3.1 What is Hadoop Distributed File System?

Hadoop File System was developed using distributed file system design. It is run
on commodity hardware. Unlike other distributed systems, HDFS is highly fault
tolerant and designed using low-cost hardware.

HDFS holds very large amount of data and provides easier access. To store such
huge data, the files are stored across multiple machines. These files are stored in
redundant fashion to rescue the system from possible data losses in case of
failure. HDFS also makes applications available to parallel processing.

Features of HDFS

e It is suitable for the distributed storage and processing.
e Hadoop provides a command interface to interact with HDF'S.

e The built-in servers of namenode and datanode help users to easily check
the status of cluster.

e Streaming access to file system data.

e HDFS provides file permissions and authentication.

HDFS Architecture/ Design

Given below is the architecture of a Hadoop File System.

HDFS Architecture

Meta data (Mame, replicas,...):
Ihomeffooldata, 3, ...

Replication

0
OJ

Blocks
\ Data Nodes ." lL Data Nodes J

| |
Rack 1 Rack 2

HDFS follows the master-slave architecture and it has the following elements.

Namenode

The namenode is the commodity hardware that contains the GNU/Linux operating
system and the namenode software. It is a software that can be run on commodity
hardware. The system having the namenode acts as the master server and it does
the following tasks —

e Manages the file system namespace.
e Regulates client’s access to files.

e It also executes file system operations such as renaming, closing, and
opening files and directories.

Datanode

The datanode is a commodity hardware having the GNU/Linux operating system
and datanode software. For every node (Commodity hardware/System) in a
cluster, there will be a datanode. These nodes manage the data storage of their
system.

e Datanodes perform read-write operations on the file systems, as per client
request.

e They also perform operations such as block creation, deletion, and
replication according to the instructions of the namenode.

Block

Generally the user data is stored in the files of HDFS. The file in a file system will
be divided into one or more segments and/or stored in individual data nodes.
These file segments are called as blocks. In other words, the minimum amount of
data that HDFS can read or write is called a Block. The default block size is 64MB,
but it can be increased as per the need to change in HDFS configuration.

Goals of HDFS

Fault detection and recovery - Since HDFS includes a large number of
commodity hardware, failure of components is frequent. Therefore HDFS should
have mechanisms for quick and automatic fault detection and recovery.

Huge datasets — HDFS should have hundreds of nodes per cluster to manage the
applications having huge datasets.

Hardware at data - A requested task can be done efficiently, when the
computation takes place near the data. Especially where huge datasets are
involved, it reduces the network traffic and increases the throughput.

3.1.2 HDFS Concept

3.1.3 How files are stored in HDFS

Let's say we need to move a 1 Gig text file to HDFS.

1. HDFS will split the file into 64 MB blocks.
a. The size of the blocks can be configured.
b. An entire block of data will be used in the computation.
c. Think of it as a sector on a hard disk.
2. Each block will be sent to 3 machines (data nodes) for storage.
a. This provides reliability and efficient data processing.
b. Replication factor of 3 is configurable.
c. RAID configuration to store the data is not required.
d. Since data is replicated 3 times the overall storage space is
reduced a third.
3. The accounting of each block is stored in a central server, called a
Name Node.
a. A Name Node is a master node that keeps track of each file and
its corresponding blocks and the data node locations.
b. Map Reduce will talk with the Name Node and send the
computation to the corresponding data nodes.
c. The Name Node is the key to all the data and hence the
Secondary Name node is used to improve the reliability of the
cluster.

HDF'S in Picture

HDFS

Input File

Data Node 1.; Data Node?2 " .y Data Mode n

Name Node

Name Node SCLOUmYNG Of) oar

3.1.5 Replication factor

Replication ensures the availability of the data. Replication is nothing but making a
copy of something and the number of times you make a copy of that particular
thing can be expressed as its Replication Factor. As we have seen in File blocks
that the HDFS stores the data in the form of various blocks at the same time
Hadoop is also configured to make a copy of those file blocks. By default the
Replication Factor for Hadoop is set to 3 which can be configured means you can
change it Manually as per your requirement like in above example we have made 4
file blocks which means that 3 Replica or copy of each file block is made means

total of 4x3 = 12 blocks are made for the backup purpose.

Now you might be getting a doubt that why we need this replication for our file
blocks this is because for running Hadoop we are using commodity hardware
(inexpensive system hardware) which can be crashed at any time. We are not using
a supercomputer for our Hadoop setup. That is why we need such a feature in
HDFS which can make copies of that file blocks for backup purposes, this is known

as fault tolerance.

