

SCIENCE CURRICULUM Grade 6

New Jersey Student Learning Standards

Science: Grade 6
Pacing Guide

SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY
<u>Unit 1</u>	Unit 2	Unit 3	Unit 4	Unit 5
Scientific and Engineering	Growth, Development and	Matter and Energy in	Interdependent Relationships	Force and Motion
Practices	Reproduction of Organisms	Organisms and Ecosystems	in Ecosystems	
NJSLS- Earth & Space Sciences	NJSLS- Life Sciences	NJSLS- Life Sciences	NJSLS- Life Sciences	NJSLS- Physical Sciences
Scientific and Engineering	MS-LS1-4	MS-LS2-1	MS-LS2-4	MS-PS2-1
Practices 1-8	MS-LS1-5	MS-LS2-2	MS-LS2-5	MS-PS2-2
		MS-LS2-3		
			NJSLS- Engineering Design	NJSLS- Engineering Design
			MS-ETS1-1	MS-ETS1-1
			MS-ETS1-3	MS-ETS1-2
				MS-ETS1-3
				MS-ETS1-4

FEBRUARY	MARCH	APRIL	MAY/JUNE
Unit 6	Unit 5 & 6 Review	<u>Unit 7</u>	Unit 8
Types of Interactions		Astronomy	Weather & Climate
			End of Year Review
NJSLS- Physical Sciences	NJSLS- Physical Sciences	NJSLS- Earth & Space Sciences	NJSLS- Earth & Space Sciences
MS-PS2-3	MS-PS2-1	MS-ESS1-1	MS-ESS2-4
MS-PS2-4	MS-PS2-2	MS-ESS1-2	MS-ESS2-5
MS-PS2-5	MS-PS2-3	MS-ESS1-3	MS-ESS2-6
	MS-PS2-4		
	MS-PS2-5		

Science: Grade 6 Alternative Curriculum

Unit	Textbooks and Other Resources	Interactive Learning Centers & Related Activities
Unit 1 Scientific Practices	HSP Science Chapter 1 Mastering the Scientific Method Grades 4-8	Interpreting Graphs, Creating Graphs from Data, Application of the Scientific Method (experiments)
Unit 2 Growth, Development and Reproduction of Organisms	HSP Science Chapters 1-3 Steck-Vaughn: The Human Body Chapter 1 Steck-Vaughn: Land Animals Chapter 1 Steck- Vaughn: Plant Life Chapters 1 & 6	BrainPOP: Cells, Cell Structures, Genetics, DNA, Heredity, Mitosis, Natural Selection, Plant Growth Photosynthesis Centers: Plant and Animal Cell Vocabulary, Living & Nonliving Sort, What Plants and Animals Need, Life Cycles, Parts of a Plant, Animal Babies, Live Birth vs. Laying Eggs Sorting, Animal Adaptation Sort, Venn-Diagram Comparing and Contrasting Plant and Animal Cells and Reproduction
Unit 3 Matter and Energy in Organisms and Ecosystems	HSP Science Chapters 4 & 5	BrainPOP: Food Chains, Energy Pyramids, Natural Selection, Population Growth, Symbiosis, Ecosystems, Land Biomes, Human Evolution, Charles Darwin, Extinction, Behavior, Camouflage Centers: Animal Adaptation Sort, Ecosystem Sort, Food Chain, Food Pyramid, Carbon Cycle Center, Food Chains for Various Ecosystems, Nonliving and Living Parts of an Ecosystems
Unit 4 Interdependent Relationships in Ecosystems	HSP Science Chapters 4 & 5 Steck-Vaughn: Land Animals Chapter 7 Steck Vaughn: Plant Life: Chapter 8	BrainPOP: Food Chains, Energy Pyramids, Natural Selection, Population Growth, Symbiosis, Ecosystems, Land Biomes, Human Evolution, Charles Darwin, Extinction, Behavior, Camouflage Centers: Animal Adaptation Sort, Ecosystem Sort, Food Chain, Food Pyramid, Food Chains for Various Ecosystems, Identifying Environmental Solutions
Unit 5 Force and Motion	HSP Science Chapter 16 Steck-Vaughn: Matter, Motions, and Machines Chapter 6	BrainPOP: Isaac Newton, Acceleration, Distance, Rate and Time, Force, Gravity, Inclined Plane, Kinetic Energy, Newton's Laws of Motion, Potential Energy Centers: Potential and Kinetic Energy, Push or Pull, Force & Motion, Hot Wheels Tracks, Marble Maze
Unit 6 Types of Interactions	HSP Science Chapters 14 & 15 Steck Vaughn: Matter, Motions, and Machines Chapter 5	BrainPOP: Electricity, Magnetism, Albert Einstein

Born on August 24, 2016 by the South Bergen Jointure Commission Board of Education

		Centers: Forms of Energy, Magnetism, Electricity, Snap Circuits, Gravitational Force of Objects
Unit 7 Astronomy	HSP Science Chapter 11 Steck-Vaughn: The Earth and Beyond Chapter 1	BrainPOP: Eclipse, Solar System, Galaxies, Milky Way, Outer Solar System, Moon, Moon Phases, Sun, Seasons, Tides, Star Life Cycles, Constellations Centers: Solar System, Moon Phases, Constellations, Seasons, Earth-Sun-Moon Diagram
Unit 8 Weather and Climate	HSP Science Chapters 9 & 10 Steck-Vaughn: The Earth & Beyond Chapter 2	BrainPOP: Climate Change, Climate Type, Clouds, Drought, Earth's Atmosphere, Floods, Greenhouse Effect, Humidity, Hurricanes, Natural Disaster, Seasons, Solstice and Equinox, Temperature, Thunderstorms, Tornadoes, Water Cycle, Weather, Wind Centers: Weather Vocabulary, Water Cycle, Dressing for the Weather, Seasons, Atmosphere layers, Climate Zones, Air Masses, Cloud Types

Science: Grade 6 Grade Level Curriculum

Unit 1: Scientific Practices

Unit Summary: The practices describe behaviors that scientists engage in as they investigate and build models and theories about the natural world and the key set of engineering practices that engineers use as they design and build models and systems. In this unit, students will learn the steps of the scientific method and how to use the steps to solve scientific problems. Students will use data to construct graphs and will interpret data on a graph. **Students will develop and use** models, construct explanations, and engage in argument from evidence.

Scientific and Engineering Practices

Practice 1: Asking questions (for science) and defining problems (for engineering)

Practice 2: Developing and using models

Practice 3: Planning and carrying out investigations

Practice 4: Analyzing and interpreting data

Practice 5: Using mathematics and computational thinking

Practice 6: Constructing explanations (for science) and designing solutions (for engineering)

Practice 7: Engaging in argument from evidence

Practice 8: Obtaining, evaluating, and communicating information

Description

The practices describe behaviors that scientists engage in as they investigate and build models and theories about the natural world and the key set of engineering practices that engineers use as they design and build models and systems. The NRC uses the term practices instead of a term like "skills" to emphasize that engaging in scientific investigation requires not only skill but also knowledge that is specific to each practice. Part of the NRC's intent is to better explain and extend what is meant by "inquiry" in science and the range of cognitive, social, and physical practices that it requires.

