
b) 1.2b tasks
c) DG UG Work allocation?

Informal Demo
Upload the videos into the project document.
Show the add/edit command with new fields

New features to show:
1. Yan Cheng will demo export command
2. The rest will show the add/edit command with new fields
3. Biao Yi will take a screenshot of the add commands(add to colab docs)

v1.2b things
Either test cases or documentation.
Must do documentation.

Issue #57: v1.2b
Test cases for YanCheng and BiaoYi Issue #70, #71: v1.2b

DG/UG Standardisation
Each person takes one area to standardise.

General points to standardise.
● Title case for titles only. Will be using sentence case in sub-headers everywhere else.



● In general, each DG diagram should begin with a description, followed by the diagram. In
the description, it should reference the diagram as well. Of course, each diagram has to
be labelled.

● KIV grammar and punctuation mistakes



Week 9: v1.2 Features Demo

Exporting of information
Export feature demo video

Adding a new resident
1. Type ‘add’ followed by the resident details in the specified format in the input box
2. Press enter
3. Output msg is shown below and the new resident is displayed in the list of residents

Deleting a resident
1. Type ‘delete’ followed by the index number in the input box
2. Press enter
3. Output msg is shown below and the list of residents will be updated to reflect the

deletion

https://drive.google.com/file/d/1f4wTddOR1kUZyU1llSZBTdrBSfEaps9s/view?usp=sharing




Week 10: Project Post-mortem, UG/DG

Do a postmortem of the previous iteration
● Discuss with the team how the iteration went (i.e., what worked well, what didn't), and

your plans to improve the process (not the product) in the next iteration.

What went well
- We accomplished everything we set out to do
- Every feature followed the forking workflow
- Reviewed every code change to the team repo
- Everyone was involved in the issue creation, code reviewing and merging

What did not go well
- Merge conflicts and putting merge request reviews everything to last minute
- We push the deadline too late

How to improve, guidelines
- Directly assign the person, get them to review early as possible
- Guideline: Get the person who has least recently reviewed to do it
- Idea: be fair, get everyone involved. Just make you review something once in awhile
- Finish (commit to master) everything one day before the deadline

UG/DG:
- Update the current UG/DG. Look out for language errors/typos/formatting errors
- Add your v1.3 features into the before Friday.

- Add to markdown then we’ll convert to pdf
- Lookout for: UG (2.* + Command summary) + UG Checklist (CS2101 Week

4.2)
- Lookout for DG:

- Allocation:
- Biao Yi: Add / edit feature
- : Find featureThuya Oo
- Kok Siang: Create student group and add student group (i.e. converted the

previous tag feature)
- Jiefeng: Hall event
- Yan Cheng: Assigning command + Export (v1.2) feature
- Others: help, list, delete
- Others: clear, exit, saving data BY Pang

mailto:Thuyaoo200@gmail.com
mailto:schoolexs@gmail.com


Week 11: v1.3 Features Demo

Listing all student groups
You can list all student groups by using the list-group command.

The steps for this command are as follows:

1. Enter the list command by typing list-group into the input box
2. Press enter
3. The result box will display all the student groups:



Viewing of hall events
You can view the list of hall events on the UI



Assigning of residents to events
You can assign a resident to an event by using the assign command

Let’s say you want to assign the 1st resident “Alex Yeoh” to the 1st event “Hall Lunch”

The steps for this command are as follows:
1. Enter the assign command by typing ‘assign 1 1’
2. Press enter
3. The result box will display the details of the resident added to the event
4. The event list will be updated as shown





Adding of hall events

You can add a hall event by using the add-event command.
Suppose you want to create an event called Night Cycling, with the following parameters

- Name: Night Cycling
- Location: Meet at Hall Entrance
- Event Date: 30/10/2020 18:00
- Description: A night cycling event held every semester

The steps for this command are as follows:
1. Enter the add-event command by typing `add-event n/Night Cycling l/Meet at Hall

Entrance dt/30/10/2020 18:00 d/A night cycling event held every semester.`
2. Press enter
3. The result box will display the details of the event added
4. The event list will be updated as well.



Editing of hall events

You can edit a hall event by using the edit-event command.

Suppose after you created the Night Cycling event, there was a change for it to start at 20:00
instead.

The steps to edit the hall event are:
1. Assume the event index of Night Cycling, based on the events list, is 2.
2. Enter the edit-event command by typing `edit-event 2 dt/30/10/2020 20:00`
3. Press enter
4. The GUI will update as so:



Deleting of hall events

You can delete a hall event by using the delete-event command.

Suppose you want to delete Night Cycling. Let’s assume that based on the events list, it has
the index 2.

The steps to delete this event are:
1. Enter the delete-event command by typing `delete-event 2`
2. Press enter
3. The GUI will update like so:



Clearing attendees list of events
You can clear the attendees list of events by using the clear-event command

Let’s say you want to clear the attendee list of the 1st event “Hall Lunch”

The steps for this command are as follows:
1. Enter the clear event command by typing ‘clear-event 1’
2. Press enter
3. The result box will display the details of the event
4. The event list will be updated as shown





Filtering of residents by events
You can filter residents by events by using the filter-event command

Let’s say you want to filter the residents attending the 1st event “Hall Lunch”

The steps for this command are as follows:
1. Enter the filter-event command by typing “filter-event 1”
2. Press enter
3. The resident list will be updated as shown