Now one thing we also need to notice that after making so many replica’s of our file
blocks we are wasting so much of our storage but for the big brand organization
the data is very much important than the storage. So nobody care for this extra

storage.

How does Replication work?

RAM : 64GB
Disk : 50GB

Master

X | X o

= e <
Slave 1 . . Slave 3 _—
(B1R1] (B2R3] - S_,‘:—'* < [(B2RZ) Slave 4
Slave 2(B1R2) (B1R3) (B1R1J

Slaves
RAM : 16GB Disk-Space = 40GB

In the above image, you can see that there is a Master with RAM = 64GB
and Disk Space = S0GB and 4 Slaves with RAM = 16GB, and disk Space =
40GB. Here you can observe that RAM for Master is more. It needs to be
kept more because your Master is the one who is going to guide this slave so
your Master has to process fast. Now suppose you have a file of size 150MB
then the total file blocks will be 2 shown below.

128MB = Block 1

22MB = Block 2

As the replication factor by-default is 3 so we have 3 copies of this file block
FileBlock1-Replical(B1R1) FileBlock2-Replical(B2R1)
FileBlock1-Replica2(B1R2) FileBlock2-Replica2(B2R2)
FileBlock1-Replica3(B1R3) FileBlock2-Replica3(B2R3)

These blocks are going to be stored in our Slave as shown in the above
diagram which means if suppose your Slave 1 crashed then in that case
B1R1 and B2R3 get lost. But you can recover the B1 and B2 from other
slaves as the Replica of this file blocks is already present in other slaves,
similarly, if any other Slave got crashed then we can obtain that file block
some other slave. Replication is going to increase our storage but Data is
more necessary for us.

3.1.6 Name Node

3.1.7 Data Node

3.1.8 Secondary Name Node
3.1.9 Job Tracker

3.1.10 Task tracker

3.2 FS Image Edit-logs

FsImage is a file stored on the OS filesystem that contains the complete directory
structure (namespace) of the HDFS with details about the location of the data on
the Data Blocks and which blocks are stored on which node. This file is used by the

NameNode when it is started.

EditLogs is a transaction log that records the changes in the HDFS file system or
any action performed on the HDFS cluster such as addition of a new block,
replication, deletion etc. In short, it records the changes since the last FsImage was

created.

Every time the NameNode restarts, EditLogs are applied to FsImage to get the latest
snapshot of the file system. But NameNode restarts are rare in production clusters.

Because of this, you may encounter the following issues: .

e EditLog grows unwieldy in size, particularly where the NameNode runs for a
long period of time without a restart;

e NameNode restart takes longer, as too many changes now have to be merged

e If the NameNode fails to restart (i.e., crashes), there will be significant data

loss, as the FsImage used at the time of the restart is very old

Secondary Namenode helps to overcome the above issues by taking over the

responsibility of merging EditLogs with FsIlmage from the NameNode.

e The Secondary NameNode obtains the Fslmage and EditLogs from the
NameNode at regular intervals.

e Secondary NameNoide loads both the FsImage and EditLogs to main memory
and applies each operation from the EditLogs to the FsImage.

e Once a new FsImage is created, Secondary NameNode copies the image back
to the NameNode.

e Namenode will use the new Fslmage for the next restart, thus reducing

startup time.

However, this seemingly fail-proof process is not without issues. Delays in the
aforesaid process can cause a NameNode to startup without the latest FsImage at

its disposal. Such delays can occur if:

e The Secondary NameNode takes too long to download the EditLogs from the
NameNode;

e The NameNode is slow in uploading FsImages to the Secondary NameNode
and/or in downloading the updated Fslmages from the Secondary

NameNode
3.2.1 Check-pointing Concept

A typical edit ranges from 10s to 100s of bytes, but over time enough edits can
accumulate to become unwieldy. A couple of problems can arise from these large
edit logs. In extreme cases, it can fill up all the available disk capacity on a node,
but more subtly, a large edit log can substantially delay NameNode startup as the

NameNode reapplies all the edits. This is where checkpointing comes in.

