
Tutorial 1 - Halloween Treasure Hunt

Table Of Contents

This tutorial will treat the following concepts:

●​ Denizen objects and general syntax.

●​ Browsing through the documentation.

●​ Reloading scripts and debug modes.

●​ World script containers, events, switches and context tags.

●​ Common script commands and arguments.

●​ Constructing tags with simple bases and modifiers.

●​ First contact with foreach loops.

Introduction

Welcome to the Denizen2Sponge Scripting Engine. This is our first tutorial, so we'll start

with the basics. After downloading the plugin and running the server once to create the

needed files, the first thing we need to do is locate the Denizen scripts folder inside

config/denizen/. This is where we'll create our script files, which have the .yml extension.

Now we have to familiarize a bit with Denizen syntax, and there's no better place for that

than the documentation. We'll focus on some of the most common ingredients we'll be using

in our scripts:

-​ Script Containers: As their name suggests, they're meant to store scripts. There are

different types, depending on the nature of the script we want to make. They consist

of a name key, a type: subkey and value and some other subkeys that belong to

each type. You can also specify the level of debugging of a script container through

the debug: subkey.

-​ Commands: These are placed after a - in executable parts of our scripts and are in

charge of making something happen in the Minecraft server. From giving items to

players to creating artificial explosions, commands will be a key component of any

script.

-​ Tags: These are text placeholders that Denizen replaces with objects at runtime.

They are always wrapped in < > and consits of a tag base, which retrieves or

1

https://meta.denizenscript.com/
https://meta.denizenscript.com/Home/Commands
https://meta.denizenscript.com/Home/Tags

creates an object; and modifiers, which transform the original base into other types of

objects. As many modifiers as you want can be concatenated inside a tag, as long as

they are always separated by a . and their input object type matches the previous

output type.

-​ Events: These are placed inside world script containers and their job is to listen to

actions happening within our Minecraft server. When triggered, they'll execute their

script section, filled with commands and tags. Events have special tags that are

stored within the context base. These unique tags offer information directly attached

to the action that took place, such as the location when an explosion occurs.

First Steps

Now let's jump (or slowly crawl) into our first script. In our case, we want to make a

Halloween treasure hunt event in our Hub world. We plan on manually placing some

hidden pumpkins ourselves, and reward players for finding (and left clicking) them. Note: this

tutorial assumes our Hub world is in fact called Hub.

First of all, we'll need to create a new script file (for example New_Script.yml) and build a

world script container, which listens to events happening within our server. We just have to

give it a name, like Halloween_Treasure_Hunt, and set the type: key as world. In addition to

this, we'll also set the debug: key as full. This will make our script print in the console

everything it does and help us solve errors. It is not needed, so we can just remove it later

on. We'll now place an events: subkey, which will hold the executable code we're going to

write.

It's worth noting that Denizen scripts follow YAML's indentation rules, with either 2 or

4-space tabs. We'll be using D2IDE ourselves, so this tutorial's code will be formatting

according to this text editor. You can also just use Notepad++ until the specialized IDE is

officially released, but you'll have to make sure the tabs are replaced with actual spaces.

There's a settings option in that automatically does that for us, so no problem.

Now we need to find an event that fits our case. Looking through the event documentation

list, on player left clicks block looks like our best bet. We'll just test it for now, so we add it

under the events key and end the line with a : . Inside this event we can place our first

command. A good option for testing purposes is just to show a word in console. The

command for this is echo. As the documentation explains, its syntax is very simple. We feel

the hype, so we'll go with an - echo "yay".

2

https://meta.denizenscript.com/Home/Events
https://meta.denizenscript.com/Home/Events
https://meta.denizenscript.com/Home/Commands#cmd_echo

Our script should be the following at this point:

Halloween_Treasure_Hunt:

 type: world

 debug: full

 events:

 on player left clicks block:

 - echo "yay"

It's time to save the script file, reload scripts ingame with /ex reload and trigger the event

by left clicking a block. We should now be able to see a cute little yay (along with some

debug information) in the console, just as we expected. That's great, but the event is being

triggered no matter what block type we click on, and that's not ideal.

Core Functionality

Our next step should be to limit this so it works with pumpkins only. The best way to achieve

that is with event switches. Switches are internal checks that decide whether or not an

event should fire. Each event has different available switches, so make sure to read the

documentation. We can see there's a type switch that checks the broken block type, so we'll

use that. Adding type:pumpkin right after the original event (and before the ending colon)

should work for us.

We should not forget that we don't want players to get rewards from pumpkins in other

worlds, so why not use another switch? According to the same documentation, our event

has a world switch, so it's as easy as adding world:Hub to the event line as well.

