Access to out-of-scope private class
members in the DevTools console

Attention - this doc is public and shared with the world!
Contact: Joyee Cheung <joyee@igalia.com>
Contributors: Joyee Cheung <joyee@igalia.com>, Caitlin Potter <caitp@igalia.com>
Status: | | Accepted |

LGTMs needed

Name Write (not) LGTM in this row

verwaest@chromium.org

szuend@chromium.org LGTM DevTools side

leszeks@chromium.org LGTM

Abstract

This document describes ideas about implementing access to out-of-scope private class
members in the DevTools console/REPL.

At the moment it is possible to access the private class members from the console when the
user is debugging within a scope that has valid access to the members, but the access is no
longer available once they are out of any valid scopes. The goal of this work is to support
inspection of this kind of extraordinary inspection that would not be otherwise valid in normal
execution, in order to provide a better debugging experience.

Related issue: chromium:1381806
Patch: https://chromium-review.googlesource.com/c/v8/v8/+/4020267

Background

Currently, when the user is debugging an object that has private class members while being out
of the class body, like this:

mailto:joyee@igalia.com
mailto:joyee@igalia.com
mailto:caitp@igalia.com
https://bugs.chromium.org/p/chromium/issues/detail?id=1381806
https://chromium-review.googlesource.com/c/v8/v8/+/4020267

'use strict';

1
2
3 function run() {

4 class Klass { Klass = class Klass
5 #name = 1;

6 }

7

const obj = new Klass; obj = Klass {#name: 1}, Klass = class Klass

B) return obj;

9 }
10
11 const obj = run();
12

They can inspect all the private fields with by logging the object with console calls, but it's not
possible to evaluate a specific private class member once they are out of the class body:

obj
» Klass {#name: 1}
obj .#name

@ »Uncaught SyntaxError: Private field '#name' must be declared in an enclosing class
at run (index.js:8:14)
at index.js:11:13

When debugging an object with many private class members, it would be difficult for the user to
locate and inspect one specific private class member that they are interested in out of a long list
of members. Neither can the user evaluate an expression with the private class member to
facilitate debugging. The user experience would be nicer if the user can directly evaluate
obj.#name from the console when they are outside the class body, and/or modifying it, like
what’s possible with native debuggers when debugging private class members in C++.

There are two Chrome DevTools protocol methods related to this kind of access:
e Debugger.evaluateOnCallFrame(), used by the console when the user evaluates an
expression while step-debugging
e Runtime.evalaute(), used by the console when the user evaluates an expression
when the debugger is not running (for example, if they make the object available to the
global scope, and attempt to evaluate private names in that object when they are not
debugging).

Complications

Unlike ordinary properties, there can be more than one private field with the same name in an
object, each belonging to different classes. For example:

'use strict';

function run() {
class Klass { Klass = class Klass
#name = 1;

}
class ChildKlass extends Klass { ChildKlass = class ChildKlass, Klass = class Klass
#name = 1;

RFowo~NoOUbhWNRE

e

const obj = new ChildKlass; obj = ChildKlass {#name: 1, #name: 1}, ChildKlass = class ChildKlass

") Dconsole.Dloglobj);

13 return obj;

14}
15
16| run();
17

Leads to an object with two private fields named #name:

v ChildKlass {#name: 1, #name: 1}
#name: 1
#name: 1
» [[Prototypell: Klass

Or the conflict can come from classes from the same source position:

}

Z
3 function factory(Base) {

4 class Klass extends Base {
5 #name = 1;

6 1}

7 return Klass;

8

9

10 const Klassl factory(class {});

11 const Klass2 = factory(Klassl);
IEP) const obj = new Klass2;

13 console.log(obj);

14

vKlass {#name: 1, #name: 1}
#name: 1
#name: 1
» [[Prototypel]l: Klass

It would be even nicer if DevTools supports distinguishing these conflicting private fields visually,
or selecting the desired private field when the user attempts to modify it, though for the initial
support we can just throw a “no-support” error for ambiguous cases like this.

Design

Parser

Normally, access to private names are eagerly checked in the parser as well as in the scope
resolution. For example, with a snippet like this:

class Klass {

#name = 1;

new Klass;

When parsing the expression obj.#name outside the class scope in normal execution, V8
currently immediately checks the scope chain and see if there’s any outer class scope
surrounding the expression that can contain private class members. If there isn’t any, which is
true in this case, V8 directly throws a SyntaxError and stop parsing, since it already knows that
it's impossible for to resolve #name to any valid private names in a scope chain without valid
class scopes.

In order to support the extraordinary access in the console, when we are parsing an expression
containing obj.#name for the console, we should bypass the eager checks and delegate the
lookup of private class members to the runtime. We can reuse two fields in the
UnoptimizedCompileFlags to know when to relax the checks in the parser:

- parsing_while_debugging for Debugger.evaluateOnCallframe()
- is_repl_mode for Runtime.evaluate()

And if we are parsing for the console, we should proceed even when we are aware that we are
not in any scope valid for the access.