Checkpointing is a process that takes an fsimage and edit log and compacts them
into a new fsimage. This way, instead of replaying a potentially unbounded edit log,
the NameNode can load the final in-memory state directly from the fsimage. This is

a far more efficient operation and reduces NameNode startup time.

fsimage

checkpointing

edit lo
teel L 1™l new fsimage

However, creating a new fsimage is an [/O- and CPU-intensive operation,
sometimes taking minutes to perform. During a checkpoint, the namesystem also
needs to restrict concurrent access from other users. So, rather than pausing the
active NameNode to perform a checkpoint, HDFS defers it to either the
SecondaryNameNode or Standby NameNode, depending on whether NameNode
high-availability is configured. The mechanics of checkpointing differs depending

on if NameNode high-availability is configured; we’ll cover both.

In either case though, checkpointing is triggered by one of two conditions: if enough
time has elapsed since the last checkpoint (dfs.namenode.checkpoint.period), or if
enough new edit log transactions have accumulated
(dfs.namenode.checkpoint.txns). The checkpointing node periodically checks if
either of these conditions is met (dfs.namenode.checkpoint.check.period), and if so,

kicks off the checkpointing process.
Checkpointing with a Standby NameNode

Checkpointing is actually much simpler when dealing with an HA setup, so let’s

cover that first.

When NameNode high-availability is configured, the active and standby NameNodes
have a shared storage where edits are stored. Typically, this shared storage is an
ensemble of three or more JournalNodes, but that’s abstracted away from the

checkpointing process.

The standby NameNode maintains a relatively up-to-date version of the namespace

by periodically replaying the new edits written to the shared edits directory by the

active NameNode. As a result, checkpointing is as simple as checking if either of
the two preconditions are met, saving the namespace to a new fsimage (roughly
equivalent to running "hdfs dfsadmin -saveNamespace™ on the command line), then

transferring the new fsimage to the active namenode via HTTP.

Standby NameNode Active NameNode

@ Check

preconditions

e Save new

fsimage + MD5

©rrPcer
toputimage +2ET r’geta’mage?pu tim

————388=1 | yTTP GET
GET /getimage to getimage

RS fsimage data

pletes | Saves to

putirﬂa'%e com intermediate filename

e Saves MD5 file,
renames fsimage
to final destination

Here, Standby NameNode is abbreviated as SbNN and Active NameNode as ANN:

1. SbNN checks whether either of the two preconditions are met: elapsed time
since the last checkpoint or number of accumulated edits.

2. SbNN saves its namespace to an a new fsimage with the intermediate name
fsimage.ckpt_, where txid is the transaction ID of the most recent edit log
transaction. Then, the SbNN writes an MDS5 file for the fsimage, and renames
the fsimage to fsimage . While this is taking place, most other SbNN
operations are blocked. This means administrative operations like
NameNode failover or accessing parts of the SbNN’s webui. Routine HDFS
client operations (such as listing, reading, and writing files) are unaffected as

these operations are serviced by the ANN.

3. SbNN sends an HTTP GET to the active NN’s GetlmageServlet at
/getimage?putimage=1. The URL parameters also have the transaction ID of
the new fsimage and the SbNN’s hostname and HTTP port.

4. The active NN’s servlet uses the information in the GET request to in turn do
its own GET back to the SbNN’s GetlmageServlet. Similar to the standby, it
first saves the new fsimage with the intermediate name fsimage.ckpt_,
creates the MDS5 file for the fsimage, and then renames the new fsimage to

fsimage_.
Check pointing with a Secondary NameNode

In a non-HA deployment, checkpointing is done on the SecondaryNameNode rather
than the standby NameNode. Since there isn’t a shared edits directory or automatic
tailing of the edit log, the SecondaryNameNode has to go through a few more steps
first to refresh its view of the namespace before continuing down the same basic

steps.

Secondary MameMNode NameNode

@ Check

preconditions getTran .
which requires SECt:omD”
an RPC
xid
© Rollthe NN's rollEdie;
edit log og()
O
e Fetch new . GET /getimage...
fsimage and
edits flS _fsimage data
necessary
over HTTP

@ Reload

namespace if
new fsimage

6 Replay new
edit log
segments

@ Write new
fsimage

o Upload new GE T /getim
image to NN agE?pUtfmagE=1
via HTTP GET) e
to putimage GET /getimas
=S Fsimage gaqg

puth mage completes

@ MM saves MDS5,

renames fsimage
to final destination

Here, the NameNode is abbreviated as NN and the SecondaryNameNode as 2NN:

1. 2NN checks whether either of the two preconditions are met: elapsed time
since the last checkpoint or number of accumulated edits.

a. In the absence of a shared edit directory, the most recent edit log
transaction ID needs to be queried via an explicit RPC to the
NameNode (NamenodeProtocol#getTransactionld).

