GSoC 2022 @ Git | Shaoxuan Yuan

More Sparse Index Integrations

Personal Info

Full name: Shaoxuan Yuan

E-mail: shaoxuan.yuan®2@gmail.com
Tel: (+86)189-9835-1089
Alternative Tel: (+1)949-981-8651

Education: University of California, Irvine
Year: Rising Sophomore (currently in a gap year between Freshman and Sophomore)
Major: Computer Science and Engineering

GitHub: https://agithub.com/ffyuanda
Website: https://ffyuanda.github.io

Before GSoC

Synopsis

I'm picking the project idea “More Sparse Index Integrations” from the SoC
2022 Ideas page. This idea aims to integrate the experimental “sparse-index”
feature and “sparse-checkout” command with existing Git commands. Its
difficulty should be medium, and the expected project size takes somewhere
between 175 hours to 350 hours.

“sparse-checkout” command is still experimental, it allows user to “restrict
their working directory to only the files they care about”, this is especially
useful for the users who only “need to modify a small fraction of the files
available” (Bring your monorepo down to size with sparse-checkout, Stolee).

“sparse-index” is a feature that scales down your working directory’s index (a
key structure on how Git stores everything, a stored version of your working
tree) to work with “sparse-checkout”.

If “sparse-checkout” is something that makes your working directory “looks”
small, then “sparse-index” is something even better: it actually makes your
working directory “feels” small, everything e.g. “git-status” or “git-add” is
literally faster.


mailto:shaoxuan.yuan02@gmail.com
https://github.com/ffyuanda
https://ffyuanda.github.io
https://git.github.io/SoC-2022-Ideas/#more-sparse-index-integrations
https://git.github.io/SoC-2022-Ideas/#more-sparse-index-integrations
https://github.blog/2020-01-17-bring-your-monorepo-down-to-size-with-sparse-checkout/

GSoC 2022 @ Git | Shaoxuan Yuan

Since the “sparse-checkout” and “sparse-index” may potentially influence other
Git commands’' logics and the internal data structure of Git, some work needs
to be done to optimize the compatibility and user experience. And that is what
my selected idea proposed to do.

Benefits to Community

By joining the community and working on this idea, I can work together with my
mentors and community fellows to bring a better user experience to people who
are working on large monorepo with “sparse-index” and “sparse-checkout”.
Moreover, I have a strong intention to stick around after GSoC, not only keep
contributing to the community but also share my experience with or even mentor
future potential newcomers.

Microproject

Modernize a test script

Status: merged into master

Description: Some scripts in the Git test suite have outdated styles: misused
quotation marks, indentation, etc. Modernize the style of a test script.
Remarks: Although this patch is sort of a “noise patch”, that it makes change
for the sake of making change, it serves as an effective intro lesson to
familiarize me with the community’s working flow.

Other Patches

Other than the required microproject, I've submitted a few other patches when
I stumbled upon bugs/potential modifications, these patches are:

t0001: replace "test [-d|-f]" with test path_is * functions

Status: merged into master

Description: There are preferred wrapper functions written in Git's test
library around shell commands like “test -d” or “test -f”. Replace the naked
“test [-d|-f]" usages in a t@@O1 test script with these wrapper functions.

builtin/diff.c: fix "git-diff" usage string typo
Status: merged into master
Description: A simple typo fix. Discovered when I was reading “git-diff”

usage.


https://lore.kernel.org/git/20220123060318.471414-1-shaoxuan.yuan02@gmail.com/
https://lore.kernel.org/git/20220121102109.433457-1-shaoxuan.yuan02@gmail.com/
https://lore.kernel.org/git/20220202072844.35545-1-shaoxuan.yuan02@gmail.com/

GSoC 2022 @ Git | Shaoxuan Yuan

After finishing the patches above and getting more familiar with the codebase,
I started to make tentative patches on the proposed idea:

An RFC patch about “sparse-index” integration with “mv”

Status: suspended

Description: This is a tentative patch on my selected idea, trying to
integrate “sparse-index” with “mv” command.

Remarks: During the development and discussion with the community, we found
that before integrating with “sparse-index”, there are still unsettled issues
with “sparse-checkout”. Since the integration with “sparse-checkout” serves as
a prerequisite to enable “sparse-index”, we have to suspend this patch now and

" ”

start to optimize the “sparse-checkout” integration with “mv

A WIP patch to optimize user experience when using “mv” with “sparse-checkout”
Status: WIP

Description: This patch modifies the existing “mv” command’s logic to work
better with “sparse-checkout”, especially under “cone mode”.

