
Quick presentation of Nexmark
Code

Components of NexMark

●​ Generator:

○​ generation of timestamped events (bids, persons, auctions) correlated
between each other

●​ NexmarkLauncher:
○​ creates sources that use the generator
○​ queries pipelines launching, monitoring

●​ Output metrics:
○​ Each query includes ParDos to update metrics
○​ execution time, processing event rate, number of results,

but also invalid auctions/bids, …

●​ Modes:
○​ Batch mode: test data is finite and uses a BoundedSource
○​ Streaming mode: test data is finite but uses an

UnboundedSource to trigger streaming mode in runners

Queries pseudo code

Query 0 (not part of original
NexMark): Pass-through.
●​ Allows us to measure the monitoring overhead.

○​ serializes and deserializes using coder
○​ Uses Aggregator for byte size counter

Query 1: What are the bid values in
Euro's?
●​ Simple map

○​ Filter + ParDo to extract bids out of events
○​ ParDo that outputs Bid objects with price converted

Query 2: Find bids with specific
auction ids and show their bid price.
●​ Illustrates simple filter

○​ Filter + ParDo to extract bids out of events
○​ Filter to keep bids with correct auctionId
○​ ParDo that outputs AuctionPrice(auction, price) objects

Query 3: Who is selling in particular
US states?
●​ Illustrates incremental join of the auctions and the

persons collections
●​ uses global window and using per-key state and

timer APIs
○​ Apply global window to events with trigger repeatedly after at

least nbEvents in pane => results will be materialized each
time nbEvents are received.

○​ input1: collection of auctions events filtered by category and
keyed by seller id

○​ input2: collection of persons events filtered by US state
codes and keyed by person id

○​ CoGroupByKey to group auctions and persons by
personId/sellerId + tags to distinguish persons and auctions

○​ ParDo to do the incremental join: auctions and person
events can arrive out of order

■​ person element stored in persistent state in order to
match future auctions by that person. Set a timer to
clear the person state after a TTL

■​ auction elements stored in persistent state until we
have seen the corresponding person record. Then, it
can be output and cleared

○​ output NameCityStateId(person.name, person.city,
person.state, auction.id) objects

Query 4: What is the average selling
price for each auction category?
●​ Illustrates sliding windows and aggregation

○​ Apply Wining-bids
○​ ParDo to key winning-bids by category
○​ apply sliding windows to have a period of time
○​ apply Mean.perKey (key = category)
○​ ParDo that outputs CategoryPrice(categoryId, avgPrice)
○​ ​ ​

Query 5: Which auctions have seen
the most bids in the last period?
●​ Illustrates sliding windows and combiners (i.e.

reducers) to compare the elements in auctions
Collection

○​ Input: (sliding) window (to have a result over 1h period
updated every 1 min) collection of bids events

○​ ParDo to replace bid elements by their auction id
○​ Count.PerElement to count the occurrences of each

auction id
○​ Combine.globally to select only the auctions with the

maximum number of bids
■​ BinaryCombineFn to compare one to one the

elements of the collection (auction id occurrences, i.e.
number of bids)

■​ Return KV(auction id, max occurrences)
○​ output: AuctionCount(auction id, max occurrences) objects

​

Query 6: What is the average
selling price per seller for their last
10 closed auctions?
●​ Illustrates specialized combiner

○​ Apply winning-bids
○​ ParDo to key the winning-bids by sellerId
○​ apply GlobalWindow + trigerring at each element (to have a

continuous flow of updates at each new winning-bid)
○​ Combine.perKey to calculate average of last 10 winning bids

for each seller. Need specialized CombineFn because of 10
closed auctions

■​ create Arraylist accumulators for chunks of data
■​ add all elements of the chunks to the accumulators,

sort them by bid timeStamp then price keeping last 10
elements

■​ iteratively merge the accumulators until there is only
one: just add all bids of all accumulators to a final
accumulator and sort by timeStamp then price
keeping last 10 elements

■​ extractOutput: sum all the prices of the bids and divide
by accumulator size

○​ ParDo that outputs SellerPrice(sellerId, avgPrice)​ ​

Query 7: What are the highest bids
per period?
●​ Could have been implemented with a combiner like

query5 but deliberately implemented using
Max(prices) as a side input and illustrate fanout.

