

Indraprastha College for Women University of Delhi

Course Name:	B.Sc.(H)
Paper Title:	Numerical Analysis
Unique Paper Code:	
Semester:	IV
Faculty(s):	Dr Manju Sharma
Year:	2024

	Work Plan				
Unit No.	Learning Objective	Lecture No.	Topics to be Covered		
obje	Learning Objectives: The main objective of this course is to introduce:	1	Rate and order of convergence		
		2	Rate and order of convergence		
	Various computational techniques to find	3	Bisection method		
	approximate value for possible root(s) of	4	Method of false position		
 algebraic and non-algebraic equations. Methods to solve system of linear equations and ordinary differential equations. The use of computer algebra system (CAS) by which the numerical problems can be solved both numerically and analytically, and to enhance the problem-solving skills. 	5	Fixed point iteration method			
	• Methods to solve system of	6	Fixed point iteration method		
	ordinary differential	7	Newton's method, Secant method		
	*	8	Newton's method, Secant method		
	system (CAS) by which the	9	Question based on Newton's method, Secant method		
	solved both numerically and analytically, and to enhance	10	Question based on Newton's method, Secant method		
		11	Order of convergence and convergence analysis.		
		12	Order of convergence and convergence analysis.		

III	Learning Objectives. The main	1	Numerical Differentiation and
	Learning Objectives: The main objective of this course is to	1	Integration First and higher
	introduce:		order approximation for the first
	introduce.		derivative, Approximation for
	Various computational		the second derivative;
	techniques to find	2	Numerical Differentiation and
	approximate value for	-	Integration First and higher
	 possible root(s) of algebraic and non-algebraic equations. Methods to solve system of linear equations and 		order approximation for the first
			derivative, Approximation for
			the second derivative;
		3	Numerical Differentiation and
			Integration First and higher
			order approximation for the first
	ordinary differential		derivative, Approximation for
	equations.		the second derivative
	• The use of computer algebra	4	Numerical Differentiation and
	system (CAS) by which the		Integration First and higher
	numerical problems can be		order approximation for the first
	solved		derivative, Approximation for
		-	the second derivative
	both numerically and analytically, and to enhance the problem-solving skills.	5	Numerical integration by closed
		6	Newton-Cotes formulae
	the problem-solving skins.	0	Numerical integration by closed Newton–Cotes formulae
		7	Trapezoidal rule
			*
		8	Simpson's rule and its error analysis;
		9	Simpson's rule and its error
		10	analysis;
		10	Simpson's rule and its error analysis;
		11	Euler's method to solve ODE's
		12	Euler's method to solve ODE's
		13	Euler's method to solve ODE's
		14	Modified Euler method
		15	Modified Euler method
		16	Runge–Kutta Method (fourth-order
		17	Runge–Kutta Method (fourth-order
		18	Runge–Kutta Method (fourth-order

	Syllabus		
Unit	Contents		Contac t Hours
Ι	I Methods for Solving Algebraic and Transcendental Equations (hours) Rate and order of convergence; Bisection method, Method of false position, Fixed point iteration method, Newton's method, and Secant method, their order of convergence and convergence analysis.		12
II	Sharing with other faculty		15
III	Numerical Differentiation and Integration First and higher order appro for the first derivative, Approximation for the second derivative; Nume integration by closed Newton–Cotes formulae: Trapezoidal rule, Simp and its error analysis; Euler's method to solve ODE's, Modified Euler Runge–Kutta Method (fourth-order).	erical son's rule	18
		Total	30
	Text Books/Suggested Readings:		
S. No.	Name of Authors/Books/Publishers	Year of Publication/	
1.	Bradie, Brian. (2006). A Friendly Introduction to Numerical Analysis. Pearson Education	<u>Repr int</u> 2006	
	India. Dorling Kindersley (India) Pvt. Ltd. Third impression 2011.		
2.			
3.			
4.			

	Paper Components			
Credit	Lecture	Tutorial	Practical	
S	(L)	(T)	(P)	
4	3	0	1	
	Assessn	nent Scheme		
S.No.	Componen	Marking	Total	
	t	Scheme	Marks	
1	Internal Assessment			
	• Assignment/Quiz/Project/			
	Presentation	0	25	
	Class Test			
2.	Attendance Continuous Assessment (Tutorial)	NA		
		NA		
	-	NA	NA	
	• Activity 1			
	· Activity I	NA		
	• Activity 2			
	Attendance			
3.	Practical			
	Continuous Assessment		50	
	End Term Written/Practical			
	Exam			
4.	Viva End Semester Examination		75	