Although engineering design is similar to scientific inquiry, there are significant differences. For example, scientific inquiry involves the formulation of a question that can be answered through investigation, while engineering design involves the formulation of a problem that can be solved through design. Strengthening the engineering aspects of the Next Generation Science Standards will clarify for students the relevance of science, technology, engineering and mathematics (the four STEM fields) to everyday life.

Unit 2: Growth, Development and Reproduction of Organisms

Grade: 6

Content Area: Life Science

Pacing: 25 Instructional Days

Essential Question

What influences the growth and development of an organism?

Student Learning Objectives (Performance Expectations)

MS-LS1-4 Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

MS-LS1-5. Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Unit Summary

Students use data and conceptual models to understand how the environment and genetic factors determine the growth of an individual organism. They connect this idea to the role of animal behaviors in animal reproduction and to the dependence of some plants on animal behaviors for their reproduction. Students provide evidence to support their understanding of the structures and behaviors that increase the likelihood of successful reproduction by organisms. The crosscutting concepts of cause and effect and structure and function provide a framework for understanding the disciplinary core ideas. Students demonstrate grade-appropriate proficiency in analyzing and interpreting data, using models, conducting investigations, and communicating information. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Reproduction, nest building, herding, breeding, predators, germination, phenomena, organisms

Formative Assessment Measures

Part A: How do characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants, respectively?

Students who understand the concepts are able to:

Collect empirical evidence about animal behaviors that affect the animal's probability of successful reproduction and also affect the probability of plant reproduction.

Collect empirical evidence about plant structures that are specialized for reproductive success.

Use empirical evidence from experiments and other scientific reasoning to support oral and written arguments that explain the relationship among plant structure, animal behavior, and the reproductive success of plants.

Identify and describe possible cause-and effect relationships affecting the reproductive success of plants and animals using probability.

Support or refute an explanation of how characteristic animal behaviors and specialized plant structures affect the probability of successful plant reproduction using oral and written arguments.

Part B: How do environmental and genetic factors influence the growth of organisms?

Students who understand the concepts are able to:

Conduct experiments, collect evidence, and analyze empirical data.

Use evidence from experiments and other scientific reasoning to support oral and written explanations of how environmental and genetic factors influence the growth of organisms.

Born on August 24, 2016 by the South Bergen Jointure Commission Board of Education

Use evidence from experiments and other scientific reasoning to support oral and written explanations of how environmental and genetic factors influence the growth of organisms.

Identify and describe possible causes and effects of local environmental conditions on the growth of organisms.

Identify and describe possible causes and effects of genetic conditions on the growth of organisms.

Identify and describe possible causes and effects of genetic conditions on the growth of organisms.					
Interdisciplinary Connections					
NJSLS- ELA		NJSLS- Mathematics			
· · · · · · · · · · · · · · · · · · ·		Understand that a set of data collected to answer a statistical question has a			
texts. (MS-LS1-4),(MS-LS1-5) RST.6			y its center, spread, and overall shape.		
	nclusions of a text; provide an accurate	(MS-LS1-4),(MS-LS1-5) 6.SP.A.2			
1	prior knowledge or opinions. (MS-LS1-5)	Summarize numerical data sets in relation to their context. (MS-LS1-4),(MS-LS1-5)			
RST.6-8.2		6.SP.B.4			
_	and specific claims in a text, distinguishing				
	ons and evidence from claims that are				
not. (MS-LS1-4) RI.6.8					
	pline content. (MS-LS1-4) WHST.6-8.1				
1	its to examine a topic and convey ideas,				
_	h the selection, organization, and analysis				
of relevant content. (MS-LS1-5) W					
Draw evidence from informationa	I texts to support analysis, reflection, and				
research. (MS-LS1-5) WHST.6-8.9					
Core Instructional Materials	Core Instructional Materials Can include: Textbooks Series, Lab Materials, etc.				
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8, CR	P11,CRP12			
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A.4, 8	3.1.8.A.5, 8.1.8.D.4, 8.1.8.D.5, 8.1.8.E.	1, 8.2.8.A.2, 8.2.8.3, 8.2.8.B.1,		
	N	lodifications			
English Language Learners	Special Education	At-Risk	Gifted and Talented		
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting		
Word walls	Visual aides	Peer tutoring	Challenge assignments		
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities		
Bilingual dictionaries/translation		Graphic organizers	Tiered activities		
Think alouds	Leveled readers	Extended time	Independent research/inquiry		
Read alouds	Assistive technology	Parent communication	Collaborative teamwork		
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning		
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks		
Think-pair- share	Answer masking		Self-directed activities		
Visual aides	Answer eliminator				
Modeling	Highlighter				
Cognates	Color contrast				

MS-LS1-4 From Molecules to Organisms: Structures and Processes

MS-LS1-4 Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Clarification Statement: Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.

Assessment Boundary: N/A

Evidence Statements: MS-LS1-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Engaging in Argument from Evidence	LS1.B: Growth and Development of Organisms	Cause and Effect
Engaging in argument from evidence in 6–8 builds on	Animals engage in characteristic behaviors that	Phenomena may have more than one cause, and some cause
K-5 experiences and progresses to constructing a	increase the odds of reproduction.	and effect relationships in systems can only be described
convincing argument that supports or refutes claims	Plants reproduce in a variety of ways,	using probability.
for either explanations or solutions about the natural	sometimes depending on animal behavior and	
and designed world(s).	specialized features for reproduction.	
Use an oral and written argument supported by		
empirical evidence and scientific reasoning to support		
or refute an explanation or a model for a		
phenomenon or a solution to a problem.		

Connections to other DCIs in this grade-band: MS.LS2.A

Articulation of DCIs across grade-bands: 3.LS1.B; HS.LS2.A; HS.LS2.D

NJSLS- ELA: RST.6-8., WHST.6-8.1 NJSLS- Math: 6.SP.A.2, 6.SP.B.4

5E Model

MS-LS1-4 Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Engage	Bald Eagle- Reproduction Pairs Maine	
Anticipatory Set	http://participatoryscience.org/standard/ms-ls1-4	
Exploration		

Video & Lesson Series Born on August 24, 2016 by the South Bergen Jointure Commission Board of Education

Student Inquiry	http://www.pbslearningmedia.org/resource/tdc02.sci.life.repro.lp_reproduce/reproduction/		
	Lead students through series of videos and related discussion questions.		
	Construct an Argument		
	Have students select one plant or animal. Students will research the characteristics and structures to answer the following questions:		
	How do organisms (plants and animals) reproduce? What environmental factors/characteristics would help to make plants and animals		
	reproduce successfully? What factors/characteristics would inhibit reproduction? What are some of the causes/effects of reproduction		
	that plants and animals might experience within their habitat/ecosystem?		
	<u>In these lessons</u>		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
Evalenation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
Concepts and Practices	LS1.B: Growth and Development of Organisms		
	Animals engage in characteristic behaviors that increase the odds of reproduction.		
	Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.		
Elaboration	Related Activities		
Extension Activity	Better Lessons: MS-LS1-4		
	Assessment Task A: Construct an Argument		
	Use an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a		
	model for a phenomenon or a solution to a problem.		
Evaluation	Evaluation Criteria- Argument should include:		
Assessment Tasks	Key terms		
	Information regarding the reproduction characteristics of plant/animal		
	Factors that contribute to or inhibit reproduction		
	Research-based evidence		

MS-LS1-5 From Molecules to Organisms: Structures and Processes

MS-LS1-5. Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Clarification Statement: Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds.