2. 2NN triggers an edit log roll, which ends the current edit log segment and

starts a new one. The NN can keep writing edits to the new segment while

the SNN compacts all the previous ones. This also returns the transaction
IDs of the current fsimage and the edit log segment that was just rolled.
Explicit triggering of an edit log roll is not necessary in an HA configuration,
since the standby NameNode periodically rolls the edit log orthogonal to
checkpointing.

3. Given these two transaction IDs, the 2NN fetches new fsimage and edit files
as needed via GET to the NN’s GetIlmageServlet. The 2NN might already have
some of these files from a previous checkpoint (such as the current fsimage).

4. If necessary, the 2NN reloads its namespace from a newly downloaded
fsimage.

S. The 2NN replays the new edit log segments to catch up to the current
transaction ID.From here, the rest is the same as in the HA case with a
StandbyNameNode.

6. 2NN writes out its namespace to a new fsimage.

7. The 2NN contacts the NN via HTTP GET at /getimage?putimage=1, causing
the NN’s servlet to do its own GET to the 2NN to download the new fsimage.

3.4 HDFS federation

Federation enhances an existing Hadoop HDFS architecture. Prior HDFS
architecture allows single namespace for the entire cluster. In that architecture,

single NameNode manages namespace.

If NameNode fails, then whole cluster will be out of service. And the cluster will be

unavailable until the NameNode restarts or brought on a separate machine.

HDFS Federation was introduced to overcome this limitation. It overcomes this by

adding support for many NameNode/Namespaces to HDFS.

W

: Mamenode g
|

Block Management

Datanode Datanode

Block Storage Namespace

J Storage

a) Namespace— This layer manages files, directories, and blocks. This layer
supports basic file system operation such as creation, deletion of files.
b) Block Storage- It has two parts-

e Block management — It supports block related operation such as
creation, deletion of the blocks. It manages data nodes in the cluster and
takes care of replication management.

e Physical storage — This stores the blocks on the local file system and
provides access to read or write operation. Follow this link to learn HDFS

data read and write operation.

This current HDFS works fine for smaller setups. But, for large organizations where
we need to take care of the huge amount of data has some limitation. Hadoop

federation handles those limitations.
Multiple Namenodes/Namespaces

Federation uses many independent Namenode/namespaces to scale the name
service horizontally. In HDFS Federation Architecture, at the bottom, datanodes are
present. And datanodes are used as a common storage for blocks by all the

namenodes.

Each datanodes registers with all the namenodes in the cluster. These datanodes

send periodic heartbeats, block, report and handle command from the namenodes.

MIMN-K

1 1
1 1
1 1
[] 1
[] 1
[] 1
[] 1
1 1
' NS k j :
1 1
| L.
| e— !
[] 1
[] 1
[] 1
1 1
[1 N
1 I o
]]
[] I
[} [}
L 1

N51

Namespace

AR s s s s s s ...

™
@
? Block Pools
E B e e e e e e e ———
A 1
a2 —
g Datanode 1 Datanode 2 Datanode m

i--1 il --1 e
b Common Storage

Block Pool

A Block Pool is a set of blocks that belong to a single namespace. Datanodes store
blocks for all the block pools in the cluster. Each Block Pool is managed
independently. This allows a namespace to generate Block IDs for new blocks
without the need for coordination with the other namespaces. A Namenode failure

does not prevent the Datanode from serving other Namenodes in the cluster.

A Namespace and its block pool together are called Namespace Volume. It is a
self-contained unit of management. When a Namenode/namespace is deleted, the
corresponding block pool at the Datanodes is deleted. Each namespace volume is

upgraded as a unit, during cluster upgrade.
ClusterID

A ClusterID identifier is used to identify all the nodes in the cluster. When a
Namenode is formatted, this identifier is either provided or auto generated. This ID

should be used for formatting the other Namenodes into the cluster.
Benefits of HDFS Federation

HDFS Federation overcomes the limitations of prior HDFS architecture. Hence it

provides:

1. Isolation - There is no isolation in single namenode in a multi-user
environment. In HDFS federation different categories of application and

users can be isolated to different namespaces by using many namenodes.

2. Namespace Scalability — In federation many namenodes horizontally scales
up in the filesystem namespace.
3. Performance — We can improve Read/write operation throughput by adding

more namenodes.
3.5 HDFS High availability

The namenode is still a single point of failure (SPOF), since if it did fail, all clients—
including MapReduce jobs—would be unable to read, write, or list files, because the
namenode is the sole repository of the metadata and the file-to-block mapping. In
such an event the whole Hadoop system would effectively be out of service until a

new namenode could be brought online.

