Name: Date:

Predicting a Precipitate

Recall:

$$AB(s) = A^{+}(aq) + B^{-}(aq)$$

In a saturated solution at equilibrium, $K_{sp} = [A^{+}][B^{-}]$

What if $[A^+][B^-] < K_{sp}$?

There would be no precipitate (solid) formed in the beaker.

What if $[A^+][B^-] > K_{sp}$?

If this occurs, a solution is supersaturated. A precipitate will form:

 $[A+] \downarrow \text{ and } [B-] \downarrow \text{ until their product } [A^+][B^-] = \text{Ksp.}$

Reaction Quotient and Formation of a Precipitate

Based on the solubility rules, calcium carbonate (CaCO₃) is insoluble and should form a precipitate. However, tap water contains low concentrations of both these ions. Why doesn't tap water contain a precipitate?

This is because their concentrations are too low to form a solid.

$$CaCO_{3 (s)} \Rightarrow Ca^{2+}_{(aq)} + CO_{3}^{2-}_{(aq)} K_{sp} = [Ca^{2+}][CO_{3}^{2-}] = 3.36 \times 10^{-9}$$

If the product of $[Ca^{2+}][CO_3^{2-}]$ is *less* than the K_{sp} , no precipitate forms.

Reaction Quotient (Q) or Trial Ion Product (TIP):

Takes on the same form as the equation for K_{sp} but uses the actual concentrations at that time. Once Q or TIP is calculated it can be compared to K_{sp} to see if a precipitate forms.

If:
$$Q < K_{sp}$$
 the system is unsaturated - no precipitate forms $Q = K_{sp}$ the system is saturated - no precipitate forms $Q > K_{sp}$ the system is supersaturated - a precipitate forms

Quantitative Determination of Precipitation

1) If 1×10^{-6} mol of solid AgNO₃ and 5×10^{-4} mol of solid Na₂S are added to 10 L of water, will a precipitate form? K_{sp} (Ag₂S) = 8.8 x 10^{-18}

2) If 20 mL of 0.005 mol/L barium nitrate is added to 80 mL of 0.0001 mol/L sodium carbonate, will a precipitate form? K_{sp} (BaCO₃) = 8.1 x 10⁻⁹

3) Will a precipitate form if 0.25 mol of Na_2CrO_4 is added to 5.0 L of a 0.020 mol/L solution of $AgNO_3$? K_{sp} (Ag_2CrO_4) = 8.0 x 10⁻⁴