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AI automation on a budget: Getting started with high 
ROI use cases 
Alternates:  
AI automation on a shoestring: Budgeting and ROI without breaking the bank 
From lab coats to Iron Man suits: Navigating AI projects on a budget 
The true cost of AI agents, beyond the numbers  
The true cost of AI automation: How-to budget and measure ROI 
Your Guide to Building AI Miracles on a Budget 



If your AI project feels like building an Iron Man suit out of scraps—you’re not alone.  Right now, 
everyone wants teams to spin AI miracles out of dust and dreams. But we can’t all be Tony Stark, the 
genius AI wizard.  

 
POV: Your AI team is the poor soul in the lab coat :(  

 

Thankfully, most AI teams aren’t trapped in the desert attempting to create customer support 
chatbots with rusty metal. But with budget constraints, the risks of deploying large language 
models (LLMs), and the technical burden on your stack, producing AI agents can feel like you’re 
fighting for everything you need to succeed.   
 
So let’s take a step back and analyze the costs of building, deploying, and expanding effective 
AI agents. This will not be a listicle on the costs of each line item—although, if you’d like to see 
something like that, let me know. Instead, we’ll be talking about how to approach strategizing 
and budgeting the time and resources necessary to build a sustainable AI operation.  
 
We’ll explore the strategy and costs associated with scaling agents across new use cases, how 
to weigh the cost of tools and technology like GPUs, choosing the right models (and why you 
might be choosing wrong), and how to budget for innovation and experimentation.  
 
If you’re more of an audio-visual learner, we suggest tuning into our webinar on this topic 
(featuring Colin Guilfoyle, VP for Customer Support at Trilogy, who managed to automate over 
60% of their customer support in under two months). Stick around for the full breakdown below.   
 

https://tenor.com/view/obadiah-stane-tony-stark-was-able-to-build-this-in-a-cave-with-a-box-of-scraps-tony-stark-box-of-scraps-iron-man-gif-23963164
https://www.linkedin.com/in/denyslinkov/
https://www.youtube.com/watch?v=k6rnd_SGNQ4


 
 

Starting small before scaling agents and use cases  
Starting with a simple agent is the surefire way to gain traction, before scaling to numerous 
agents and use cases. Because when you try to walk before you crawl or run before you walk, 
you’re going to trip over your own feet.  
 
[Starting a new AI agent? We’ve got you]  
 
But running before you walk isn’t as common an issue for most teams. Most companies struggle 
to move their first AI proof of concept (POC) out of production purgatory—it’s often called the 
cold start problem, named for the difficulty in starting old internal combustion engines when the 
gas is cold. Once the gas is hot, turning the engine on and off is a breeze. Similarly, once teams 
have launched one AI agent, they find it much faster and easier to expand to several agents or 
several use cases.  
 
But you don’t have to take my word for it. Colin Guilfoyle, VP for Customer Support at Trilogy, 
has done it. His team started with one AI build—they call it the Atlas core, very Tony 
Stark-coded—and have used that build to expand to 90 customer support lines that handle AI 
support across products.  
 
In order to scale production to this level and keep all their agents working smoothly once they 
got there, they needed to start with how they organized their team. Because there’s so many 
product lines that require support, their team is made up of code-focused, senior product 
specialists. These directly responsible individuals (DRIs) are given a subset of products to 
analyze each week, including how well the customer support automations and tickets are 
performing. Then, they replicate what goes right and refine what goes wrong—from refining 
knowledge base searches, training models, ticket raising, building the right retrieval-augmented 
generation (RAG), and integrating the right tools to solve specific product issues. They apply 

https://www.voiceflow.com/blog/building-a-virtual-agent-from-scratch-start-here


their best practices to their Atlas core, which they use as a foundation for building and 
expanding to new agents and products, and the process continues.  
 
By effectively dividing and replicating their agents, while continually monitoring and improving 
them, Trilogy is on track to support 65% of their customer inquiries using AI agents. The next 
phase of their expansion includes replacing human support on L2 troubleshooting and 
automating customer changes in the system securely.  
 
[Read more about how Trilogy automated 60% of their customer support in 12 weeks.]  
 
While you may not have the budget to expand your team or want to create 90 agents, Trilogy’s 
approach to iterative improvement and replication is a wise one to consider when weighing 
costs. When it comes to scaling your agent, whether that’s launching more agents or expanding 
your agent’s current capabilities, there’s a lot you can do. Start with your minimal viable product 
(aka your single use case AI agent) and slowly layer in the use cases that expand its 
problem-solving. You’ll know it’s time to add new use cases when you’ve mastered the one 
you’re currently on. In fact, you’ll find the cost of ownership remains quite sustainable if you’ve 
built processes and integrated tools that are growing according to your needs.  
 

 
 
As you scale, you’ll experience savings costs when it comes to human support hours. Trilogy 
reduced their human support hours by 60% after 12 weeks, freeing support staff to focus their 
efforts more efficiently. In the long run, scaling sustainably allows your support needs to grow as 
you do while saving your team the one resource they can’t get back—time.  

https://www.voiceflow.com/blog/automating-60-of-customer-support-for-90-products-in-12-weeks-how-ai-automation-transformed-trilogy
https://www.voiceflow.com/blog/crawl-walk-run-28-tactics-for-evolving-your-ai-agent


“How much should I budget for this?” 
People always ask me this question. And the answer is an unsatisfactory one—it depends. In 
the case of Trilogy, a large-scale enterprise that streamlines operations and support for 
hundreds of clients, they use a variety of tools ranging in cost, including:  
 

●​ Amazon Web Services: For compute, hosting, backups, etc. They also use Lambas, 
the first port of call for tickets, which categorizes the issue and offers a response based 
on a knowledge base 

●​ LLMs:  
○​ OpenAI, to generate responses  
○​ Enki, to cross-check LLM responses and choose the best one. If there isn’t a 

viable answer, Enki kicks the response back up a step to generate a better one 
○​ Anthropic 
○​ Occasionally, Gemini   

●​ Zendesk: for managing and routing tickets 
●​ Voiceflow: to design, produce, and launch AI agents  

 
Large companies with AI support across channels can spend over $100,000 on LLMs, tokens, 
and associated AI costs. Similarly, it can cost up to the same per year on Amazon Web 
Services. And that doesn’t include the cost of engineering a sophisticated support system that 
automatically generates and cross-checks AI responses across 90 agents.  
 
When you’re talking about tooling, people, and time, it’s hard to make estimates about how 
much you should spend on AI agents unless we talk through the minute details of your 
circumstances. (Shameless plug for my colleague Peter Isaacs, who would be stoked to talk 
through your AI automation journey in painstaking detail.)  
 
My advice is to talk to your technology and tooling vendors, ask colleagues in your field, and do 
a lot of research. We’ve also included a RAG cost estimation template for you to forecast costs 
for your next project.  
 
To get you started in your research, here are a few examples of tools you might run into while 
growing in your AI maturity, and how those costs might add up.  

Estimated budget for tools and technology:   
 
Remember when we said this wouldn't be a listicle filled with numbers? Well, we couldn’t resist 
giving you a little extra. Below, this chart shows some of the technology and tools you can use 
at each stage of your AI maturity, and what you can expect to budget for each. Keep in mind 
that if one technology or tool works for you in the crawl stage, you should try scaling that tool as 
you grow (before adding a new one to your tech stack). 
 

https://www.linkedin.com/in/isaacspeter
http://voiceflow.com/demo
http://voiceflow.com/demo
https://docs.google.com/spreadsheets/d/1Vh6NI7Ssy4aILW6O044cYDcEgrUweZHR/edit?gid=334590458#gid=334590458


Stage of AI maturity Technology  Estimated budget Tools  Estimated budget 

Crawl RAG  CustomGPT 
GPT Builder  
Microsoft Copilot 
OpenAI Assistants API 

 

 Context Windows    

 Memory    

Walk You may use the technology in 
the crawl stage, and include:  
 
Knowledge Base  

 You may use the tools in the crawl 
stage, and include: 
  
LangChain 
Voiceflow 
Dialogflow 
Rasa 

 

Run You may use the technology in 
the crawl and walk stage, and 
include:  
 
API Calls 

 You may use the tools in the crawl and 
walk stage, and include: 
 
IBM Watson 
Kore.AI 

 

 
 
 

5 tips for choosing your LLM models (spoiler: versions are 
underrated) 
The number of LLMs available has exploded in the last year. The influx of choices brings 
questions about which ones you should be using based on your use cases. There are five 
things you can do right now to understand models and choose the right ones.  
 

1.​ Rely on RAG: Build a robust knowledge base and use RAG to pull that information into 
your LLM when it’s generating responses. This enhances the effectiveness of your LLM 
by providing useful context for your responses from your datasets, documentation, and 
FAQs. Don’t underestimate how powerful RAG can be. The more context your AI agent 
has, the fewer LLM calls it needs to generate a relevant response, the more 
cost-effective your agent can be.  