Remarks: This patch gives me much more background knowledge about
“sparse-checkout”, e.g. its APIs and a detailed demonstration of how it works.
This patch is currently WIP.

Documentation/git-sparse-checkout.txt: add an OPTIONS section

Status: WIP

Description: This patch modifies the “sparse-checkout” documentation man page
by adding an “OPTIONS” section to the doc. This change will better illustrate
the usage of “sparse-checkout” subcommands and options.

Related Work

Prior works about the idea have been done by my mentors and other community
members, and these works form a good approximation of the approach I'm going
to take. Some previous example commits:

Integration with “clean”

Integration with “blame”

In GSoC

Plan

The proposed idea is relatively easy to understand: make more “sparse-index”
integrations. However, as I have experienced a few patches, I realized that


https://lore.kernel.org/git/20220315100145.214054-1-shaoxuan.yuan02@gmail.com/
https://lore.kernel.org/git/20220331091755.385961-1-shaoxuan.yuan02@gmail.com/
https://lore.kernel.org/git/20220311132141.1817-1-shaoxuan.yuan02@gmail.com/
https://github.com/git/git/commit/1e9e10e04891a13e5ccd52b36cfadc55dfaa5066
https://github.com/git/git/commit/add4c864b60766174ad4f74ba7be17e66d61ef16

GSoC 2022 @ Git | Shaoxuan Yuan

the obvious idea concept leads to much more covert difficulties. For example,
before enabling “sparse-index”, we have to make sure that “sparse-checkout” is
decently compatible with the target Git command.In order to do this,
modifications in the original command logic need to be made, which could
potentially lead to many other unforeseen issues. Therefore, I added two steps
in the plan below (point 1 and point 2) to better accommodate potential
issues. Notice that points 3-7 are from SoC 2022 Ideas, proposed by the
community and mentors.

With this idea’s clear spirit to cover as many command integrations as
possible, and also with the clear steps to take to finish each integration, I
have arranged a general plan as below:

1. Investigation around a Git command and see if it behaves correctly with
sparse-checkout. [Approx. 3 - 7 days]

2. Modify the Git command’'s logic so that it works better with
sparse-checkout. Add corresponding tests. [Approx. 7 days - 15 days]

3. Add tests to t1092-sparse-checkout-compatibility.sh for the builtin, with a
focus on what happens for paths outside of the sparse-checkout cone.

4. Disable the command_requires_full_index setting in the builtin and ensure
the tests pass.

5. If the tests do not pass, then alter the logic to work with the sparse
index.

6. Add tests to check that a sparse index stays sparse.
7. Add performance tests to demonstrate speedup.

8. Update the Git command’s documentation accordingly, if any change happens
to change its behavior (though usually this should not happen).

[points 3-8 added together should take Approx. 7 days - 15 days]
In summary, each integration will have a similar schedule stated above. So,

without extending the timeline, it is expected to finish 3 - 4 integrations
during the GSoC program period.


https://git.github.io/SoC-2022-Ideas/#more-sparse-index-integrations
https://github.com/git/git/blob/master/t/t1092-sparse-checkout-compatibility.sh
https://github.com/git/git/blob/master/repository.h#L35
https://github.com/git/git/blob/38062e73e009f27ea192d50481fcb5e7b0e9d6eb/t/t1092-sparse-checkout-compatibility.sh#L873-L939
https://github.com/git/git/blob/master/t/perf/p2000-sparse-operations.sh

GSoC 2022 @ Git | Shaoxuan Yuan

Timeline

I'm confident that I can start the project as early as the start of the
Community Bonding Period (May 20 - June 12). This is because I have made
contacts with my mentors, and have read the related documentation, though it
should not be comprehensive. Added the prior experience with the idea, I
believe I'1ll be ready to get up to speed to work on the project by then.

The exact time arrangement of each integration is hard to determine, but the
general pace, from my estimation, should roughly be doing an integration per
month, starting May 20.

Here is a proposed integration schedule:

1. “git-mv” (we are currently working on this one and the expected time of
completion is before May 20.)

“git-rm”

“git-grep”

“git-rev-parse”

“git-fsck”

a b W N

This schedule is based upon the proposed integration schedule from SoC 2022
Ideas. As I am working on “git-mv” with the mentors, we realized that this
schedule, as proposed by Derrick to be “generally organized in order of
least-difficult to most-difficult”, can have surprising difficulties. Some of
these difficulties I encountered are, for example, “git-mv” does not work
quite ideally with “sparse-checkout” yet, so the “sparse-index” integration
has to wait, reference the conversation from this patch.