Assessment Boundary: Assessment does not include genetic mechanisms, gene regulation, or biochemical processes.

Evidence Statements: MS-LS1-5

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing Solutions	LS1.B: Growth and Development of	Cause and Effect
Constructing explanations and designing solutions in 6–8 builds on K–5	<u>Organisms</u>	Phenomena may have more than one
experiences and progresses to include constructing explanations and	Genetic factors as well as local conditions	cause, and some cause and effect
designing solutions supported by multiple sources of evidence consistent	affect the growth of the adult plant.	relationships in systems can only be
with scientific knowledge, principles, and theories.		described using probability.
Construct a scientific explanation based on valid and reliable evidence		
obtained from sources (including the students' own experiments) and the		
assumption that theories and laws that describe the natural world operate		
today as they did in the past and will continue to do so in the future.		

Connections to other DCIs in this grade-band: MS.LS2.A

Articulation of DCIs across grade-bands: 3.LS1.B; 3.LS3.A; HS.LS2.A

NJSLS- ELA: RST.6-8.1, RST.6-8.2, WHST.6-8.2, WHST.6-8.9

NJSLS- Math: 6.SP.A.2, 6.SP.B.4

5E Model

Population Growth Patterns:

http://www.ck12.org/life-science/Population-Growth-Patterns-in-Life-Science/lesson/Population-Growth-Patterns-Basic/?referrer=concept
Engage

Anticipatory Set

Limiting Factors:

MS-LS1-5. Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

https://www.tracy.k12.ca.us/sites/mitrajuarez/Shared%20Documents/chapter05_section02.htm

Limiting Factors to Population Growth:

Exploration <a href="http://www.ck12.org/life-science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-in-Life-Science/Limiting-Factors-to-Population-Growth-In-Life-Science/Limiting-Factors-to-Population-Growth-In-Life-Science/Limiting-Factors-to-Population-Growth-In-Life-Science/Limiting-Factors-to-Population-Growth-In-Life-Science/Limiting-Factors-to-Population-Growth-In-Life-Science/Limiting-Factors-to-Population-Growth-In-Life-Science/Limiting-Factors-to-Population-Growth-In-Life-Science/Limiting-Factors-to-Population-Growth-In-Life-Science/Limiting-Factors-to-Population-Growth-In-Life-Science/Limiting-Factors-to-Population-Growth-In-Life-Science/Limiting-Factors-To-Population-Growth-In-Life-Science/Limiting-Factors-To-Population-Growth-In-Life-Science/Limiting-Factors-To-Population-Growth-In-Life-Science/Limiting-Factors-To-Population-Growth-In-Life-Science/Limiting-Factors-To-Population-Growth-In-Life-Science/Limiting-Factors-To-Population-Growth-In-Life-Science/Limiting-Factors-To-Population-Growth-In-Life-Science/Limiting-Factors-To-Population-Growth-In-Life-Science/Limiting-Factors-To-Population-Growth-In-Life-Science/Life-Science/Life-Science/Life-Science/Life-Science/Life-Science/Life-Science/Life-Science/Life-Scie

Student Inquiry Lead students in exploration of articles, videos and related discussion questions.

Carousel Activity

Born on August 24, 2016 by the South Bergen Jointure Commission Board of Education

	Davidon a set of questions that will provide students with situations and data about how specific factors will affect an arganism. Its habitat
	Develop a set of questions that will provide students with situations and data about how specific factors will affect an organism, its habitat
	and its growth potential. These questions will be hung on the walls around the room. Students will pair up and like a Carousel move from
	station to station sharing their ideas of how to answer the question. Students will also provide feedback to other answers (students) and
	whether they agree (Check Mark) or disagree (X) with what was presented before them.
	Questions should include an organism, a genetic or environmental factor being discussed and how that factor may/may not affect the
	growth potential of that organism.
	Example Questions:
	What basic environmental factors do organisms need to survive (water, air, habitat and food)?
	What environmental factors would affect how an organism grows within its environment?
	How would an abundance of or lack of water, food, air and habitat affect an organism's growth potential?
	Are there any environmental hazards that would contribute to the growth of an organism within its habitat (drought, size of habitat vs. size
	of organism, human influence - fertilizer, etc.)?
	In these lessons
Evalenation	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Concepts and	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Practices	LS1.B: Growth and Development of Organisms
	Genetic factors as well as local conditions affect the growth of the adult plant.
Elaboration	Related Activities
Extension Activity	Better Lessons: MS-LS1-5
	Assessment Task A: Carousel Evaluation
Evaluation	Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and
Assessment Tasks	the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the
	<u>future.</u>
L	

Unit 3: Matter and Energy in Organisms and Ecosystems

Grade: 6

Content Area: Life Science

Pacing: 25 Instructional Days

Essential Question

How and why do organisms interact with their environment and what are the effects of these interactions?

Student Learning Objectives (Performance Expectations)

MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

MS-LS2-2. Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

MS-LS2-3. Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Unit Summary

Students analyze and interpret data, develop models, construct arguments, and demonstrate a deeper understanding of the cycling of matter, the flow of energy, and resources in ecosystems. They are able to study patterns of interactions among organisms within an ecosystem. They consider biotic and abiotic factors in an ecosystem and the effects these factors have on populations. They also understand that the limits of resources influence the growth of organisms and populations, which may result in competition for those limited resources. The crosscutting concepts of matter and energy, systems and system models, patterns, and cause and effect provide a framework for understanding the disciplinary core ideas. Students demonstrate grade-appropriate proficiency in analyzing and interpret data, developing models, and constructing arguments. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Cycling of Matter, flow of energy, ecosystems, biome, biotic, abiotic, producers, consumers, decomposers, symbiosis, carbon cycle

Formative Assessment Measures

Part A: How do changes in the availability of matter and energy affect populations in an ecosystem?

Students who understand the concepts are able to:

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Use cause-and-effect relationships to predict the effect of resource availability on organisms and populations in natural systems.

Part B: How do relationships among organisms, in an ecosystem, affect populations?

Students who understand the concepts are able to:

Construct an explanation about interactions within ecosystems.

Include qualitative or quantitative relationships between variables as part of explanations about interactions within ecosystems.

Make predictions about the impact within and across ecosystems of competitive, predatory, or mutually beneficial relationships as abiotic (e.g., floods, habitat loss) or biotic (e.g., predation) components change.