2.​ Model versions matter: Many people complain about OpenAI’s GPT, claiming that it’s 
getting worse with each new version—but it’s unlikely OpenAI is releasing worse 
versions of their flagship product. What’s happening is that the newest version no longer 
works for your particular use case. Don’t trust the AI leaderboard. Spend time on prompt 
engineering. Do multiple tests before you land on the model and version for your use 

https://en.wikipedia.org/wiki/Large_language_model#List
https://www.voiceflow.com/blog/the-ai-wild-west-why-you-need-a-knowledge-base-for-your-ai-agents


case. For many projects, using an older LLM version will offer results on par with the 
newest version and be more budget-friendly.  

3.​ Use models to cross-check responses: As previously mentioned, Trilogy layers their 
LLMs atop one another. This tiered approach would begin with your agent using an NLU 
to match your user's response to an intent you’ve already mapped, like collecting 
account information or surfacing a help link. If your agent can’t find a match, it moves 
down the order priority and uses RAG to search your knowledge base and find sections 
of documents you’ve uploaded that have the closest semantic similarity. If it finds a 
match, it’ll use your LLM to generate an answer to address your user’s intent. Then 
cross-check that response with a different LLM, generating two responses and choosing 
the best one. This process has multiple benefits, including better quality control, more 
accurate AI responses, reduction in hallucinations, more concise responses, and 
improved data collection. 

4.​ Test different models for different use cases: Using a tiered approach can also help 
you test which models work best for your use cases. If you find that one model 
consistently “wins” at the quality control cross-check, it might be worth investing in that 
LLM over the other. For classification tasks, some use cases are better suited to GPT-4, 
but Haiku, one of the cheapest models, also performs well and should not be 
discounted. The newest version of Claude may not work as well for your support tasks 
as the previous one. The key is to test, evaluate, and iterate as you work with different 
models and versions. 

5.​ Weigh the cost of prompt engineering vs. upgrading your model: This is where 
teams need to make decisions on accuracy, development costs, and runtime costs. You 
can put a massive context window into GPT-4 or Claude Sonnet 3.5 and you'd be 
spending a couple of dollars per interaction. You could also use smaller models but 
you’d need a way to measure the tradeoff—the cost of running the model compared to 
the business gains of increased latency. This is where having good evaluations is 
important. Improving the prompts also takes time for both the prompt engineering and 
surrounding systems. You have to make a large number of LLM calls to actually see a 
return on investment. You have to weigh how much time that prompt engineering and 
evaluation is worth. You might increase your LLM costs by upgrading your LLM, but that 
might be worth it if you’ve already optimized your prompts. 

 
 
Choosing the right LLMs requires thoughtful intention. Use RAG to provide context, making 
whichever LLM you choose more efficient and cost-effective. Different model versions work 
better for different tasks, so don’t be afraid to use older versions and cross-check responses to 
ensure quality and accuracy. You should be balancing the costs of prompt engineering against 
your models to help you achieve the best performance within your budget. 

 

To GPU or not to GPU? That is the question.   

https://www.voiceflow.com/blog/layers-ai-assistant-llms
https://www.voiceflow.com/blog/layers-ai-assistant-llms


A graphics processing unit (or GPU) has made the modern world of AI possible. Compared to 
CPUs, GPUs have many smaller processing cores designed to work in parallel. As a result, 
LLMs and other Gen AI models use GPUs to perform massive mathematical and operational 
tasks quickly and simultaneously. Today, enterprise, consumer-grade GPUs serve multiple uses, 
from model building and low-level testing to deep learning operations, like biometric recognition.  
 
We won’t go into all of the GPUs out there, because there are a bunch. But they are typically 
divided into three categories useful for enterprise:  
 

1.​ Consumer-grade GPUs: Typically sold for gaming, but have been used for local model 
training and deployment, particularly open source models.  

2.​ Cloud-based GPUs: Many cloud providers let you rent GPUs ranging from entry-level 
(T4s) to state-of-the-art clusters (H100s). A great place to get started when 
experimenting, training, or running models.  

3.​ Datacenter GPU clusters: For larger companies, procuring your own GPU cluster or 
server becomes an option. These can be just the hardware installed in a data center or 
platform offering to get started faster.  

 
The question is, do you need one? GPUs are expensive resources. For many, using proprietary 
models and a serverless approach gets them far enough in their AI journey to solve for most 
use cases. But for the folks interested in AI innovation and playing with bigger, faster, complex 
AI projects, a GPU has been a critical asset, leading to some supply challenges.   
 
Choosing the right hardware for a use case is essential. It’s overkill to build a cluster of H100 
GPUs to run a seven billion model inference. It takes a lot of engineering hours to host a model, 
optimize inference, batch queries, and put up guardrails to make it run efficiently. Instead of 
investing in a GPU—and spending months installing and deploying models-—my advice is to 
leave it to platforms until use cases and costs are better defined. When you’re building a 
large-scale AI operation, hiring a team to run innovation makes sense. But for most use cases, 
avoid the complexity and use CPUs and smaller models more often. Bigger isn’t always better.  

Add research, eval-driven development, and experimentation to 
your budget 
The conversation around AI seems to center around avoiding risk and not getting left behind. It’s 
a pretty negative approach to an exciting and novel technology, and that affects how we 
evaluate the value of AI and budget for it. But a budget represents more than just money, it 
represents time, effort, and strategic thinking. Instead of thinking about all the ways things can 
go wrong, invite your teams (and even your leaders) to budget for: 
 

●​ Keeping up with AI: Budget the time necessary for your team to understand the AI 
landscape. Colin’s team at Trilogy spends two hours a week on Twitter, LinkedIn, and 
Reddit, learning, engaging with new information, and expanding their AI knowledge. 
Because of this, they’re proactive about addressing new use cases and experimenting 

https://theconversation.com/what-is-a-gpu-an-expert-explains-the-chips-powering-the-ai-boom-and-why-theyre-worth-trillions-224637
https://theconversation.com/what-is-a-gpu-an-expert-explains-the-chips-powering-the-ai-boom-and-why-theyre-worth-trillions-224637
https://github.com/XiongjieDai/GPU-Benchmarks-on-LLM-Inference


with tools. When executives come to them with requests, they’re ready to respond, either 
with a plan to adopt new ideas or an explanation of their previous experiments. 
Budgeting time for AI makes their team more productive, knowledgeable, and adaptable 
to change.  

●​ Evaluation-driven development: AI projects aren’t always clear on returns, but that 
hasn’t stopped every company under the sun from adopting some form of AI technology. 
So, if we’ve already accepted that, it would serve us to evaluate the ROI of AI 
accordingly. Budget your engineering prowess behind evaluation-driven development 
(EDD), a methodology for guiding the development of LLM-backed projects using a set 
of task-specific evaluations, like expected prompts, contexts, and outputs as references. 
These evaluations guide prompt engineering, model selection, and fine-tuning to help 
you quickly measure improvements or regressions as your project changes. Don’t just 
measure how many tickets you automate. Determine what parameters you’d evaluate 
success in, and work backwards.  

●​ Experimentation and known problems: Finally, you need a budget to experiment and 
roll out new tools, tech, and use cases. There needs to be support from leadership for 
this. AI moves quickly and if your AI team is keeping up with the changes, they’ll also 
need a budget to experiment and react to those changes. On the other hand, don’t let 
shiny new tools and ideas have you too focused on problems under the streetlight 
instead of known issues AI could solve.  

 
It’s not too late to invest in the time, evaluation, and experimentation you need to succeed with 
AI. The most important problems aren’t the easiest ones to solve, but an organization that is 
forward-thinking about AI will see ROI faster than a reactive one.  

Let’s build Iron Man-level AI on a start-up budget  

Remember, you don't need to be Tony Stark to achieve results with AI. By starting small and 
scaling up, carefully budgeting for tools and technology, and prioritizing continuous learning and 
experimentation, you can make the most of your budget, no matter the size. 

 
 
 
 
 
 
 
 
 
 
 
 

https://levelup.gitconnected.com/evaluation-driven-development-the-swiss-army-knife-for-rag-pipelines-dba24218d47e
https://en.wikipedia.org/wiki/Streetlight_effect
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What is a GPU? 
GPUs were originally designed primarily to quickly generate and display complex 3D scenes 
and objects, such as those involved in video games and computer-aided design software. 
Modern GPUs also handle tasks such as decompressing video streams. 
The “brain” of most computers is a chip called a central processing unit (CPU). CPUs can be 
used to generate graphical scenes and decompress videos, but they are typically far slower and 
less efficient on these tasks compared to GPUs. CPUs are better suited for general computation 
tasks, such as word processing and browsing web pages. 