With that being said, this proposed integration schedule could be deceptive.
And as I dig deeper into each command, suitable modifications to the schedule
could ensue. Conclusion: each integration should take a month on average.

Availability

My summertime is reserved for GSoC, so I expect that I can work 5 days per
week, 6 - 8 hours per day, and that is 30 - 40 hours a week. Certainly, I may
want to go for a, say, motorcycle trip, sometimes, but I will try my best to
keep this time commitment and be always available through the community’s
mailing list


https://git.github.io/SoC-2022-Ideas/#more-sparse-index-integrations
https://git.github.io/SoC-2022-Ideas/#more-sparse-index-integrations
https://lore.kernel.org/git/e127dadb-7b44-55f8-16ea-9fcf94905db8@github.com/

GSoC 2022 @ Git | Shaoxuan Yuan

After GSoC

Some

I realize that it will be much more helpful if our GSoC participants can stick
around after the event. And that’'s exactly what I intend to do. I think doing
open-source, especially with the community that powers a ubiquitous dev tool
is simply cool. And in such a community, besides being cool, I can learn more
and grow with it and possibly see myself making more important contributions
if I keep participating.

When I first joined the community three months ago, the ancient way of
collaborating through a mailing list by sending diff patches was really
puzzling (GitHub was the only means that I knew about for open-source
collaboration). But I was lucky that folk from last year’'s GSoC gave me a
helping hand. I also want to offer my helping hand to the new people who may
be as confused as I was, like passing a torch.

I'm also thinking about writing some serious blogs about my development around
Git. I can share my insights as a student participant developer and different
technical details about the experimental “sparse-checkout” command, or even
Git in general: its internals, daily tricks, etc. In this way, I can also
spread the influence of GSoC, Git, and open-source in a positive way.

Credits to Myself

I've contributed to other open-source projects, though still a beginner, I'm
generally familiar with the process of contribution. The related experiences
are all in the contribution graph on my GitHub profile page. In the Casbin
community, I've made over 50 PRs and resolved over 30 issues.

I came to participate in the Git community fairly early this year (around
January). I got myself rather comfortable with the contribution process by
writing, replying, and auditing different sorts of patches in the community.

With the patches done so far, I'm getting more familiar with the Git
internals, project structures, commonly used APIs, test suites, required tech
stacks, and coding guidelines. For understanding better about Git, I read and
reread the documentation a few times, including ‘MyFirstContribution.txt’,
‘MyFirstObjectWalk.txt’', ‘sparse-index.txt’, and ‘Hacking Git’'. The book Pro
Git also helps me to understand the Git internals better. Other than that, I
also fully read and referenced the blogs Make your monorepo feel small with
Git's sparse index and Bring your monorepo down to size with sparse-checkout



https://github.com/ffyuanda
https://github.com/casbin
https://github.com/gitgitgadget/git/blob/master/Documentation/MyFirstContribution.txt
https://github.com/gitgitgadget/git/blob/master/Documentation/MyFirstObjectWalk.txt
https://github.com/gitgitgadget/git/blob/master/Documentation/technical/sparse-index.txt
https://git-scm.com/docs/user-manual#hacking-git
https://github.blog/2021-11-10-make-your-monorepo-feel-small-with-gits-sparse-index/
https://github.blog/2021-11-10-make-your-monorepo-feel-small-with-gits-sparse-index/
https://github.blog/2020-01-17-bring-your-monorepo-down-to-size-with-sparse-checkout/

GSoC 2022 @ Git | Shaoxuan Yuan

written by mentor Derrick. The best part is that the prior knowledge and
experience with my proposed project idea make me well-prepared for the
upcoming challenges.

Closing remarks

I'm currently in a gap year between Freshman and Sophomore, so I will have
sufficient time to work on the project, without distraction from schoolwork.

I want to say that I'm a genuinely enthusiastic open-source newbie, and I'm
truly looking forward to getting this opportunity. With this opportunity, I
can see myself empowering Git's development and even reinvigorating the
open-source ecosystem, with my greatest endeavor possible.

In the very end, I want to say that I truly appreciate the support from the
community and especially the mentors: Victoria and Derrick. They did and are
doing an incredible job to maintain and empower the Git open-source community;
they also provided and are providing the most needed and warm support to a new
contributor like me.

Thanks & Regards,
Shaoxuan