To recover from a failed namenode in this situation, an administrator starts a new
primary namenode with one of the filesystem metadata replicas, and configures

datanodes and clients to use this new namenode.

The new namenode is not able to serve requests until it has

i) loaded its namespace image into memory,
ii) replayed its edit log, and
iii) received enough block reports from the datanodes to leave safe mode. On

large clusters with many files and blocks, the time it takes for a

namenode to start from cold can be 30 minutes or more.

The 0.23 release series of Hadoop remedies this situation by adding support for
HDFS highavailability (HA). In this implementation there is a pair of namenodes in
an activestandby configuration. In the event of the failure of the active namenode,
the standby takes over its duties to continue servicing client requests without a

significant interruption.
A few architectural changes are needed to allow this to happen:

e The namenodes must use highly-available shared storage to share the edit
log.

e Datanodes must send block reports to both namenodes since the block
mappings are stored in a namenode’s memory, and not on disk.

e C(Clients must be configured to handle namenode failover, which uses a

mechanism that is transparent to users.

Failover and fencing:

The transition from the active namenode to the standby is managed by a new entity
in the system called the failover controller. Failover controllers are pluggable, but
the first implementation uses ZooKeeper to ensure that only one namenode is

active.

Failover may also be initiated manually by an adminstrator, in the case of routine
maintenance, for example. This is known as a graceful failover, since the failover
controller arranges an orderly transition for both namenodes to switch roles. In the
case of an ungraceful failover, The HA implementation goes to great lengths to
ensure that the previously active namenode is prevented from doing any damage

and causing corruption—a method known as fencing.

3.6 Architectural description for Hadoop Cluster

3.7 When to use or not to use HDFS, Block Allocation in Hadoop Cluster
3.8 HDF'S Operations

Read operation in HDFS

Let’s get an idea of how data flows between the client interacting with HDFS, the
name node, and the data nodes with the help of a diagram. Consider the figure:

2. Get Black Locations
1. Open Distributed Name Node
System

HDFS Client | 3. Read

FS Data

6.Close InputStream

Client JVM

5. Read
4.Read

Data Node Data Node Data Node

N

Step 1: The client opens the file it wishes to read by calling open() on the
File System Object(which for HDFS is an instance of Distributed File
System).

Step 2: Distributed File System(DFS) calls the name node, using remote
procedure calls (RPCs), to determine the locations of the first few blocks in
the file. For each block, the name node returns the addresses of the data
nodes that have a copy of that block. The DFS returns an
FSDatalnputStream to the «client for it to read data from.
FSDatalnputStream in turn wraps a DFSInputStream, which manages the
data node and name node I/O.

Step 3: The client then calls read() on the stream. DFSInputStream, which
has stored the info node addresses for the primary few blocks within the file,

then connects to the primary (closest) data node for the primary block in the
file.

Step 4: Data is streamed from the data node back to the client, which calls
read() repeatedly on the stream.

Step 5: When the end of the block is reached, DFSInputStream will close
the connection to the data node, then finds the best data node for the next
block. This happens transparently to the client, which from its point of view
is simply reading an endless stream. Blocks are read as, with the
DFSInputStream opening new connections to data nodes because the client
reads through the stream. It will also call the name node to retrieve the data
node locations for the next batch of blocks as needed.

Step 6: When the client has finished reading the file, a function is called,
close() on the FSDatalnputStream.

Write operation in HDFS

Next, we’ll check out how files are written to HDFS. Consider figure 1.2 to get a
better understanding of the concept.

Note: HDFS follows the Write once Read many times model. In HDFS we cannot
edit the files which are already stored in HDFS, but we can append data by
reopening the files.

4 . f
f — " h 2. Create
1. Open | Distributed File Name Node
System)
i 7.Complete
HDFS Client 3. Wiite P
namenode
FS Data -
6.Close OutputStream
\. y
L Client]VM /S /)
4.Write Packet 5.Acknowledge Packet
4 I 4
Pipelines of Data s
Node Data Node Data Node Data Node
| 5 5
datanode datanode datanode
Step 1: The client creates the file by calling create() on
DistributedFileSystem(DFS).
Step 2: DFS makes an RPC call to the name node to create a new file in the

file system’s namespace, with no blocks associated with it. The name node
performs various checks to make sure the file doesn’t already exist and that the
client has the right permissions to create the file. If these checks pass, the
name node prepares a record of the new file; otherwise, the file can’t be created
and therefore the client is thrown an error i.e. IOException. The DFS returns
an FSDataOutputStream for the client to start out writing data to.