How are GPUs different from CPUs? 
A typical modern CPU is made up of between 8 and 16 “cores”, each of which can process 
complex tasks in a sequential manner. 
GPUs, on the other hand, have thousands of relatively small cores, which are designed to all 
work at the same time (“in parallel”) to achieve fast overall processing. This makes them well 
suited for tasks that require a large number of simple operations which can be done at the same 
time, rather than one after another. 

 
Read more: Demand for computer chips fuelled by AI could reshape global politics and security 

 
Traditional GPUs come in two main flavours. 
First, there are standalone chips, which often come in add-on cards for large desktop 
computers. Second are GPUs combined with a CPU in the same chip package, which are often 
found in laptops and game consoles such as the PlayStation 5. In both cases, the CPU controls 
what the GPU does. 

Why are GPUs so useful for AI? 
It turns out GPUs can be repurposed to do more than generate graphical scenes. 
Many of the machine learning techniques behind artificial intelligence (AI), such as deep neural 
networks, rely heavily on various forms of “matrix multiplication”. 
This is a mathematical operation where very large sets of numbers are multiplied and summed 
together. These operations are well suited to parallel processing, and hence can be performed 
very quickly by GPUs. 

https://en.wikipedia.org/wiki/Computer-aided_design
https://en.wikipedia.org/wiki/Video_codec
https://en.wikipedia.org/wiki/Multi-core_processor
https://theconversation.com/demand-for-computer-chips-fuelled-by-ai-could-reshape-global-politics-and-security-224438
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Deep_learning
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GPU Technology Options for Deep Learning 
When incorporating GPUs into your deep learning implementations, there are a variety of 
options, although NVIDIA dominates the market. Within these options, you can choose from 
consumer-grade GPUs, data center GPUs, and managed workstations. 

Consumer-Grade GPUs 
Consumer GPUs are not appropriate for large-scale deep learning projects, but can offer an 
entry point for implementations. These GPUs enable you to supplement existing systems 
cheaply and can be useful for model building or low-level testing. 

●​ NVIDIA Titan V—depending on the edition, this GPU provides between 12GB and 32GB 
of memory and between 110 and 125 teraflops of performance. It includes Tensor Cores 
and uses NVIDIA’s Volta technology. 

●​ NVIDIA Titan RTX—provides 24GB memory and 130 teraflops of performance. It 
includes Tensor and RT Core technologies and is based on NVIDIA’s Turing GPU 
architecture. 

●​ NVIDIA GeForce RTX 2080 Ti—provides 11Gb memory and 120 teraflops of 
performance. It is designed for gaming enthusiasts rather than professional use and is 
also based on NVIDIA’s Turing GPU architecture. 

Data Center GPUs 
Data center GPUs are the standard for production deep learning implementations. These GPUs 
are designed for large-scale projects and can provide enterprise-grade performance. 

●​ NVIDIA A100—provides 40GB memory and 624 teraflops of performance. It is designed 
for HPC, data analytics, and machine learning and includes multi-instance GPU (MIG) 
technology for massive scaling. 

●​ NVIDIA v100—provides up to 32Gb memory and 149 teraflops of performance. It is 
based on NVIDIA Volta technology and was designed for high performance computing 
(HPC), machine learning, and deep learning. 

●​ NVIDIA Tesla P100—provides 16GB memory and 21 teraflops performance. It is 
designed for HPC and machine learning and is based on the Pascal architecture. 

●​ NVIDIA Tesla K80—provides up to 24GB memory and 8.73 teraflops of performance. It 
is designed for data analytics and scientific computing and is based on the Kepler 
architecture. 

●​ Google tensor processing units (TPUs)—while Google TPUs are not GPUs, they provide 
an alternative to NVIDIA GPUs which are commonly used for deep learning workloads. 
TPUs are cloud-based or chip-based application-specific integrated circuits (ASIC) 
designed for deep learning workloads. TPUs were developed specifically for the Google 

https://theconversation.com/what-is-a-gpu-an-expert-explains-the-chips-powering-the-ai-boom-and-why-theyre-worth-trillions-224637
https://theconversation.com/what-is-a-gpu-an-expert-explains-the-chips-powering-the-ai-boom-and-why-theyre-worth-trillions-224637


Cloud Platform and for use with TensorFlow. Each provides 128GB memory and 420 
teraflops of performance. 

DGX Servers 
NVIDIA DGX servers are enterprise-grade, full-stack solutions. These systems are designed 
specifically for machine learning and deep learning operations. Systems are plug-n-play, and 
you can deploy on bare metal servers or in containers. 

●​ DGX-1—provides two Intel Xeon CPUs and up to eight V100 Tensor Cores, each with 
32GB memory. It is based on the Ubuntu Linux Host OS. DGX-1 includes the CUDA 
toolkit, NVIDIA’s Deep Learning SDK, the Docker Engine Utility, and the DIGITS deep 
learning training application. 

●​ DGX-2—provides two Xeon Platinum CPUs and 16 V100 Tensor Core GPUs, each with 
32GB memory. It provides significant scalability and parallelism and is based on the 
NVSwitch networking fabric for 195x faster training than the DGX-1. 

●​ DGX A100—provides two 64-core AMD CPUs and eight A100 GPUs, each with 320GB 
memory for five petaflops of performance. It is designed for machine learning training, 
inference, and analytics and is fully-optimized for CUDA-X. You can combine multiple 
DGX A100 units to create a super cluster. 

Learn more in our guide to NVIDIA deep learning GPU, which explains how to choose the right 
GPU for your deep learning projects. 

Top Metrics for Evaluating Your Deep Learning GPU Performance 
GPUs are expensive resources that you need to optimize for a sustainable ROI. However, many 
deep learning projects utilize only 10-30% of their GPU resources, often due to inefficient 
allocation. To ensure that you are using your GPU investments efficiently, you should monitor 
and apply the following metrics. 
GPU utilization 
GPU utilization metrics measure the percentage of time your GPU kernels are running (i.e. your 
GPU utilization). You can use these metrics to determine your GPU capacity requirements and 
identify bottlenecks in your pipelines. You can access this metric with NVIDIA’s system 
management interface (NVIDIA-smi). 
If you find that you are underusing resources, you may be able to distribute processes more 
effectively. In contrast, maximum utilization means you may benefit from adding GPUs to your 
operations. 
GPU memory access and usage 
GPU memory access and usage metrics measure the percentage of time that a GPU’s memory 
controller is in use. This includes both read and write operations. You can use these metrics to 
optimize the batch size for your training and gauge the efficiency of your deep learning program. 
You can access a comprehensive list of memory metrics through the NVIDIA-smi. 
Power usage and temperatures 
Power usage and temperature metrics enable you to measure how hard your system is working 
and can help you predict and control power consumption. These metrics are typically measured 
at the power supply unit and include resources used by compute and memory units, and cooling 

https://developer.nvidia.com/nvidia-system-management-interface


elements. These metrics are important because excessive temperatures can cause thermal 
throttling, which slows compute processes, or damage hardware. 
Time to solution 
Time to solution is a holistic metric that lets you define a desired accuracy level, and see how 
long it takes you to train your model to reach that level of accuracy. That training time will be 
different for different GPUs, depending on the model, distribution strategy and dataset you are 
running. Once you choose a GPU setup, you can use a time to solution measurement to tune 
batch sizes or leverage mixed-precision optimization, to improve performance. 
 

https://www.run.ai/guides/gpu-deep-learning 
 

ROI for Your AI: Budgeting, Costing, and Measuring 
AI Automation 
 
https://youtu.be/k6rnd_SGNQ4?feature=shared 
 
Denys: 
Hey, it's Denys from Voiceflow. In case you missed it, we have the recording for ROI for Your AI 
with myself, Chip and Colin. Hope you enjoy, and let's dive into it. 
So thank you everybody for joining. I'm Denys, I lead our machine learning team here at 
Voiceflow. I've been with the company for the past three years, so I have seen the adventures of 
GenAI unfold. Excited to welcome Chip and Colin to our panel today. I'll hand it over first to 
Chip, and then to Colin, to introduce themselves. 
 
Chip: 
Hi, my name is Chip. I'm VP of AI and Open Source at Voltron Data. So we work on building 
GPU native query engines and we also contribute to a lot of open source project including 
Apache Arrow, Ibis and Substrait. Very excited to be here today. 
 
Colin: 
My name's Colin Guilfoyle. I'm the SVP of customer service in Trilogy, which is a private equity 
company. We have about 90 products under our management, and so I manage the CS team 
providing CS services on those 90 products, and then some other AI stuff as well as we've kind 
of gotten more into being AI first as a company. 
 