Interdisciplinary Connections

NJSLS- ELA NJSLS- Mathematics

Cite specific textual evidence to support analysis of science and technical texts.(MS-LS2-1),(MS-LS2-2) RST.6-8.1

Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).(MS-LS2-1) RST.6-8.7

Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content.(MS-LS2-2) WHST.6-8.2

Draw evidence from literary or informational texts to support analysis, reflection, and research.(MS-LS2-2) WHST.6-8.9

Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 8 topics, texts, and issues, building on others' ideas and expressing their own clearly.(MS-LS2-2) SL.8.1 Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation.(MS-LS2-2) SL.8.4

Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.(MS-LS2-3) SL.8.5

Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.(MS-LS2-3) 6.EE.C.9

Summarize numerical data sets in relation to their context.(MS-LS2-2) 6.SP.B.5

Core Instructional Materials Can include: Textbooks Series, Lab Materials, etc.		
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8, CRP11, CRP12	
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A.4, 8.1.8.A.5, 8.1.8.D.4, 8.1.8.D.5, 8.1.8.E.1, 8.1.8.F.1, 8.2.8.A.2, 8.2.8.A.2, 8.2.8.A.3, 8.2.8.B.1, 8.2.8.D.1	

<u> </u>	Modifications				
English Language Learners	Special Education	At-Risk	Gifted and Talented		
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting		
Word walls	Visual aides	Peer tutoring	Challenge assignments		
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities		
Bilingual	Multimedia	Graphic organizers	Tiered activities		
dictionaries/translation	Leveled readers	Extended time	Independent research/inquiry		
Think alouds	Assistive technology	Parent communication	Collaborative teamwork		
Read alouds	Notes/summaries	Modified assignments	Higher level questioning		
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking tasks		
Annotation guides	Answer masking		Self-directed activities		
Think-pair- share	Answer eliminator				
Visual aides	Highlighter				
Modeling	Color contrast				
Cognates					

MS-LS2-1 Ecosystems: Interactions, Energy, and Dynamics

MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Clarification Statement: Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant and scarce resources.

Assessment Boundary: N/A

Evidence Statements: MS-LS2-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	LS2.A: Interdependent Relationships in Ecosystems	Cause and Effect
Analyzing data in 6–8 builds on K–5	Organisms, and populations of organisms, are dependent on	Cause and effect relationships may be used to
experiences and progresses to extending	their environmental interactions both with other living things and	predict phenomena in natural or designed systems.
quantitative analysis to investigations,	with nonliving factors.	
distinguishing between correlation and	In any ecosystem, organisms and populations with similar	
causation, and basic statistical techniques	requirements for food, water, oxygen, or other resources may	
of data and error analysis.	compete with each other for limited resources, access to which	
Analyze and interpret data to provide	consequently constrains their growth and reproduction.	
evidence for phenomena.	Growth of organisms and population increases are limited by	
	access to resources.	

Connections to other DCIs in this grade-band: MS.ESS3.A; MS.ESS3.C

Articulation of DCIs across grade-bands: 3.LS2.C; 3.LS4.D; 5.LS2.A; HS.LS2.A; HS.LS4.C; HS.LS4.D; HS.ESS3.A

NJSLS- ELA: RST.6-8.1, RST.6-8.7

NJSLS- Math: N/A

5E Model

MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.		
Engago	http://www.ck12.org/ngss/middle-school-life-sciences/ecosystems:-interactions,-energy,-and-dynamics	
Engage Anticipatory Set	Open Limiting Factors to Population Growth Tab	
Anticipatory Set	Click Video: Populations' Biotic Potential	
	Rat Attack- Interactive Population Activity	
Exploration	In this lesson, students will	
Student Inquiry	understand that an ecosystem encompasses both biotic (organisms) and abiotic components (such as light, nutrients, and moisture).	

	- describe the interactions among the components of one forest ecosystem.
	- predict how a forest ecosystem might change when a resource pulse occurs.
	http://www.pbs.org/wgbh/nova/education/activities/3603_rats.html
	Exploring Resource Availability and Population Size
	In this lesson, students will analyze and interpret data to provide evidence for the effects of resource availability on organisms and
	populations of organisms in an ecosystem.
	http://betterlesson.com/lesson/639457/exploring-resource-availability-and-population-size
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Explanation	LS2.A: Interdependent Relationships in Ecosystems
Concepts and Practices	Organisms, and populations of organisms, are dependent on their environmental interactions both with other living things and with
	nonliving factors.
	In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with
	each other for limited resources, access to which consequently constrains their growth and reproduction.
	Growth of organisms and population increases are limited by access to resources.
Elaboration	RiverVenture: Population Study Game
Extension Activity	http://www.riverventure.org/charleston/resources/pdf/population%20study%20game.pdf
	Assessment Task A: Narrative (Rat Attack Activity)
	Have the new teams combine organism stories and put together a comprehensive narrative of what happened with the entire forest
	ecosystem over the two years, including the outcome of each organism at the end of each year.
	Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing
	between correlation and causation, and basic statistical techniques of data and error analysis.
Evaluation	Assessment Task B: Collaborative Group Discussion Questions (Exploring Resources Activity)
Assessment Tasks	Student responses will indicate their ability to analyze and interpret given data.
	Analyze and interpret data to provide evidence for phenomena.
	Assessment Task C: Exit Slips (Exploring Resources Activity)
	Students will complete an Exit Slip which requires them to construct a scientific explanation addressing the relationship between resource
	availability and population dynamics.

MS-LS2-2 Ecosystems: Interactions, Energy, and Dynamics

MS-LS2-2. Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Clarification Statement: Emphasis is on predicting consistent patterns of interactions in different ecosystems in terms of the relationships among and between organisms and abiotic components of ecosystems. Examples of types of interactions could include competitive, predatory, and mutually beneficial.

Assessment Boundary: N/A

Evidence Statements: MS-LS2-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing	LS2.A: Interdependent Relationships in Ecosystems	<u>Patterns</u>
<u>Solutions</u>	Similarly, predatory interactions may reduce the number	Patterns can be used to identify cause and effect
Constructing explanations and designing	of organisms or eliminate whole populations of organisms.	relationships.
solutions in 6–8 builds on K–5 experiences and	Mutually beneficial interactions, in contrast, may become	
progresses to include constructing explanations	so interdependent that each organism requires the other	
and designing solutions supported by multiple	for survival. Although the species involved in these	
sources of evidence consistent with scientific	competitive, predatory, and mutually beneficial	
ideas, principles, and theories.	interactions vary across ecosystems, the patterns of	
Construct an explanation that includes	interactions of organisms with their environments, both	
qualitative or quantitative relationships	living and nonliving, are shared.	
between variables that predict phenomena.		

Connections to other DCIs in this grade-band: MS.LS1.B

Articulation of DCIs across grade-bands: 1.LS1.B; HS.LS2.A; HS.LS2.B; HS.LS2.D

CCSS- ELA: RST.6-8.1, WHST.6-8.2, WHST.6-8.9, SL.8.1, SL.8.4

CCSS- Math: 6.SP.B.5

5E Model

MS-LS2-2. Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Engage Anticipatory Set Videos: http://www.ck12.org/ngss/middle-school-life-sciences/ecosystems:-interactions,-energy,-and-dynamics

Competition, Predation, and Symbiosis (separate videos as part of explanation)