●​ Fanout is a redistribution using an intermediate
implicit combine step to reduce the load in the final
step of the Max transform

○​ input: (fixed) windowed collection of bids events
○​ ParDo to replace bids by their price
○​ Max.withFanout to get the max per window and use it as a

side input for next step. Fanout is useful if there are many
events to be computed in a window using the Max transform.

○​ ParDo on the bids with side input to output the bid if
bid.price equals maxPrice (that comes from side input)

○​

Query 8: Who has entered the
system and created an auction in
the last period?
●​ Illustrates simple join

○​ Filter ​+ ParDo to extract persons out of events
○​ Apply fixed windows to have a period
○​ ParDo to key collection by personId
○​ Filter ​+ ParDo to extract auctions out of events
○​ Apply fixed windows to have a period
○​ ParDo to key collection by sellerId
○​ CoGroupByKey to group persons and auctions by

personId/sellerId + tag persons and auctions
○​ ParDo to output IdNameReserve(person.id, person.name,

auction.reserve) for each auction

Query 9 Winning-bids (not part of
original NexMark): extract the most
recent of the highest bids
●​ Illustrates custom window function to reconcile

auctions and bids + join them
○​ input: collection of events
○​ Apply custom windowing function to temporarily reconcile

auctions and bids events in the same custom window
(AuctionOrBidWindow)

■​ assign auctions to window [auction.timestamp,
auction.expiring]

■​ assign bids to window [bid.timestamp, bid.timestamp +
expectedAuctionDuration (generator configuration
parameter)]

■​ merge all 'bid' windows into their corresponding 'auction'
window, provided the auction has not expired.

○​ Filter + ParDos to extract auctions out of events and key them by
auction id

○​ Filter + ParDos to extract bids out of events and key them by
auction id

○​ CogroupByKey (groups values of PCollections<KV> that share
the same key) to group auctions and bids by auction id + tags to
distinguish auctions and bids

○​ ParDo to
■​ determine best bid price: verification of valid bid, sort

prices by price ASC then time DESC and keep the max
price

■​ and output AuctionBid(auction, bestBid) objects

Query 10 (not part of original
NexMark):Log all events to GCS
groupByfiles
●​ windows with large side effects on firing

○​ ParDo to key events by their shardId (number of shards is a
config item)

○​ Apply fixed windows with composite triggering that fires when
each sub-triger (executed in order) fires

■​ repeatedly
●​ after at least maxLogEvents in pane
●​ or finally when watermark pass the end of

window
■​ Repeatedly

●​ after at least maxLogEvents in pane
●​ or processing time pass the first element in pane

+ lateDelay
■​ With allowedLateness of 1 day (so that any late date will

stall the pipeline and be noticeable)
○​ GroupByKey to group events by shardId
○​ ParDo to construct the outputStreams (fileNames contain

shardId) and encode each event to that outputStream + form
pairs with key = null key and value = outputFile (represents a
fileName with various added information)

○​ apply fixed window with default trigger and lateness of 1 day to
clear complex triggerring

○​ GroupByKey all outputFiles together (they have the same
key) to have one file per window

○​ ParDo to write all the lines to files in Google Cloud Storage

 ​

Query 11 (not part of original
NexMark): How many bids did a user
make in each session he was active?
●​ Illustrates session windows + triggering on the bids

collection
○​ input: collection of bids events
○​ ParDo to replace bids with their bidder id
○​ Apply session windows with gap duration = windowDuration

(configuration item) and trigger repeatedly after at least
nbEvents in pane => each window (i.e. session) will contain
bid ids received since last windowDuration period of inactivity
and materialized every nbEvents bids

○​ Count.perElement to count bids per bidder id (number of
occurrences of bidder id)

○​ output idsPerSession(bidder, bidsCount) objects

Query 12 (not part of original
NexMark): How many bids does a user
make within a fixed processing time
limit?
●​ Illustrates working in processing time in the Global

window to count occurrences of bidder
○​ input: collection of bid events
○​ ParDo to replace bids by their bidder id
○​ Apply global window with trigger repeatedly after

processingTime pass the first element in pane +
windowDuration (configuration item) => each pane will
contain elements processed within windowDuration time

○​ Count.perElement to count bids per bidder id (occurrences
of bidder id)

○​ output BidsPerWindow(bidder, bidsCount) objects

	Quick presentation of Nexmark Code
	Query 11 (not part of original NexMark): How many bids did a user make in each session he was active?
	Query 12 (not part of original NexMark): How many bids does a user make within a fixed processing time limit?