Denys: 
Thank you for introducing yourselves. Let's check out who's here. So we had some intros in the 
chat here, but we also have some pretty interesting companies and sectors joining us or 
attendees from these companies. So I think this just shows how much people think about the 
cost of AI budgeting and ROI. We have healthcare, banking, core tech, insurance, telecom, so a 

https://youtu.be/k6rnd_SGNQ4?feature=shared


lot of really, really interesting conversations I think that we'll have today. And we'll try to touch on 
examples from different industries. 
So for our agenda today, we'll go through four key pillars here. In the pillars, we have our... We'll 
talk about the first project and experimentation, how to get started with GenAI and budget that 
first project. Then we'll focus on the growth side, so growth in hiring. Then we saw quite a few 
questions from the group about model choices in RAG. We'll finish off with the budgeting side on 
hardware, so compute and GPU and finally rounded up with some big takeaways. 
So for these kinds of events, we love to make sure that we cover the topics you're interested in. 
So quite a few list of interesting topics here that the group has submitted. We put those out 
under these different categories and we'll make sure to touch upon each of them. So to get 
started with the first project component here, maybe I'll pass it over to Colin to get started. So 
maybe talk a little bit about your first GenAI project that you worked on and managed and tell us 
a little bit about that. 
 
Colin: 
Sure. So we in Trilogy went with AI fairly early on, but the first major project that went to 
production was actually with yourselves. Because we manage 90 products and we're trying to 
be kind of standardized, but at the same time to do a first initial concept, we picked one of our 
carrier product, which is a firewall, and we decided to transition from the provider we had, which 
was Forethought, which was just a kind of fairly basic AI assisted knowledge based search, and 
we went to trying to actually replace agents and time on tickets and fully resolve tickets within 
chat. And we did that via Voiceflow. We are big on data and we had a lot of information there, so 
we took the tickets for the last chat and tickets for the last I think three months, aggregated out 
what the commonalities were, and basically once we were able to address 30% of the tickets 
fully by AI, we went live. 
Ironically, the first intended one was to use it for voice, but we very quickly pivoted and deployed 
it via chat. And we only recently actually had deployed voice because the chat kept us so busy. 
But yeah, that was kind of the first project. It was strange. We tend to deploy very quickly and 
then iterate even quicker. We found that no amount of testing of an AI in a local environment 
was kind of enough. We had to actually deploy it and get customer interactions because it was 
only then, as with anything, that you actually saw what people were doing and what they were 
interacting. 
We were testing going, "Here's the problem I'd have," and we were being very specific because 
most of us are engineers, so we were like, "Here's the logs, here's the error I'm getting." And 
what happened was when we deployed it in the wild, people would just say computer broke and 
figure out the rest from that. And so it was very much the first project was iterated out, but the 
results were super-fast and kind of found. We deployed I think in three products in the first two 
weeks, and we went to all 90 products within, I think it was two months. 
 
Denys: 
I think that's a pretty interesting metric of trying to get 30% automation before going live. And I 
think a lot of us have felt that in the machine learning space, you have your training data, you 
sort of validate prototype, and then you go live and then what your customers say or what real 
world data looks like is completely different. So I think it's an important journey that all of us face 



and sometimes we forget it. It's almost like you do one project and you hope that next time the 
data will be better, but it's not. So really important item to keep in mind. 
I guess over to you, Chip. You started a company a couple of years ago, sold it, joined Voltron. 
Maybe you can share a little bit about your experience of running a startup project, having this 
idea and how you budgeted and tried to build the startup. So I think there's a lot of people in the 
audience interested about that. 
 
Chip: 
Hey, yeah, so I think I'm pretty lucky that I think I get to see AI application as different level. So 
at one level I do advise a few startups, so I do get to get involved. So of course it is advising, 
sometimes you don't get very hands-on, but sometimes I try to be very hands-on with certain 
projects that I find very interesting. So I get to see them developing this from my prototyping to 
productions, getting feedback. And a couple of the companies that I'm pretty involved with 
actually recently launched their project. And in a way similar to Colin, it seems like I'm 
personally am very interested in beyond just techs. So I see that a lot of people using LLMs for 
text base, but they do think that the future is multimodal. So I'm especially focusing on 
applications when not just the input is multimodal. So for example, on projects that I'm actually 
helping a company with is trying to convert from screenshot to code. So it's quite challenging the 
evaluations. Another, I'm so interested in outputs of this multimodal. 
So for chat, right, you just use a text conversations ability, but if you want to do a 3D, you have 
to do voice, visual, facial expressions, action generations. And this has been a big, big 
challenge because one thing is that not quite a lot of evaluations benchmarks for those. If I look 
for things like role-playing benchmarks, there are a few coming mostly from China. I think that 
China is getting it. I don't know why, but I think on the benchmark I fight on role-playing is from 
China. So I think on the aspect of our application side. The other is I also help a few companies 
putting platforms, like fine-tuning platform. So I do test out a platform for them. So I'm 
experimenting with how to fine-tune a project. And I think it's a budget in case of time, how 
much time we have for this, but also money. Do we have data, how much money we can 
allocate to data creation, how much money to like API calls, and then how much money for 
evaluations because if we do AI as a judge, we can be quite costly as well. So yeah, that's 
where I am. 
 
Denys: 
Yeah, for sure. I think that that cost of trying to estimate how much the project costs for LLMs is 
something that everybody thinks about. Whether you're running evaluation data sets, synthetic 
data generation, something that's really important. We can probably talk about that a little bit 
more in our growth stage since launching the first project, you might just want to pick a cheap 
model, pick Haiku or ChatGPT or Lama, launch that project and then see what works. But I think 
different companies have different risk thresholds. So in Colin's case, automate 30%, let's get 
into production. Other companies want to do a lot more evaluation. So think a lot of great points 
there for getting started. Maybe let's move on to the second component here, talking about the 
growth stage. So transitioning into that growth stage of iterating through products, improving 
your existing ones. 



Within Voiceflow, we try to take this framework into account. We call this the crawl walk, 
run framework. Not super unique, but in the case of conversational AI, conversational 
design, the general idea here is that you want to start with something simple. Start with 
one assistant. In the case of Colin, I think it was three assistants, get that working as a 
minimal viable product and then slowly layer things on and scale. And if you do that right 
at the beginning, you'll actually find that your cost of ownership will remain fairly flat 
because you've built out the patterns, built out the tools to do so. I think that's something 
that's really important. And on the team side, people know how to build an additional 
agent, the best practices. You have playbooks to follow. Very interesting area is once you 
go from zero to one, it's a question of one to five. And even after that, if you have 90 
assistants, I guess managing that is quite different as well. So I guess maybe on that 
business growth topic, heading back to you Colin, how do you manage 90 assistants in 
production? What does that look like? 
 
Colin: 
The way our teams are built, obviously we have the SVP and VP team, and then we have 
what we call our conductor team, which are very code heavy senior project product guys. 
And so we kind of made them what we call DRIs, directly responsible individuals. So we 
gave them each a subset of the products to analyze each week the results coming in. 
Voiceflow and chat is one element of it. At this stage we've kind of stacked a lot on top of 
that. So we just call our system Atlas at this point. And so basically Atlas is a squeeze of 
tooling and automations that allow us to automate both tickets and chat interactions so 
we can reuse both. So with the DRIs, they were working on automations and AI kind of 
training and building the right RAGs and the right tools to allow us to solve more and 
more of that specific products issues. 
And then we have some smaller products as well. All 90 are not massive beasts, some 
are much kind of smaller, maybe end of life products. So for those, we had one DRI who's 
responsible for basically keeping it at a base level that it can do the basics right. The KB 
searches, the [inaudible 00:12:03] detection, the ticket raising, what we call the L2 
troubleshooting. So basically troubleshooting using past tickets as well as knowledge 
base and access to the code and logs. So basically that's how we kind of kept it together. 
We had DRIs that would be responsible for specific subset and then VPs sitting above 
them who would be responsible for groups of those. But we have about... We're kind of 
separated into BU0s. So different types of products go to different BUs. And so the VPs 
would be responsible for maybe two BUs, two use cases, and then the DRIs would be 
responsible underneath them for the individual metrics, making sure everything is being 
worked on. 
I think for us, initially the goal was 30%. I think by the month three we were at 50%. We're 
currently trending towards 65%. Either this week or next week we'll hit our quarterly goal 
a month early, which is nice. But that iterative gain from here is tougher. We got the 
low-hanging fruit with the 30%, we got the slightly higher fruit, I guess it is, for the last 
couple of months. And now it's very, very detailed. We're trying to replace L2 
troubleshooting, which is exceptionally difficult. We're trying to automate making 
changes in the system securely so that when a customer is looking for something to be 



done, that it can be done that way. So yeah, that's kind of how we've grown it. Is to make 
sure there's always somebody iteratively improving it each week and tracking that 
improvement. 
 