Symbiosis: A Surprising Tale of Species Cooperation

	•	
	In groups, students will create a digital presentation (PPT, Google Slides etc.) for an assigned biome. Each student will be responsible to	
	contributing to the presentation by creating at least one slide on one of the following factors of their biome: abiotic and biotic factors,	
	food chain and web, land features, organisms, cycles, etc. The following websites can be used for student research:	
	http://kids.nceas.ucsb.edu/biomes/	
	http://www.blueplanetbiomes.org/world_biomes.htm	
	http://earthobservatory.nasa.gov/Experiments/Biome/	
	The following are short video clips:	
Exploration	http://www.pbslearningmedia.org/resource/tdc02.sci.life.eco.arctic/arctic-tundra/	
Student Inquiry	http://www.pbslearningmedia.org/resource/tdc02.sci.life.eco.desert/desert-biome/	
	http://www.pbslearningmedia.org/resource/tdc02.sci.life.oate.rainforest/amazon-rainforest/	
	Following the group presentations, guide students in predicting the patterns of interaction that were presented in each biome by asking	
	the following questions:	
	1. What competitive interactions did you see?	
	2. What predatory interactions did you see?	
	3. What symbiotic interactions did you see?	
	4. Which interactions were mutually beneficial to more than one organism?	
	In these lessons:	
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.	
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.	
Funlamation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
Explanation	LS2.A: Interdependent Relationships in Ecosystems	
Concepts and Practices	Similarly, predatory interactions may reduce the number of organisms or eliminate whole populations of organisms. Mutually beneficial	
	interactions, in contrast, may become so interdependent that each organism requires the other for survival. Although the species	
	involved in these competitive, predatory, and mutually beneficial interactions vary across ecosystems, the patterns of interactions of	
	organisms with their environments, both living and nonliving, are shared.	
Elaboration	Related Activities	
Extension Activity	http://www.ck12.org/ngss/middle-school-life-sciences/ecosystems:-interactions,-energy,-and-dynamics	
	Assessment Task A: Group Presentation Response Questions	
Evaluation	Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations	
Assessment Tasks	and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.	
	Construct an explanation that includes qualitative or quantitative relationships between variables that predict phenomena.	
-		

MS-LS2-3 Ecosystems: Interactions, Energy, and Dynamics

MS-LS2-3. Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.

Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.

Evidence Statements: MS-LS2-3

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	LS2.B: Cycle of Matter and Energy Transfer in Ecosystems	Energy and Matter
Modeling in 6–8 builds on K–5 experiences	Food webs are models that demonstrate how matter and energy	The transfer of energy can be tracked as energy
and progresses to developing, using, and	is transferred between producers, consumers, and decomposers	flows through a natural system.
revising models to describe, test, and	as the three groups interact within an ecosystem. Transfers of	Connections to Nature of Science
predict more abstract phenomena and	matter into and out of the physical environment occur at every	Scientific Knowledge Assumes an Order and
design systems.	level. Decomposers recycle nutrients from dead plant or animal	Consistency in Natural Systems
Develop a model to describe phenomena.	matter back to the soil in terrestrial environments or to the water	Science assumes that objects and events in natural
	in aquatic environments. The atoms that make up the organisms	systems occur in consistent patterns that are
	in an ecosystem are cycled repeatedly between the living and	understandable through measurement and
	nonliving parts of the ecosystem.	observation.

Connections to other DCIs in this grade-band: MS.PS1.B

Articulation of DCIs across grade-bands: 5.LS2.A; 5.LS2.B; HS.PS3.B; HS.LS1.C; HS.LS2.B; HS.ESS2.A

NJSLS- ELA: SL.8.5 NJSLS- Math: 6.EE.C.9

5E Model

MS-LS2-3. Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Engage Video and Activities

Anticipatory Set	http://betterlesson.com/lesson/639248/biotic-and-abiotic-factors		
Exploration Student Inquiry	Carbon Cycle Role Play https://www.calacademy.org/educators/lesson-plans/carbon-cycle-role-play Role Play Cards: http://www.calacademy.org:8080/sites/default/files/assets/docs/pdf/048s1_carboncycledemocards.pdf Lesson Plan: http://www.calacademy.org:8080/sites/default/files/assets/docs/pdf/048_carboncycleroleplayredesign10nov2014mks.pdf		
Explanation Concepts and Practices	In these lessons: Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas): LS2.B: Cycle of Matter and Energy Transfer in Ecosystems Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem.		
Elaboration Extension Activity	Meadowlands Environmental Center http://mec.rst2.edu/environment/		
Evaluation Assessment Tasks	Assessment Task A: Discussion- Human Impacts on the Carbon Cycle (Part of Carbon Cycle Role Play lesson plan) Lead a class discussion to assess student understanding of human impact on the carbon cycle. Assessment Task B: Carbon Cycle Poster https://www.calacademy.org/educators/lesson-plans/carbon-cycle-poster Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.		

Unit 4: Interdependent Relationships in Ecosystems

Grade: 6

Content Area: Life Science

Pacing: 25 Instructional Days

Essential Question

What happens to ecosystems when the environment changes?

Student Learning Objectives (Performance Expectations)

MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

MS-LS2-5. Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Unit Summary

Students build on their understandings of the transfer of matter and energy as they study patterns of interactions among organisms within an ecosystem. They consider biotic and abiotic factors in an ecosystem and the effects these factors have on a population. They construct explanations for the interactions in ecosystems and the scientific, economic, political, and social justifications used in making decisions about maintaining biodiversity in ecosystems. The crosscutting concept of stability and change provide a framework for understanding the disciplinary core ideas. This unit includes a two-stage engineering design process. Students first evaluate different engineering ideas that have been proposed using a systematic method, such as a tradeoff matrix, to determine which solutions are most promising. They then test different solutions, and combine the best ideas into a new solution that may be better than any of the preliminary ideas. Students demonstrate grade appropriate proficiency in asking questions, designing solutions, engaging in argument from evidence, developing and using models, and designing solutions. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Biodiversity, scientific justification, habitat, niches, herbivore, carnivore, omnivore, energy pyramid, food chain

Formative Assessment Measures

Part A: How can a single change to an ecosystem disrupt the whole system?

Students who understand the concepts are able to:

Construct an argument to support or refute an explanation for the changes to populations in an ecosystem caused by disruptions to a physical or biological component of that ecosystem. Empirical evidence and scientific reasoning must support the argument.

Use scientific rules for obtaining and evaluating empirical evidence.

Recognize patterns in data and make warranted inferences about changes in populations.

Evaluate empirical evidence supporting arguments about changes to ecosystems.

Part B: What limits the number and variety of living things in an ecosystem?

Students who understand the concepts are able to:

Construct a convincing argument that supports or refutes claims for solutions about the natural and designed world(s).

Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs.

Create design criteria for design solutions for maintaining biodiversity and ecosystem services.

Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.

