Assignment#2

MTH601 (FALL 2023)

Section in-charge: Nimra Jamil

Question#1

Consider a company with four employees (E1, E2, E3, and E4) and four tasks (T1, T2, T3, and T4). The company wants to minimize the total cost of assigning each employee to a task based on their skill sets. The cost matrix is given below, where the entry in the ith row and jth column represents the cost of assigning employee i to task j

	T_1	T_2	T ₃	T_4
E_1	5	8	3	6
E ₂	7	2	9	1
E ₃	4	8	2	6
E ₄	3	5	7	4

Formulate this problem as an assignment model and find the optimal assignment.

Solution:

The Matrix is given that:

	T_1	T_2	T ₃	T_4
E ₁	5	8	3	6
E ₂	7	2	9	1
E ₃	4	8	2	6
E_4	3	5	7	4

The matrix is in form of $n \times n$, where n is order of matrix and n=4.

Hence the matrix is balanced.

So, the following steps are followed to find optimal assignment solution.

Step-1
We subtract the minimum value in each row from all the elements in its row, we obtain:

As in 1st row minimum value is "3" in 2nd row minimum value is "1", so on.....

	T_1	T_2	T ₃	T_4
E_1	2	5	0	3
E_2	6	1	8	0
E ₃	2	6	0	4
E_4	0	2	4	1

Step-2
We subtract the minimum value in each column from all the elements in its column, we obtain:

As in 1^{st} column minimum value is "0" in 2^{nd} column minimum value is "1",so on.....

	T_1	T_2	T ₃	T_4
E ₁	2	4	0	3
E_2	6	0	8	0
E ₃	2	5	0	4
E_4	0	1	4	1

Step-3

In this way make sure that in the matrix each row and each column has at-least one zero elements.

So, now draw minimum number of horizontal (n) and vertical lines (N) to cover all zero.

(a) If N = n, then the solution is optimal

(b) if N < n, go to the next step.

		T_2	T ₃	T_4
E_1	2	4	0	3
E ₂	6	0	8	0
E_3	2	5	0	4
E_4	0	1	4	1

So, here minimum number of lines (N) = 3 which is less than n.

$$N < n$$
 : $n = 4$ and $3 < 4$

Now from the step 3 the part (b) is held, so, we go to next step.

Step-4

Find the smallest element of uncovered element (x).

- a. Uncovered element -x
- b. Intersection element +x
- c. Lines elements as same

So, here uncovered minimum value is "1". Hence x=1

T_1	T_2	T_3	T_4

E_1	2	3	0	2
E_2	7	0	9	0
E ₃	2	4	0	3
E_4	0	0	4	0

Step-4

Now again repeat the step-3, so we obtain

	T_1	T_2	T _{i3}	T_4
E_1	2	3	0	2
E_2	7	0	9	0
E_3	2	4	0	3
E ₄ *	0	0	4	0 *

Step-5

Now again repeat the step-3, so we obtain

So, here x=2

	T_1	T_2	T ₃	T_4
E ₁	0	1	0	0
E ₂ -	7	0	11	0

E ₃	0	2	0	1
E ₄ *	0	0	6	0

Number of lines drawn to cover all the zero (N=4) and the order of matrix is $n \times n$ where n=4 Hence the matrix is optimal than we make an assignment.

	T ₁	T_2	T ₃	T_4
E_1	0	1	0 (×)	0 (x)
E_2	7	0	11	0 (×)
E ₃	0 (×)	2	0	1
E_4	0 (x)	0 (x)	6	0

Optimal assignment:

$$E_1 \to T_1, E_2 \to T_2, E_3 \to T_3, E_4 \to T_4$$

Minimum $\cos t = 5 + 2 + 2 + 4 = 13$

	T_1	T_2	T_3	T_4
E_1	0 (x)	1	0	0 (x)
E_2	7	0	11	0 (x)
E ₃	0	2	0 (x)	1
E_4	0 (×)	0 (×)	6	0

 $E_1 \to T_3, E_2 \to T_2, E_3 \to T_1, E_4 \to T_4$ Minimum $\cos t = 3 + 2 + 4 + 4 = 13$