Denys: 
That was very detailed. Really appreciate that structure of the team. I think a number of people 
are wondering about that is how do you structure that team. So that EBP, SVP, then BP, by 
business unit, and then every sort of product manager under that responsible for project. I think 
that's a very powerful concept for teams that are scaling and growing. I guess over to you Chip, 
about figuring out how to know when to hire somebody else. So in the case of Colin's org, 
there's people already there, it's a reasonably sized team. In a startup you don't always 
have a lot of money and you want to prioritize things. How do you do that? How do you 
figure- 
 
Chip: 
Hey, so I'm not sure if it's me because there was a little bit of a cutout. So I think my 
understanding is that the question is how do I decide when to hire? I think the question is pretty 
much the same, whether it's AI, not AI, we hire when we realize the lack of this role is causing 
us, it's not having this growth. It's important natural growth. So maybe one question specifically, 
just recently the committee came to me and said, "Hey, should we bring our labeling in-house?" 
Because they had been sourcing the labeling out of house and it's very, very expensive. So it 
was looking like, okay, depending. So it is a question of whether how much labeling needs do 
you have in the futures and also how much time it takes for you to run maps in-house and also 
this return investment for that look like. And also understanding the challenges of building an 
internal labeling in-house. 
So people think of labeling, it's just like, okay, here is a guideline, here's the labeling. But 
especially for a lot of AI, especially from complex stuff, it can be very hard to create a guideline, 
and then hiring qualified people to do that. So it's a lot of operational challenges. So if you want 
to bring that in-house, you have to take on the operational challenge you have to manage and 
hire the team. So yeah, so I think we just hire when it's an issue of talent needed. Also, another 
team, this just came to me, do we want to bring research in-house? I think a lot of AI companies 
want to build their own model. It's like, okay, "We want to build this AI research lab." 
And I usually want people to not have an in-house research team because it's actually very 
expensive to maintain. And I know that a lot of people want to publish papers like it's a 
conferences, but it's quite a lot of work by publishing papers. Actually a discussion we had 
recently, it's like, "Hey, we know this conference is great and internationally we have had a lot of 
success hiring from the conference, so let's try to write a paper and publish in this high profile 
conference and have us hire." But the thing is that you can spend a lot of time writing a paper 
and you don't know for sure that paper wouldn't get accepted. So yes, before we think about 
bringing on hiring researchers, we just need to think about our own. What we want to get out 
from it and what's the cost? 
 
Denys: 



Those are some really great points. I think on the data labeling side, I think yesterday there is a 
tweet about the CTO of Databricks still spending 15 minutes a day labeling data. So that's pretty 
interesting is that the value of having good labeled data is so high that some of the most senior 
folks in companies are still spending time on it, but for a long tail of certain data, there's certainly 
a high operational cost of maintaining that. And at that point it's a question of are your data sets 
worthwhile to create in-house or buy them or pay a company externally to do that? Because for 
specific domain use cases, data can become a bottleneck. Touching on the second part about 
research teams, I think that that's super interesting. I think at the beginning when large language 
models were sort of going more mainstream, the first model came out, Databricks was training 
model, Bloomberg was training models. I think a couple more, JPMC. That was seen as a path 
forward, but a lot of companies right now are just fine-tuning a lot of open source models. 
So I think that that's a good approach and there's a lot more services now that let you do that if 
you have well-labeled data. So I think for a lot of people who are thinking about fine-tuning their 
own models, I think it's a great approach and better than training from scratch, but still a lot of 
challenges there and maybe beyond the scope of this conversation. But really important things 
to think about as you scale and figure out making that decision between your own models and 
external models. 
So I think to wrap up this topic to Colin's earlier point, talking about some of Trilogy's growth. So 
giving that 90 set of product lines and getting that automation up to 60, sounding like 65% now. 
Pretty interesting milestone there, just what's possible. And I think getting that last 20% is going 
to be quite the challenge because people are saying interesting things to your chatbot or to your 
assistant and you need to know how to manage that. I guess Colin going back to you about the 
tools that you're using. So obviously using Voiceflow, but maybe can you break down 
some other tools that you're using and a rough cost estimate per set of tools? 
 
Colin: 
Sure. Costing tools is a bit difficult because I mean we're pretty much in an AWS 
environment and spread... We're a tech company, so we're spread across many different 
pools of resources. In terms of other tools, so Atlas is a core structure, most of it... So 
our ticketing system is Zendesk, that shouldn't be taken as an endorsement for their 
amazing AI abilities. It's just our ticketing system which has an API on it that we use to 
put tickets through. Basically using Lambdas through AWS, we code in based on 
triggers. So for the chat, obviously it comes in via Voiceflow. For tickets themselves, they 
go into a Lambda, which basically its first port of call is what we call Atlas ticket. That 
has a knowledge base of the types of problems that we solve and it has a knowledge 
base of what we need to solve those problems. 
And so what it does first is it categorizes the issue, kind of checks to see if we have 
enough information because again, of those customers just saying computer broken, 
and it iterates through those, gets the information we need from the customer, extracts it, 
and then tries to solve it. And then for solving-wise, we have at the moment basically 
built two L2 troubleshooting bots. One is a kind of chain prompt that is using pass 
tickets, KBAs, log analysis as I said. It goes very, very deep. The L2 bot on that side can 
take anything up to I think 12 minutes to fully go through its process and come back with 



an answer. We have a second L2 bot, which is more streamlined. Again, it has access to 
the tickets and the knowledge base, but it doesn't do much else, but it's quicker. 
And so we pull those two answers together. And then we have another AI who we've 
called Enki, and Enki reads the two L2 submissions, picks which one is better, if neither 
of them are good enough, it then sends it for an agent to work. So everything's based 
around Lambda's, some databases, and basically there's obviously an AI-first database 
in the background with all the ticket information from the past. That's something we 
found was quite a learning curve. So we were always very good at documenting and 
tickets as a process because we're a 24-7 operation, anyone can be picking up a ticket, 
but there was always a lot of information in there that was only necessary for a human 
agent. And so one of the things we've had to do, is spend a lot of time doing, is stripping 
out that information that was really useful for human but is absolutely confusing for an 
AI. 
In our earlier days, it was coming back when an answer that was basically just a 
summary of an internal process that somebody followed to close the ticket, not the 
actual how the ticket was closed. So yeah, from our perspective, we spend easily, I think 
the spend is well over 100K on AWS a year, considerably more I think. And we use 
OpenAI, we use Anthropic, we don't really use Gemini, but it is there, but we would spend 
again, well over 100K on OpenAI alone per year in terms of tokens and stuff. So it's quite 
substantial spend there. We obviously spend a few dollars on Voiceflow as well. And 
other than that, we also have an experimentation budget, which we kind of bring in 
products just to test them. We'll take them for either a year or a couple of months, see if 
they're useful, see if they can do the job. If they can't, we just move on to the next one. 
But that's kind of where the budget mostly goes. I'd say of the two highest things would 
be AWS and OpenAI. 
 
Denys: 
Yeah, thanks for sharing that. I think really important things to call out is that you need multiple 
services to build your solution, especially when you're in production. Things can be quite pricey, 
but even combining all those costs together, there's still obviously some cost savings there. I 
think the problem you brought up in terms of large language models and humans needing 
different information is super interesting. I think we found something similar is that certain pieces 
of context are fairly quote-unquote, "called distracting" to a large language model. I guess Chip, 
you've done a decent amount of human evaluation, LLM evaluation. Have you seen any similar 
kinds of patterns? 
 
Chip: 
When you say human evaluations patterns, like the cost patterns, or what do you mean? 
 
Denys: 
So you had that blog post about the LLM arena evaluations and people picking certain prompts 
versus LLM-based evaluations. Have you seen any similar patterns between how LLMs 
evaluate versus how people evaluate responses? 
 



Chip: 
Yeah, so actually I was about to ask Colin about that. Colin, you mention you have an AI 
to pick out a better response of the two models. One is stronger, one is weaker. Why do 
you need that? 
 
Denys: 
So obviously we have our customers as in the customers of the products, but we also 
have the BU kind of customers as well. And we need to basically prove that what we're 
sending is accurate. So we would always have had a QC model where somebody would 
read it and verify it. And so basically we implemented the same. As well because we have 
two completely different LLM models, as in not models as in just the LLM, but how it 
troubleshoots is completely different. So for our perspective, it's really useful to have 
data as to which one is providing more accurate answers. Ironically, what we found up 
until recently at least, is that the simpler one was giving better answers. And so for us it's 
to focus those DRIs who are responsible for those L2 bots troubleshooting wise, that 
they would make good decisions. 
And as well, for example, as I said, with the data that's in the tickets, if we're getting poor 
quality data in, it would be... So all our products are kind of fairly technical. We're talking 
telco products and stuff that are used by large corporates. So for us to make a mistake 
and send something that might not be great out is not acceptable. So the kind of Enki is 
our last line of defense to make sure that whatever's being sent out is at least useful. 
 