Scope Resolution

When parsing a private name that needs to be resolved in normal execution, V8 currently finds
the nearest class scope in the scope chain and prepend it to a list containing all private names
pending to be resolved. Once a class literal is parsed, V8 attempts to resolve all unresolved
private names in it using the private names declared inside the class literal (with

ClassScope: :ResolvePrivateNamesPartially()). If there are still some private name
access that cannot be resolved using known private names, V8 checks whether there’s any
other outer class scope, if there is one, we push all the remaining unresolved private names to

the outer class scope, otherwise we would know that these names cannot be resolved further so
we would simply throw there.

To support the extraordinary access, we should delay the resolution of these unresolvable
private names to the runtime, and look them up dynamically then. In order to do this we can
pass the flags from the parser into ClassScope: :ResolvePrivateNamesPartially() as well
as ClassScope: :ResolvePrivateNames (), and make sure that when we are compiling for the
DevTools console, whenever we find an unresolvable private name, instead of returning to
throw an error, we simply declare a non-local variable with VariableMode: : kDynamic (it does
not matter in which scope the variable is declared as we are not going to use the scope
information) and bind the unresolvable VariableProxy to the dynamic non-local variable. Then
we proceed resolving other private names, as if the previous resolution succeeds.

The resolvable private names will still be resolved to the right private name in its outer scope.
The unresolvable ones will have a mode of VariableMode: : kDynamic, which we will use to
determine if it's necessary to do a runtime lookup of the private name when emitting the
bytecode.

Bytecode Generation

We can add a new assign type PRIVATE_DEBUG_DYNAMIC for the extraordinary access in the
console, and associate every Property node with a private name reference bound to a
VariableMode: : kDynamic variable with it. We already use the assign types to generate special
handling of private names (e.g. adding brand checks for private methods, loading getter/setters
from accessors for private accessors), so we can just emit runtime calls for looking up the
private names dynamically when dealing with the new PRIVATE_DEBUG_DYNAMIC assign type.

To implement extraordinary access, we can add two new runtime calls that are responsible for
both the lookup and the actual load/store operation:
e %GetPrivateMember () which accepts a receiver and a #-prefixed string description of
the private name (e.g. “#name”)
e %SetPrivateMember () which accepts a receiver, a string description of the private
name, and a value to be set.

For example, when evaluating obj.#name expression out of the class body in which the private
name #name is defined, the following code would be generated:

LdaConstant [1]
Star3
r2

CallRuntime [GetPrivateMember], r2-r3

When evaluating obj.#name + 1, the following code would be generated

r3

CallRuntime [SetPrivateMember], r3-r5

Runtime calls

In the implementation of the runtime calls %GetPrivateMember () and %SetPrivateMember():

1. First, we collect all the private names available to the receiver. This can be done by
iterating over the receiver to find all private name symbols on it. Private fields are directly
stored in the instance, while private methods and accessors can be retrieved by looking
at the contexts stored in the instances keyed by the private brand symbols (which are
also private names), see Inspector support for private methods.

2. For now, we check the available private names to see if there are more than one private
name matching the description (for example, to see if there are more than one #name
available on the ob3j). If there are any conflicts, throw an error, because it's ambiguous
and we are not yet supporting selection among conflicting names.

3. If there is no private name in the receiver matching the description, throw an error too.

4. If there is precisely one private name matching the description, dispatch behaviors
based on the type of the private member.

To handle access to the found private name:

1. Ifit's a private field, simply load from/store in the receiver with the found private name
symbol using Object: :GetProperty() orObject::SetProperty()

2. Ifit's a private method, load the JSFunction found from the context stored in the receiver
and return it, or in the case of a store, throw an error, as private methods are not
supposed to be writable.

3. Ifit's a private accessor, invoke the accessor component found from the context stored
in the receiver. If the appropriate accessor component is missing (for example, trying to
read from a write-only private accessor), throw an error.

https://docs.google.com/document/d/1N91LObhQexnB0eE7EvGe57HsvNMFX16CaWu-XCTnnmY/edit#

Test plan

Tests will be added to V8 for both Debugger.evaluateOnCallFrame() and
Runtime.evalaute() with replMode: true. We might want some additional tests from
DevTools/Chromium to make sure that they work together as well.

Rollout considerations

As the extraordinary access should be guarded by flags that are only set by the DevTools
console, the usage should be limited, so it should be fine to just roll out the feature.

	Access to out-of-scope private class members in the DevTools console
	LGTMs needed
	Abstract
	Background
	Complications

	Design
	Parser
	Scope Resolution
	Bytecode Generation
	Runtime calls

	Test plan
	Rollout considerations