The updated event is now:

 on player left clicks block type:pumpkin world:Hub:

We should save, reload and test again now. After a bit of testing, we've noticed clicking any

block in any world no longer echoes yay to the console, except for pumpkin ones in the Hub

world. Perfect!

We're ready to move further ahead and actually give a reward to the player clicking the

block. Since we're nice server owners, the prize will be a free diamond. This is when the

give command comes in handy. Its syntax requires two arguments: a player and an item.

3

https://meta.denizenscript.com/Home/Events?evt_player%20left%20clicks%20block#evt_player%20left%20clicks%20block
https://meta.denizenscript.com/Home/Commands#cmd_give

When reading command documentation, It's important to keep in mind that arguments inside

< > are not literal and need to be replaced, while [] means an argument is optional.

As we explained earlier, events have specific information that can be accessed through the

context tag. For example, player events are always linked to the player that triggered them.

This player object can be easily accessed through the <context.player> tag, although this is

a special case and we can just use <player> as a shortcut. This player object will be the

target of the give command. For the second argument, just specifying diamond will be

enough.

The full command line will then be:

 - give <player> diamond

Now it's time to make sure it works. After saving and reloading scripts again, it should be

giving us a diamond everytime we click the pumpkin. While players will totally love this, we

should probably avoid giving out unlimited diamonds.

That's easy to fix though, we just have to remove the pumpkin once it's clicked. If we do it

before even giving out the reward, we make sure it won't be clicked twice. We'll use the

setblock command (syntax here), which requires a location and a block type. Yet again,

we'll use a context tag to retrieve the location, in this case <context.location>. The block

type, on the other hand, will be just air as we want to remove the original pumpkin.

Our script with these new commands should look like this:

Halloween_Treasure_Hunt:

 type: world​

 debug: full​

 events:​

 on player left clicks block type:pumpkin world:Hub:​

 - echo "yay"​

 - setblock <context.location> air​

 - give <player> diamond

Rinse and repeat: save, reload scripts and do a quick test. Amazing! This deserves a "yay".

Speaking of yays… we don't need to echo yay anymore, so we better remove that.

4

https://meta.denizenscript.com/Home/Commands#cmd_setblock

Topping It Off

Let's make it even more fun. What if jack o' lanterns gave a diamond to every online

player? Yeah, we can make that happen too! Let's start by making a copy of the event we

already have and its contents. We now want to change the type: switch from pumpkin to

lit_pumpkin.

Inside the event, we need to wrap the give command with a foreach loop block (with syntax).

This loop takes a list when it starts and executes some commands for every object on the

list. In our case, the list of online players can be accessed through <server.online_players>.

Then inside the foreach, we can retrieve the currently looped object with

<def[foreach_value]>. Replace <player> in the give command with this new object tag and

we're ready to go.

Here's the complete second event:

 on player left clicks block type:lit_pumpkin world:Hub:

 - setblock <context.location> air

 - foreach start <server.online_players>:

 - give <def[foreach_value]> diamond

We'll also let the players know they have received a reward. For the first event we can use

the tell command. Its syntax is familiar by now, so we'll go ahead and write:

 - tell <player> "You've found a pumpkin! Here's your reward!"

But we can make it even fancier. In the second event we'll be using announce instead so

everybody knows who their new hero is. According to its syntax, this command only needs a

message argument, but we'd like to know the name of the player who found the hidden

block. Well, that's not a problem. We already know the player who clicked the block can be

retrieved with <player>, so why not use a tag modifier to know this information? Our

command would be as easy as this:

 - announce "<player.name> has found a jack o' lantern. Everybody

gets a reward!"

We just have to make sure it works as intended, and finally set the debug: key to minimal so

only error messages are shown. No more console spam!

5

https://meta.denizenscript.com/Home/Commands#cmd_foreach
https://meta.denizenscript.com/Home/Commands#cmd_tell
https://meta.denizenscript.com/Home/Commands#cmd_announce

Finally, this is the script we've created:

Halloween_Treasure_Hunt:

 type: world​

 debug: minimal​

 events:​

 on player left clicks block type:pumpkin world:Hub:​

 - setblock <context.location> air​

 - give <player> diamond

 - tell <player> "You've found a pumpkin! Here's your reward!"

 on player left clicks block type:lit_pumpkin world:Hub:

 - setblock <context.location> air

 - foreach start <server.online_players>:

 - give <def[foreach_value]> diamond

 - announce "<player.name> has found a jack o' lantern. Everybody

gets a reward!"

This should be it for now. Enjoy your brand new Halloween treasure hunt event and happy

scripting!

6

	Tutorial 1 - Halloween Treasure Hunt
	Table Of Contents
	Introduction
	First Steps
	Core Functionality
	Topping It Off