Chip: 
But Enki's AI, so basically you're trusting AI to evaluate and it seems- 
 
Colin: 
Yeah. 
 
Chip: 
... like from... Yeah. Interesting. So in the simple model is better, maybe most of them? 
 
Colin: 
Has been, yeah. I'm not going to put pressure on the guy who is responsible for the more 
complex one. He's getting slightly more correct and it is improving. But from our 
perspective, it was just interesting. We gave it all this extra tooling, it costs a lot more to 
run per iteration and it wasn't delivering that much more. And so it made that we had to 
focus and go, "Okay, why isn't it and how can we fix it?" So that's kind of where it is. 
 
Chip: 
Yeah, so I think using AI to evaluate, I see it's very common nowadays. It's probably the 
fastest growing evaluation method in production. Mostly there's no other way to do it, 
right? I think in LinkedIn recently they have a blog post and they just have humans every 
day annotate a 500, and that is their NordSTAR metrics, to see if their models are 
improving. But other than that, usually you just have to rely on AI. And I see this AI also 



has a lot of biases, so ways that humans do. So one thing is better clearer guidelines. I 
don't think AI judges will work. So I felt like it's seen a lot of problem because AI judges, 
it really point on what model is being used and what promise is being used. And I just 
went through a bunch of public, you have on this type evaluation tools and they provide 
this faithfulness is coherence, and they have the prompts for those. And I went through 
those prompts was just yesterday, and they're all very different and none of them are 
very good. Some of them are extremely verbal. 
So I like, oh my god, if we use this style of prompts, it would cost us a lot of money. So I 
think it's like you just have very clear guideline. If humans disagree on the guideline, I 
don't think AI would go to pick up other. I think they say some weird things. For example, 
they say, oh, AI is very bad at numerical scores. So say that people have somehow 
conversion like okay, one, two, three, four, five, it's using the guy's score that AI can do 
reasonably well, but AI has been empirically been pretty bad continuous score. Maybe 
when you ask, hey, between zero and one to output the value, it's pretty bad at that. 
So actually I saw [inaudible 00:28:30] example. When it says like, hey, you can ask AI to 
put the confidence score. And I was like, huh, why is [inaudible 00:28:38] showing the 
example? Because [inaudible 00:28:41] AI it is not good at outputting from zero to one. 
So I don't know. So maybe there's some special... If people have tried that, I would love to 
see if people have found consistent numerical scores from AI. There's some different 
kind of biases where human's judges and AI judges have shown to be different. So for 
example, humans have a residency bias, so we remember what is last. We tend to give it 
high score, but we have felt that AI tend to prefer the first, what was the first option is 
usually get the highest score. 
But at the same time it's been different with Llama 3. Like we have found the Llama 3 
information with the bottom somehow. I think it just saw someone tweet like last week, 
so I haven't validate it yet. So it seems like it could change with the models as well, like 
residency bias, the top of the bottom of the prompts is taken into account more. So I 
think AI suggestion is a very interesting approach and still a lot of work to be done to 
understand how to use well. 
 
Denys: 
Yeah, a lot of great insights there and details. I think bringing that back to the ROI side, I 
think it's really important for people to understand what's your budget per evaluation, 
because you can put a massive context window into GPT-4 or Claude Opus, or one of the 
expensive and powerful models, and you'd be spending a couple of dollars per 
interaction, which isn't ideal. I think this is a really important topic to be aware of, is that 
improving your prompt might improve performance by some cases 1%, some cases five, 
some cases 10, sometimes negative. At Voiceflow we've done some research on that. But 
sometimes it works. 
I think I was reading about there was a medical benchmark data set and some folks used 
DSPY to optimize a prompt. DSPY is a framework for optimizing generating prompts and 
they found that a 6,000 token prompt was most effective, but that would be very 
expensive for some of these models. So really important to figure out how you're 
evaluating your models, which models you're using, how big are your prompts, how 



many examples are you using? It's I think an active area of research and applied 
research and something that we'll continue to see. But from a business perspective, I 
think just knowing to ask that question is what is one percentage point of accuracy 
worth? And it'll definitely depend on the use case. 
 
Okay, so this goes nicely into model choice and RAG. So I guess in this area we want to 
focus a little bit about what kind of models have people used before, which ones work for 
different use cases, and maybe talking a little bit about the economics of RAG. So I know 
Colin, Trilogy uses RAG quite consistently. What kind of insights have you found with 
your agents and assistants? 
 
Colin: 
For us, we've had mixed results. How do we split the data out and stuff has been the 
most complex thing to try and at least reliably search. From our perspective, what has 
been clear is it moves and it changes. So we've had really good results from a RAG that 
we built with a model of... For example, we created a RAG on some of our code base and 
then took in some other programming documentations from an engineering side and 
then we were checking to see answers. And for whatever model we used at first, I think it 
would've been one of the four turbos, we got great results, we were getting great 
answers and it very quickly just went off on a tangent and was no longer useful to us. So 
from that perspective, our focus is more on the models than the RAGs that we're using to 
search. At this stage we just kind of take the tickets in as much as we can. 
Once we have an index that we can search, we pull the ticket in as much as we can in full 
so that we have the full context of what we're doing. Model-wise, when Claude 3 came 
out, we found weirdly that the middle model, which I can never remember the name of, 
but basically the most advanced model, it wasn't giving us the information we wanted. It 
was terrible to be honest. Whereas the second, the middle model was actually much 
more robust and giving more accurate answers. So yeah, from us it's still where the 
model is predominantly for turbo, the latest one, and for some of the Atlas ticket work, 
still the classification is easier and better than kind of 3.5, the lower models. It seems to 
be more accurate. It's not as creative, which maybe is what you need at that stage of the 
puzzle. So oftentimes it'll be different models called along the process. But yeah, from 
our perspective, for the most part we'll just use whatever's the newest and move with it 
because generally speaking it will give better results. 
 
Denys: 
It's actually very interesting to hear. So we have Opus is the most expensive Claude 3 
model. 
 
Colin: 
There you go. 
 
Denys: 



Colin's been using Sonnet, which is the middle one and ChatGPT-3.5. I think with some of 
the work I've been doing with classification task with large language models, we've 
actually found that GPT-4 generally is quite good. But there are cases with when 
ChatGPT outperforms it. I think one benchmark I ran, Haiku did the best, which is the 
cheapest model. So very interesting area to continue to figure out and as part of that it 
gets pretty challenging to manage all these models and prompts.  
 
So I think as teams scale, also figuring out how to manage that. I guess Chip on your 
end, models, RAG, what kind of data experiments have you done to figure out what's 
best? 
 
Chip: 
So I think this brings me to questions because I've seen a lot of people complaining, it's 
like, oh hey GPT-4 is getting worse over time and time. And then it's like okay, imagine 
you're OpenAI, would you intentionally put out models that's just worse over time? Of 
course minus this thing about safety alignments, you don't want to process bad 
responses like censorship whatsoever, right? Usually I wonder if this a questions of... 
OpenAI has a lot of different use cases than GPT-4. So maybe once they evaluate they 
just evaluate on a set, I don't know how many tests sets or how many tasks they evaluate 
on and just launch the best model overall. So that means that some of the tasks, the 
model might be really a lot better, but some other tasks, maybe the model is getting 
worse. 
So maybe we hear a lot of people complaining about GPT-4 getting worse could just be 
the people who are on the subset of the tasks, because if a models performing well, we 
pretty don't hear people complaining. So I just think, so maybe this even highlights the 
importance of you just can't just take on the leaderboard or on this reported supposedly 
best models at face value. We just need to do a lot of time evaluating these models. And 
also I see another thing when evaluating models is that sometimes it could just be maybe 
you're just not good at prompt engineering. I've seen for some other use case, I try. For 
some use case I could try for weeks, I still couldn't get really good performance but for 
some I was just like, oh, I'll just change the prompts a little bit, and the performance go 
from unusable to really pretty good. So sometimes I'm not sure when a company says, 
oh this model sucks for us, and we want to know how good are the prompts? How good 
are the data you're fitting into the system? So it's really tricky. 
 
Denys: 
Yeah, for sure. I think it's an ongoing problem I think. Had attendee share their 
experience with Claude as well being quite well and highlighting the importance of 
different syntax as well. So I think that this topic will continue to evolve. As we go 
through, people still figuring out which models are best to use and the challenge again 
there to Colin's point as well, that the versions really matter. So it's not just the model is 
that which version of the model that you're using. 
 



All right, another topic, I think we'll pass this over to you Chip, about compute and GPU. I 
know you've done quite a lot of work on this. One of the products that you were working 
on sort of showcased the importance of using GPU for a lot of big data handling. Maybe 
you can share a little bit about that. And also just for AI use cases, how do you deal with 
GPU costs, how do you estimate them, how do you choose a specific GPU type? It would 
be great to get your insights there. 
 