Evaluate competing design solutions based on Johnty developed and agreed-upon design criteria.		
Interdisciplinary Connections		
NJSLS- ELA	NJSLS- Mathematics	
Cite specific textual evidence to support analysis of science and technical	Reason abstractly and quantitatively. (MS-ETS1-1),(MS-ETS1-3) MP.2	
texts. (MS-LS2-4) RST.6-8.1	Model with mathematics. (MS-LS2-5) MP.4	
Distinguish among facts, reasoned judgment based on research findings,	Solve multi-step real-life and mathematical problems posed with positive and	
and speculation in a text. (MS-LS2-5) RST.6-8.8	negative rational numbers in any form (whole numbers, fractions, and decimals),	
Trace and evaluate the argument and specific claims in a text, assessing	using tools strategically. Apply properties of operations to calculate with numbers in	
whether the reasoning is sound and the evidence is relevant and sufficient	any form; convert between forms as appropriate; and assess the reasonableness of	
to support the claims. (MS-LS2-5) RI.8.8	answers using mental computation and estimation strategies.	
Write arguments to support claims with clear reasons and relevant	(MS-ETS1-1),(MS-ETS1-3) 7.EE.3	
evidence. (MS-LS2-4),(MS-ETS1-1),(MS-ETS1-3) WHST.6-8.1	Use ratio and rate reasoning to solve real-world and mathematical problems.	
Write informative/explanatory texts to examine a topic and convey ideas,	(MS-LS2-5) 6.RP.A.3	
concepts, and information through the selection, organization, and analysis		
of relevant content. (MS-LS2-2) WHST.6-8.2		
Integrate quantitative or technical information expressed in words in a text		
with a version of that information expressed visually (e.g., in a flowchart,		
diagram, model, graph, or table). (MS-ETS1-3) RST.6-8.7		
Gather relevant information from multiple print and digital sources, using		
search terms effectively; assess the credibility and accuracy of each source;		

Born on August 24, 2016 by the South Bergen Jointure Commission Board of Education

and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-ETS1-1) WHST.6-8.8

Draw evidence from literary or informational texts to support analysis, reflection, and research. (MS-LS2-2),(MS-LS2-4),(MS-ETS1-3), (MS-ETS1-2) WHST.6-8.9

Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-ETS1-4) SL.8.5

Core Instructional Materials	Can include: Textbooks Series, Lab Materials, etc.
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8, CRP11, CRP12
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A.4, 8.1.8.A.5, 8.1.8.D.4, 8.1.8.D.5, 8.1.8.E.1, 8.1.8.F.1, 8.2.8.A.2, 8.2.8.A.3, 8.2.8.B.1, 8.2.8.D.1

Modifications			
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual	Multimedia	Graphic organizers	Tiered activities
dictionaries/translation	Leveled readers	Extended time	Independent research/inquiry
Think alouds	Assistive technology	Parent communication	Collaborative teamwork
Read alouds	Notes/summaries	Modified assignments	Higher level questioning
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking tasks
Annotation guides	Answer masking		Self-directed activities
Think-pair- share	Answer eliminator		
Visual aides	Highlighter		
Modeling	Color contrast		
Cognates			

MS-LS2-4 Ecosystems: Interactions, Energy, and Dynamics

MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Clarification Statement: Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.

Assessment Boundary: N/A

Evidence Statements: MS-LS2-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Engaging in Argument from Evidence	LS2.C: Ecosystem Dynamics, Functioning, and	Stability and Change
Engaging in argument from evidence in 6–8 builds on K–5	Resilience	Small changes in one part of a system might
experiences and progresses to constructing a convincing	Ecosystems are dynamic in nature; their	cause large changes in another part.
argument that supports or refutes claims for either	characteristics can vary over time. Disruptions to	
explanations or solutions about the natural and designed	any physical or biological component of an	
world(s).	ecosystem can lead to shifts in all its populations.	
Construct an oral and written argument supported by empirica		
evidence and scientific reasoning to support or refute an		
explanation or a model for a phenomenon or a solution to a		
problem.		
Connections to Nature of Science		
Scientific Knowledge is Based on Empirical Evidence		
Science disciplines share common rules of obtaining and		
evaluating empirical evidence.		

Connections to other DCIs in this grade-band: MS.LS4.C; MS.LS4.D; MS.ESS2.A; MS.ESS3.A; MS.ESS3.C

Articulation of DCIs across grade-bands: 3.LS2.C; 3.LS4.D; HS.LS2.C; HS.LS4.C; HS.LS4.D; HS.ESS2.E; HS.ESS3.B; HS.ESS3.C

NJSLS- ELA: RST.6-8.1, RI.8.8, WHST.6-8.1, WHST.6-8.9

NJSLS- Math: N/A

5E Model

MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Fngage	Endangered Species Introductory Video- Here Today, Gone Tomorrow http://mariana68.wix.com/biodiversityproject
Exploration	Endangered Species- A Multi Day Project

Student Inquiry	http://betterlesson.com/lesson/639346/endangered-species-a-multiday-project
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Concepts and Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Fractices	LS2.C: Ecosystem Dynamics, Functioning, and Resilience
	Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an
	ecosystem can lead to shifts in all its populations.
Elaboration	<u>Mini-Lessons</u>
Extension Activity	http://participatoryscience.org/standard/ms-ls2-4
	Assessment Task A: Endangered Species- Recovery Plan Presentation
	Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or
	a model for a phenomenon or a solution to a problem.
Evaluation	Students will work in teams to develop a plan to bring their chosen species back from the brink of extinction. Students will develop and
Assessment Tasks	share a brief presentation of their recovery plan. Recovery plans must address specific questions and are aimed at convincing listeners
	that their species deserves special attention.
	<u>Persuasive Plan Rubric</u>
	Infographic Rubric

MS-LS2-5 Ecosystems: Interactions, Energy, and Dynamics

MS-LS2-5. Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

Clarification Statement: Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.

Assessment Boundary: N/A

Evidence Statements: MS-LS2-5

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Engaging in Argument from Evidence	LS2.C: Ecosystem Dynamics, Functioning, and	Stability and Change
Engaging in argument from evidence in 6–8	<u>Resilience</u>	Small changes in one part of a system might cause large changes
builds on K-5 experiences and progresses	Biodiversity describes the variety of species found in	in another part.
to constructing a convincing argument that	Earth's terrestrial and oceanic ecosystems. The	Connections to Engineering, Technology, and Applications of
supports or refutes claims for either	completeness or integrity of an ecosystem's	Science
explanations or solutions about the natural	biodiversity is often used as a measure of its health.	Influence of Science, Engineering, and Technology on Society
and designed world(s).	LS4.D: Biodiversity and Humans Changes in	and the Natural World
Evaluate competing design solutions based	biodiversity can influence humans' resources, such	The use of technologies and any limitations on their use are
on jointly developed and agreed-upon	as food, energy, and medicines, as well as	driven by individual or societal needs, desires, and values; by the
design criteria.	ecosystem services that humans rely on—for	findings of scientific research; and by differences in such factors
	example, water purification and recycling.	as climate, natural resources, and economic conditions. Thus
	(secondary)	technology use varies from region to region and over time.
	ETS1.B: Developing Possible Solutions	Connections to Nature of Science
	There are systematic processes for evaluating	Science Addresses Questions About the Natural and Material
	solutions with respect to how well they meet the	World
	criteria and constraints of a problem. (secondary)	Scientific knowledge can describe the consequences of actions
		but does not necessarily prescribe the decisions that society
		takes.