Step 3: Because the client writes data, the DFSOutputStream splits it into
packets, which it writes to an indoor queue called the info queue. The data
queue is consumed by the DataStreamer, which is liable for asking the name
node to allocate new blocks by picking an inventory of suitable data nodes to
store the replicas. The list of data nodes forms a pipeline, and here we’ll
assume the replication level is three, so there are three nodes in the pipeline.
The DataStreamer streams the packets to the primary data node within the
pipeline, which stores each packet and forwards it to the second data node
within the pipeline.

Step 4: Similarly, the second data node stores the packet and forwards it to
the third (and last) data node in the pipeline.

Step 5: The DFSOutputStream sustains an internal queue of packets that
are waiting to be acknowledged by data nodes, called an “ack queue”.

Step 6: This action sends up all the remaining packets to the data node
pipeline and waits for acknowledgments before connecting to the name node to
signal whether the file is complete or not.

HDFS follows Write Once Read Many models. So, we can’t edit files that are already

stored in HDFS, but we can include them by again reopening the file. This design

allows HDFS to scale to a large number of concurrent clients because the data
traffic is spread across all the data nodes in the cluster. Thus, it increases the
availability, scalability, and throughput of the system.

Hadoop Archives

Hadoop archive is a facility which packs up small files into one compact HDFSblock
to avoid memory wastage of name node.name node stores the metadata information
of the the HDFS data.SO,say 1GB file is broken in 1000 pieces then namenode will
have to store metadata about all those 1000 small files.In that manner,namenode

memory willbe wasted it storing and managing a lot of data.

HAR is created from a collection of files and the archiving tool will run a
MapReduce job.these Maps reduce jobs to process the input files in parallel to

create an archive file.
Limitations of HAR Files:

1) Creation of HAR files will create a copy of the original files. So, we need as
much disk space as size of original files which we are archiving.We can
delete the original files after creation of archive to release some disk space.

2) Once an archive is created, to add or remove files from/to archive we need to
re-create the archive.

3) HAR file will require lots of map tasks which are inefficient.
Data Integrity in HDFS

1) Data Integrity means to make sure that no data is lost or corrupted during
storage or processing of the Data.

2) Since in Hadoop, amount of data being written or read is large in Volume, a
chance of data corruption is more.

3) So in Hadoop checksum is computed when data written to the disk for the
first time and again checked while reading data from the disk. If checksum
matches the original checksum then it is said that data is not corrupted
otherwise it is said to be corrupted.

4) Its just data detection error.

5) It is possible that it’s the checksum that is corrupt, not the data, but this is
very unlikely, because the checksum is much smaller than the data

6) HDFS uses a more efficient variant called CRC-32C to calculate checksum.

7) DataNodes are responsible for verifying the data they receive before storing
the data and its checksum. Checksum is computed for the data that they
receive from clients and from other DataNodes during replication

8) Hadoop can heal the corrupted data by copying one of the good replica to
produce the new replica which is uncorrupt replica.

9) If a client detects an error when reading a block, it reports the bad block and
the DataNodes it was trying to read from to the NameNode before throwing a
Checksum Exception.

10)The NameNode marks the block replica as corrupt so it doesn’t direct any
more clients to it or try to copy this replica to another DataNodes.

11)It provides copy of the block another DataNodes which is to be replicated, so
its replication factor is back at the expected level.

12)Once this has happened, the corrupt replica is deleted

Processing Unit:

What is MapReduce, History of MapReduce, How does MapReduce works, Input
files, Input Format types Output Format Types, Text Input Format, Key Value Input
Format, Sequence File Input Format, Input split, Record Reader, MapReduce
overview, Mapper Phase, Reducer Phase, Sort and Shuffle Phase, Importance of
MapReduce, Data Flow, Counters, Combiner Function, Partition Function, Joins,
Map Side Join, Reduce Side Join, MapReduce Web UI, Job Scheduling, Task
Scheduling, Fault Tolerance, Writing MapReduce Application, Driver Class, Mapper
Class, Reducer Class, Serialization, File Based Data Structure, Writing a simple

MapReduce program to Count Number of words, MapReduce Work Flows.