Chip: 
So yeah, thanks for Denys for showing this. So this is a benchmark that we Voltron Data 
released recently. So basically it showed that at a certain data scale when you move from 
Spark to TCS, so Spark here would run on CPU and TCS would run on GPU. We can see 
this the cost and the runtime both significantly lower. So I think it's one of one things 
about GPUs is that I think GPUs are just going to be here to stay. I don't think that go 
back to less powerful computers. Historically I have never seen that happen. So a lot of 
people today use GPUs for training and inference, but I also see this a big category of 
workloads, people are just not using GPU for, which is data processing like ETL work. 
And up until very recently there was a huge GPU shortage and some people was like, 
okay, "We don't have any GPUs for training inference. Who has GPUs for doing other 
stuff?" 
But I'm not sure how people here think about it. But I think that might change or it's 
already changing. I'm not sure anyone here has tried to acquire a lot of GPUs recently. I 
think it's pretty funny in the last couple of years you can see startups, Pagedeck, literally 
is a competitive advantage. It's just like they have access to GPUs. And I think I was 
talking with the VCs recently and they were asking me what point do you think that 
having access to GPU would stop being a competitive advantage? I feel like coming from 
Nvidia, I'm very bullish on GPUs, but I do also think that the production of GPUs is also 
pretty fast, ramping up pretty fast. So I don't think access to GPUs is going to be as 
much of a problem that it was maybe in just a year ago. We see a lot of people providing 
GPUs for cheap. Anyway. Sorry, what's the question? 
 
Denys: 
Just talking about choosing a right GPU for a use case. Does it even make sense to use a 
GPU? When does it make sense? Or should people keep calling proprietary models and 
sort of using a serverless approach there? 
 
Chip: 
I think it's like GPUs, I think it really depends on what models you run. If it's smaller 
models, you have a lot of options. So I think the idea is very important is what people call 
a hardware luxury. So some models get popular not just because the models, because 
they fit the hardware and hardware GPU today use 16 gigabyte of RAM, 24 gigabyte of 
RAM, like 80 gigabyte of RAM. You can see that the model size in the both parameters 
just making just enough to run on certain hardware. So I think smaller model you have a 
lot of choices, but you have bigger model, you just need to shower money for bigger 
machines. And one question people usually ask that I hear a lot is like if you're training 



and I hear that, but inference, is there any point to get much more powerful machines to 
run inference? 
For example, H-100, right? People say okay, it's probably an overkill to use H-100 to run a 
certain 7 billion model inference. But so it really depends on how good can you at 
optimizing the model inference, can you batch queries? I don't think it makes sense you 
just use a H-100 and just serve one query at a time, but you can batch queries. And if you 
can do it more efficiently then maybe it's worth it to go with bigger models. So I think it's 
another point of people ask, "Hey, should I host model or shouldn't use an inference 
service?" It's just a lot of work getting into hosting a model and optimize inference 
service, getting it in streaming, batching, doing guardrails or yeah, it's just a lot of work 
like making inference service run efficiently. So maybe that could be something some 
teams should keep in mind if they think about hosting their own models. 
 
Denys: 
Yeah, for sure. I think there's a few questions about that and people often forget about 
how much it costs to pay people. So if you have an engineer working on optimizing a 
model, that'll cost you at least $1,000 a day probably if you're in the U.S. And the 
question is how many API requests can you deal with that? I think my perspective on the 
topic is generally try to use a third party hosted solution.0 It's somebody's business that 
they focus on. Right now the rates are pretty cheap actually. They've fallen I think over 
600 times since GPT-3 was out with that initial rate. So for most scales, I think third party 
makes sense. If you get to a certain scale, then hiring your own team and running it will 
probably start to make sense. But for most people in the room and the use cases we're 
talking about, try to avoid that complexity. 
And if you do want to run your models many times, you can use smaller models. 
Something we do at a Voiceflow and we actually run them on CPUs. So yeah, not always 
necessary to get the biggest in Chinese GPUs.  
 
Yeah, third party APIs do quite well. So have around 12 minutes remaining. So maybe from 
each of our speakers, maybe just a summary, something you want the audience to take away 
and then we'll dive into Q&A. I'll start off with Colin. Sort of on this topic of budgeting, AI costs, et 
cetera, what's a word of wisdom you'd give to our audience? 
 
Colin: 
On budgeting? For us the important thing has been having a budget to just test and roll out. So 
to actually have something where we can... And we're lucky I suppose, the atmosphere in 
Trilogy has been from the very start AI first. So we have a lot of backup from those on high and 
those who kind of approve budgets, that we need to be spending and investing in AI. And what 
we've found kind of twofold, one, we invest in the actual people who work here. So everybody is 
obliged almost to spend two and a half hours a week minimum on Twitter, on LinkedIn, on 
Reddit, learning and evaluating, kind of upscaling in AI. And we found that that has been 
immensely helpful and that has a budgeting impact. Obviously that's like two and a half hours 
they're not working tickets. And when I say working tickets, that's just for the L1's and L2's. This 
is all the way up the top where I'm the same, everybody above me is the same. 



So I think actually investing a bit of time and making sure that the people are kind of getting up 
to speed in AI and adapting to it and then having a budget to, as I said, to experiment. So as I've 
said already at the start, we use Voiceflow. It's probably one of the reasons I'm here. We 
deployed it, but we still evaluate competitors to Voiceflow pretty much every other week. 
For two reasons. One, to see what's out there and maybe push yourself or Derek an email and 
go, "Why doesn't yours do this?" Or because we know we're going to get questioned on it from 
up high. So in other words, oftentimes we'll get a message saying, "Hey, I saw this on Twitter." I 
can give an example I suppose. We get a lot of posts like Intercom, "Why are you using 
Zendesk when you could be using Intercom?" And we are able to say, "Well actually we've 
evaluated it, we can give you a long list of reasons why we don't use it." And so having that 
ability, that kind of scope there to go out, experiment, buy new software if we need it or rent it or 
whatever, but just to be able to push each time and test. So from our perspective, it's having an 
experimentation budget and having a budget to actually let our guys get up to speed and the 
time to get up to speed. 
 
Chip: 
I think AI is interesting. As instance, a lot of company I've seen that's enterprise that don't want 
to invest in things unless it knows their returns. But sometimes for emerging technologies, 
maybe the returns is not quite clear. And sometimes if it's a forced enterprise, companies just 
take a little bit more risk, be willing to. Because another risk, actually an interesting thing that I 
saw, I'm not sure which company did that research, but 7% of companies chose AI because 
there was existential risk because they believe if they don't choose AI, they're going to die 
because they're going to be replaced by another company that uses AI. So I do think that, yeah, 
it's not quite clear the returns, but sometimes it just need to make some judgment on whether 
it's worth investing in. Also, what people call is evaluations-driven development. 
So in software engineering we have a test-driven development, right? When you write the test 
cases first before you write a code, and I think that for AI applications we just need to do the 
same. Sometimes you just need to write evaluation first before even I try to develop the 
applications. So for example, I just need to start with like, "Hey, what is a good response is 
going to look like? What is a bad response look like?" Be very clear on what it is and what 
success look like. For example, people call it maybe the number of tickets you can automate, 
but what success could look like from the beginning before we go in. 
But also keep in mind is that is a sort of story of searching for the key there's a lamppost, right? 
Because we see that somebody lost a key and they search under the lamppost because it's just 
this light there. So I do think like ROI focus development is very similar sometimes with 
development applications, not because it maybe the most impactful but just because it's the 
easiest one for us to measure ROI, and which means that we are just missing out on potentially 
an application it can be very impactful in data life. We just can't have a clear way to evaluate 
returns from the beginning. 
 
Denys: 
For sure. A lot of great stuff there. We'll definitely agree with both of you. Chip, I definitely agree, 
enterprises should be willing to take on that little bit of risk there, have some budget to play 
around and also think about what the most important problem is, even though it's not always the 



easiest one to solve. And Colin, 100% agree, need to continuously evaluate things. I think even 
internally for us, when we're using vendors or thinking about our own product, thinking are we 
solving problems the best? And I think right now is a great time to shake things up in the 
industry as sort of these cool new models are coming out, technologies are coming out, always 
being willing to evaluate new tools and I think if you as a company have a great product and 
have a great relationship in being responsive and adding features, you'd be happy for your 
customers to do that. 
 
So when we're working with Colin and his team, it is great to see him constantly pushing and 
asking those kinds of questions because it forces the product to be better. So I think that's a 
really great mindset, really great way to build a good user experience. 
So we have five minutes left. Just wanted to wrap up on some Q&A. I think we've answered 
most of the questions here. Jean or Jean asked about the inflection point about using your own 
model versus third-party API. I think that inflection point is pretty far along. At Voiceflow we also 
have a similar budget for large language models sort of in the tens of thousands. For that it's still 
not worth it to run our own models. So it's pretty expensive. It takes up time. So I think definitely 
more than that. Question about the resolution chart for the Trilogy use case. Let's go back to 
that. Right here. The horizontal axis is time here. So from week one to 19 and then the Y-axis is 
that resolution rate. 
 