Connections to other DCIs in this grade-band: MS.ESS3.C

Articulation of DCIs across grade-bands: HS.LS2.A; HS.LS2.C; HS.LS4.D; HS.ESS3.A; HS.ESS3.C; HS.ESS3.D

NJSLS- ELA: RST.6-8.8, RI.8.8

NJSLS- Math: MP.4, 6.RP.A.3

	5E Model			
MS-LS2-5. Evaluate com	peting design solutions for maintaining biodiversity and ecosystem services.			
Engage	Why Is Biodiversity So Important?			
Anticipatory Set	https://www.youtube.com/watch?v=GK_vRtHJZu4			
Exploration Student Inquiry	Saving the World- One Ecosystem at a Time Elaborate: Each group takes their top-ranked idea from their chart and draws a "to scale" diagram depicting their idea. http://www.nsta.org/docs/DoingGoodScienceChapter15.pdf			
Explanation Concepts and Practices	In these lessons: Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas): LS2.C: Ecosystem Dynamics, Functioning, and Resilience Biodiversity describes the variety of species found in Earth's terrestrial and oceanic ecosystems. The completeness or integrity of an ecosystem's biodiversity is often used as a measure of its health. LS4.D: Biodiversity and Humans Changes in biodiversity can influence humans' resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on—for example, water purification and recycling. (secondary) ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (secondary)			
Elaboration Extension Activity	Disturbances in Ecosystems http://wyobio.org/files/3814/2971/8811/MiddleSchool_Lesson8.pdf http://wyobio.org/files/2914/1885/4938/MiddleSchool_Lesson8.2.pdf After identifying ecosystem disturbances, work to determine possible solutions. Evaluate the solutions of other groups based on criteria. Write criteria as a class.			
Evaluation Assessment Tasks	Assessment Task A: Solutions Presentation Evaluate competing design solutions based on jointly developed and agreed-upon design criteria. After researching their ecosystem, students will develop design solutions for maintaining the ecosystem's health and biodiversity. Students will record solutions on a chart and rank them, with "1" being the most important solution to maintain the ecosystem services. Groups will present their solutions and explain the reasoning behind their rankings. (MS-ETS1-1) Assessment Task B: Solutions Diagram Each group takes their top-ranked idea from their chart and draws a "to scale" diagram depicting their idea.			

Assessment Task C: Designing a New Solution

After determining the top solution for each group, students will work as a class to determine similarities and differences among the different design solutions. The students will identify the best characteristics of each to combine into a new solution that could potentially be applicable to maintaining biodiversity in all ecosystems. (MS-ETS-1-3)

ENGINEERING DESIGN

MS-ETS1-1 Engineering Design

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Evidence Statements: MS-ETS1-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Asking Questions and Defining Problems	ETS1.A: Defining and Delimiting Engineering Problems	Influence of Science, Engineering, and Technology on
Asking questions and defining problems in grades	The more precisely a design task's criteria and	Society and the Natural World
6–8 builds on grades K–5 experiences and	constraints can be defined, the more likely it is that the	All human activity draws on natural resources and has
progresses to specifying relationships between	designed solution will be successful. Specification of	both short and long-term consequences, positive as
variables, and clarifying arguments and models.	constraints includes consideration of scientific principles	well as negative, for the health of people and the
Define a design problem that can be solved	and other relevant knowledge that are likely to limit	natural environment. The uses of technologies and
through the development of an object, tool,	possible solutions.	limitations on their use are driven by individual or
process or system and includes multiple criteria		societal needs, desires, and values; by the findings of
and constraints, including scientific knowledge that		scientific research; and by differences in such factors
may limit possible solutions.		as climate, natural resources, and economic
		conditions.

Connections to MS-ETS1.A: Defining and Delimiting Engineering Problems include: Physical Science: MS-PS3-3

Articulation of DCIs across grade-bands: 3-5.ETS1.A; 3-5.ETS1.C; HS.ETS1.A; HS.ETS1.B

NJSLS- ELA: RST.6-8.1, WHST.6-8.8

NJSLS- Math: MP.2, 7.EE.3

MS-ETS1-3 Engineering Design

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Evidence Statements: MS-ETS1-3

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	ETS1.B: Developing Possible Solutions	
Analyzing data in 6–8 builds on K–5 experiences and	There are systematic processes for evaluating solutions with	
progresses to extending quantitative analysis to	respect to how well they meet the criteria and constraints of a	
investigations, distinguishing between correlation	problem.	
and causation, and basic statistical techniques of	Sometimes parts of different solutions can be combined to create a	
data and error analysis.	solution that is better than any of its predecessors.	
Analyze and interpret data to determine similarities	ETS1.C: Optimizing the Design Solution Although one design may	
and differences in findings.	not perform the best across all tests, identifying the characteristics	
	of the design that performed the best in each test can provide	
	useful information for the redesign process—that is, some of those	
	characteristics may be incorporated into the new design.	

Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5

Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6

Articulation of DCIs across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C; HS.ETS1.B; HS.ETS1.C

NJSLS- ELA: RST.6-8.1, RST.6-8.7, RST.6-8.9

NJSLS- Math: MP.2, 7.EE.3

Unit 5: Force and Motion

Grade: 6

Content Area: Physical Science

Pacing: 25 Instructional Days

Essential Question

How can we predict the motion of an object?

Student Learning Objectives (Performance Expectations)

MS-PS2-1. Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS-PS2-2. Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.

MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Unit Summary

Students use system and system models and stability and change to understanding ideas related to why some objects will keep moving and why objects fall to the ground. Students apply Newton's third law of motion to related forces to explain the motion of objects. Students also apply an engineering practice and concept to solve a problem caused when objects collide. The crosscutting concepts of system and system models and stability and change provide a framework for understanding the disciplinary core ideas. Students demonstrate proficiency in asking questions, planning and carrying out investigations, designing solutions, engaging in argument from evidence, developing and using models, and constructing explanations and designing solutions. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Newton's Third Law of Motion, friction, force, potential energy, kinetic energy, gravity, transfer, incline/decline, balanced/unbalanced forces, net force, momentum, velocity, weight, inertia

Formative Assessment Measures

Part A: How does a sailboat work?

Students who understand the concepts are able to:

Apply Newton's third law to design a solution to a problem involving the motion of two colliding objects.

Define a design problem involving the motion of two colliding objects that can be solved through the development of an object, tool, process, or system and that includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions.

Evaluate competing design solutions involving the motion of two colliding objects based on jointly developed and agreed-upon design criteria.

Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs.

Analyze and interpret data to determine similarities and differences in findings.

Part B: Who can build the fastest sailboat?

Students who understand the concepts are able to:

Plan an investigation individually and collaboratively to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.

Design an investigation and identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim.

Make logical and conceptual connections between evidence and explanations.

Examine the changes over time and forces at different scales to explain the stability and change in designed systems.