Colin: 
Yeah, and just to clarify, that's resolution 100% by AI. We also have AI assisted or Copilot, but 
we don't track that in this chart. 
 
Denys: 
Yeah, yeah, great addition there. Thanks for the detail, Colin. Other item there? Okay, another 
question about local hosting versus compute. All right, so we have a few minutes left. I think the 
last thing for us to mention here for this event is that we will be sending out a spreadsheet to 
everybody based on this event. The spreadsheet will be based on cost estimations for RAG. 
One of the topics we talked about. Cost of using different models, getting into those use cases. 
So we do want to leave you with a small tangible item to talk about. So we're going to send that 
link. It's going to be a Google sheet. You can copy it, play around with it. If you have any 
questions, reach out to myself or the Voiceflow team, we can walk you through it, go through a 
session. 
But otherwise, really appreciate everybody joining us here today. Big thank you to the panelists. 
Thank you Chip and Colin, really appreciated that discussion. Talking about business, talking 
about tech, diving into the details. It's been a great session and thank you everybody for joining 
and asking your questions. We're really interested to hear how this topic continues to evolve. So 
keep in touch and keep asking those good questions about ROI and budgeting. So thank you 
everybody, and we'll see you on our next panel. 
 
 

 



15 KPIs for Measuring and Scaling a 
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Denys Linkov 
Expectations for AI transformation plans are immense, with 58% of CEOs expecting product 

improvements in the next 12 months. Balancing this short term POC pressure with a 5 year AI 

strategy is challenging. 

There are several paths to a first POC, and the leaders that prioritize a well-built first experience 

with a clear path to scaling to other use cases will create competitive advantage in this AI 

automation race. 

In this report, we’ll share key milestones, frameworks, and KPIs that will help you align teams to 

deliver AI solutions. This journey starts with an initial bespoke use-case leading to a mature 

iterative product development organization. 

 

Initial AI journey and Proof of Concept 
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https://www.voiceflow.com/contributors/denys-linkov


 
Your initial AI project should be about clearing the list of unknowns. It’s essential to iterate on 

ideas and demos to create a first implementation. This work falls into three buckets - team 

coordination, delivery speed and user iteration speed. 

As a leader, your core objective is to unblock teams and provide a space to iterate and improve 

AI products. Each of these objectives should come with their own key performance indicators to 

track and measure time until delivery. 

Leaders need to structure a team that’s set up for success. Many generative AI projects have 

been staffed exclusively within a ML or IT team, ignoring cross-functional needs to build strong 

customer experiences and corresponding business cases. This team should be capable of deep 

diving into a problem area and creating clarity in a fast paced space. Although not a strict list, 

successful POCs typically have inputs from a product owner, UX, developer and ML engineer. 

Clearly defining a problem statement for your POC will help teams deliver with focus and 

avoid getting lost in AI distractions. In many circles, AI has become a solution looking for a 

problem, which is great for initial momentum, yet returns in fury and creates lasting tech debt in 

years 2-3 of a 5 year AI strategy. 



User interviews often forgotten in the push to build. Curating a beta group is a highly valuable 

way to measure product improvements, whether these users are internal or external. These 

iterations should be quick, with notes shared across the entire team to understand key concerns 

and positive outcomes. Often times this step is skipped as engineering teams focus on the build 

and only at the last moment deliver a sharable experience. 

The most important item is getting a cohesive demo prepared, including a clear value 

proposition and budget for taking the project to the next step. The initial proof of concept is 

designed to de-risk a project, but success is measured by projects’ progress. Without progress 

many teams get stuck in proof of concept purgatory, where these early use cases keep getting 

built with no clear next step for production or past first launch. 

Presenting a cohesive narrative for moving the POC to production becomes essential. 

 



Deploying to Production 
KPIs: 

1.​ Time to connect to production data 
2.​ Time to move between product environments 
3.​ Time to build an evaluation suite 
4.​ Time to finalize UI 
5.​ Time to complete security and risk assessments 
6.​ Time to launch feature 

As clearer use cases are defined, more teams become involved in the process. With more 

teams, clear communication becomes essential for progress and alignment. To navigate this 

complexity, it’s important that feature and product launches are well managed and the tooling 

reflects this collaborative, scaled effort. 

Connecting to production data is essential at this step. In a proof of concept environment we 

often focus on mimicking production data or using a subset since integrating with existing 

systems can be challenging. When moving into production, this should be a key task for the 

engineering team to connect and test the POC with production data. Depending on the 

organization, this data may sit in a higher environment, requiring the team to deploy to an user 

acceptance testing environment (UAT). 

Next, teams should focus on speed to move the features through each stage of the product 
environment. Typically there are 2-4 environments depending on the stage of the company, but 

similar to software projects, fast progress times through environments leads to faster iteration 

cycles. 

On the engineering side of the house, the team should be measured on creating strong 
testing metrics and brand aligned front-ends. Testing is particularly challenging since 

generative AI models are non-deterministic, requiring tests to validate how users can interact 

with the models. This work will typically be done in conjunction by a user testing, ML and 

engineering team to define and deliver on thorough and relevant tests. When considering the 

front end, generative AI applications should feel like a natural extension of an existing 

application, rather than being bolted on as an afterthought. This is where design, UX and front 



end teams need to collaborate to create the integration. To speed up the delivery process, using 

pre-existing open source or hosted front end frameworks can be strongly beneficial. 

 

Beyond product development often lies a negotiation with the security, compliance, and risk 

teams. Generative AI security and risk policies are still being defined or iterated on within many 

organizations, and navigating these policies can slow down projects. Ideally these discussions 

are started in the POC phase to fully align teams early. We discussed some of these 

approaches in a prior piece. 



‍ 

Launching the feature live is the final milestone. Once the first application goes into production, 

there will likely be more projects starting, so the KPIs can apply across new projects across the 

organization. It’s important that leaders have set a clear product roadmap and teaming structure 

so that each new use case and iteration is not additional technical debt, rather an additive 

product lifecycle that becomes more efficient with each new launch. 



 

Iterate and Scale 
KPIs: 

1.​ Time to make simple updates 
2.​ Time to launch subsequent version 
3.​ Time for next team to launch product 



4.​ Cost per additional project 
5.​ Total cost of ownership 

After deploying at least one use case to production, the challenge for an organization is to scale 

their generative AI applications across teams in repeatable and financially sustainable way. 

Competitive advantage is created when teams can build with an innovation mindset and not be 

stuck in maintenance mode. The KPIs for this phase focus on this agility and cost. 

It’s first important to measure the ability to quickly update your AI applications. Simple 

changes like minor prompt updates, copywriting, or API version bumps should not be complex 

processes. Similar to rapid software release, making small changes to generative AI updates, 

especially after initial release, builds trust with customers and address minor oversights. 

What about larger iterations? Models, data and product requirements continue to evolve 

quickly, so being able to update features and capabilities will future proof your generative AI 

products from becoming legacy product lines (e.g. an AI chatbot on your homepage that was 

launched as an initial use case, yet quickly becomes ignored and outdated without a proper 

team, workflow, and iteration cycle). 

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/


 

Similarly, as adoption increases across an organization through new use cases, teams should 

be able to onboard more quickly after the initial use case. The total cost of ownership for each 

new team and use case should become more efficient as the level of innovation and automation 

across an organization ramps exponentially. At the CIO level, this should be an essential 
metric when implementing and scaling your AI strategy. 

The final two KPIs in this section focus on cost, both the marginal cost per application and the 

total cost across a strategy. These two metrics help organizations plan future projects and 

measure the ROI across their generative AI initiatives. They also help scope investments to be 

leaner and more deeply integrated within a technology initiative, rather than a separate line item 

with a large commitment. 



 

Conclusion 
As teams build their generative AI strategies and adopt their core workflows, planning each 

phase of the process is essential. While generative AI feels like an immediate fire to address, 

projects and capabilities will continue to evolve and require a comprehensive 5 year strategy. 

The leaders and teams that execute a well-built first POC that’s anchored in a strategy for 

scaling to other use cases will create competitive advantage in this AI automation race across 

industries. 
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●​ We have more customers with live agents in production and they want to know how to 
improve them 

○​ How can they prove the value of AI agents? Show time/cost savings to 
leadership? 

○​ Kelly answers similar questions over and over again—how do you know when to 
expand to a new use case? Is it working well enough to expand its capabilities? 

●​ LLMs interacting with customer is still new for most customers. Enterprise is getting on 
board and having to track what parts of their AI agents are useful and when to expand 
use cases, so they need to know how to measure their agents’ success 
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