Examine the changes over time and forces at different scales to explain the stability and change in designed systems.			
Interdisciplinary Connections			
NJSLS- ELA	NJSLS- Mathematics		
Cite specific textual evidence to support analysis of science and	Reason abstractly and quantitatively.		
technical texts, attending to the precise details of explanations or	(MS-PS2-1),(MS-PS2-2),(MS-PS2-3),(MS-ETS1-1),(MS-ETS1-2) MP.2		
descriptions. (MS-PS2-1),(MS-ETS1-1),(MS-ETS1-2) RST.6-8.1	Understand that positive and negative numbers are used together to describe quantities		
Follow precisely a multistep procedure when carrying out	having opposite directions or values; use positive and negative numbers to represent		
experiments, taking measurements, or performing technical tasks.	quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-PS2-1)		
(MS-PS2-1),(MS-PS2-2) RST.6-8.3	6.NS.C.5		
Gather relevant information from multiple print and digital sources,	Write, read, and evaluate expressions in which letters stand for numbers.		
using search terms effectively; assess the credibility and accuracy of	(MS-PS2-1),(MS-PS2-2) 6.EE.A.2		
each source; and quote or paraphrase the data and conclusions of	Solve multi-step real-life and mathematical problems posed with positive and negative		
others while avoiding plagiarism and following a standard format for	rational numbers in any form, using tools strategically. Apply properties of operations to		
citation. (MS-ETS1-1) WHST.6-8.8	calculate with numbers in any form; convert between forms as appropriate; and assess the		
Draw evidence from informational texts to support analysis,	reasonableness of answers using mental computation and estimation strategies.		
reflection, and research. (MS-ETS1-2) WHST.6-8.9	(MS-PS2-1),(MS-PS2-2) 7.EE.B.3		
Compare and contrast the information gained from experiments,	Use variables to represent quantities in a real-world or mathematical problem, and		
simulations, video, or multimedia sources with that gained from	construct simple equations and inequalities to solve problems by reasoning about the		
reading a text on the same topic. (MS-ETS1-2),(MS-ETS1-3) RST.6-8.9	quantities. (MS-PS2-1),(MS-PS2-2) 7.EE.B.4		
Conduct short research projects to answer a question (including a	Solve multi-step real-life and mathematical problems posed with positive and negative		
self-generated question), drawing on several sources and generating	rational numbers in any form (whole numbers, fractions, and decimals), using tools		
	strategically. Apply properties of operations to calculate with numbers in any form; convert		

additional related, focused questions that allow for multiple avenues		s between forms as appropriat	between forms as appropriate; and assess the reasonableness of answers using mental		
of exploration. (MS-ETS1-2) WHST.6-8.7		computation and estimation	strategies. (MS-ETS1-1),(MS-ETS1-2) 7.EE.3		
Core Instructional Materials	re Instructional Materials Can include: Textbooks Series, Lab Mate				
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8	3 ,CRP11,CRP12			
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A	A.4, 8.1.8.A.5, 8.1.8.D.4, 8.1.8.D.	5, 8.1.8.E.1, 8.2.8.D.1,		
		Modifications			
English Language Learners	Special Education	At-Risk	Gifted and Talented		
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting		
Nord walls	Visual aides	Peer tutoring	Challenge assignments		
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities		
Bilingual	Multimedia	Graphic organizers	Tiered activities		
dictionaries/translation	Leveled readers	Extended time	Independent research/inquiry		
Think alouds	Assistive technology	Parent communication	Collaborative teamwork		
Read alouds	Notes/summaries	Modified assignments	Higher level questioning		
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking tasks		
Annotation guides	Answer masking		Self-directed activities		
Think-pair- share	Answer eliminator				
/isual aides	Highlighter				
Modeling	Color contrast				

Cognates

PHYSICAL SCIENCE

MS. Motion and Stability: Forces and Interactions

MS-PS2-1. Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.

Clarification Statement: Examples of practical problems could include the impact of collisions between two cars, between a car and stationary objects, and between a meteor and a space vehicle.

Assessment Boundary: Assessment is limited to vertical or horizontal interactions in one dimension.

Evidence Statements: MS-PS2-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing	PS2.A: Forces and Motion	Systems and System Models
<u>Solutions</u>	For any pair of interacting objects, the force	Models can be used to represent systems and their
Constructing explanations and designing	exerted by the first object on the second object is	interactions—such as inputs, processes and outputs—and
solutions in 6–8 builds on K–5 experiences and	equal in strength to the force that the second	energy and matter flows within systems.
progresses to include constructing	object exerts on the first, but in the opposite	Connections to Engineering, Technology, and Applications of
explanations and designing solutions	direction (Newton's third law).	Science
supported by multiple sources of evidence		Influence of Science, Engineering, and Technology on Society
consistent with scientific ideas, principles, and		and the Natural World
theories.		The uses of technologies and any limitations on their use are
Apply scientific ideas or principles to design an		driven by individual or societal needs, desires, and values; by the
object, tool, process or system.		findings of scientific research; and by differences in such factors
		as climate, natural resources, and economic conditions.

Connections to other DCIs in this grade-band: MS.PS3.C

Articulation of DCIs across grade-bands: 3.PS2.A; HS.PS2.A

NJSLS- ELA: RST.6-8.1, RST.6-8.3, WHST.6-8.7

NJSLS- Math: MP.2, 6.NS.C.5, 6.EE.A.2, 7.EE.B.3, 7.EE.B.4

5E Model

MS-PS2-1. Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.

Go to link and click Newton's Third Law, then video.

Engage Anticipatory Set

http://www.ck12.org/ngss/middle-school-physical-sciences/motion-and-stability:-forces-and-interactions

Born on August 24, 2016 by the South Bergen Jointure Commission Board of Education

De Ho	stronaut named Alexander? escribe an example of Newton's cradle.
Но	escribe an example of Newton's cradle.
	\cdot
ا ا	ow do space vehicles apply action and reaction forces to blast off?
l Ire	ead class discuss:
	- State Newton's third law of motion.
	- Describe an example of an action and reaction. Identify the forces and their directions.
	- Explain why action and reaction forces are not balanced forces.
<u>Cc</u>	ollision Video
<u>ht</u>	ttps://www.youtube.com/watch?v=xtxd27jlZ_g&feature=c4-overview-vl&list=PL983889014322C331
W	/hat are the engineers testing in these crash tests? How do you think we can predict the direction of the collisions? How does mass
im	npact car collisions?
<u>N</u> e	ewton's Third Law Lesson Plan
Th	he first two activities help students to review Newton's laws and forces acting on an object. In the culminating task, students are asked to
de	esign, test, and redesign a moon lander and rover.
<u>1.</u>	. Forces in Motion Activity
Exploration 2.	. Describing Motion Activity
Student Inquiry Th	he final project gives students design constraints and asks them to reflect and retest their design. Teachers should plan on the
cu	ulminating activity as a 3-4 day project (unless students are working at home). Minimal teacher prep is required and most of the
m:	naterials given to students can be basic household items and things you have around the classroom.
<u>3.</u>	. Moon Rover - Final Activity
<u>In</u>	these lessons:
Te	eachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
St	tudents Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation Concerts and Practices	opics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Practices PS	S2.A: Forces and Motion
<u>Fo</u>	or any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the
<u>se</u>	econd object exerts on the first, but in the opposite direction (Newton's third law).
Elaboration Ba	alloon Rockets https://sciencebob.com/make-a-balloon-rocket/
Extension Activity	
As	ssessment Task A: Moon Rover
Evaluation Ap	pply scientific ideas or principles to design an object, tool, process or system.
Assessment Tasks St	tudents will be able to apply Newton's 3rd Law of Motion to design a solution to landing a rover on the Moon. Use the attached rubric to
as	ssess students upon completion of design project.

MS-ETS1-1 Engineering Design

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Evidence Statements: MS-ETS1-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Asking Questions and Defining Problems	ETS1.A: Defining and Delimiting	Influence of Science, Engineering, and Technology on Society and
Asking questions and defining problems in grades	Engineering Problems	the Natural World
6–8 builds on grades K–5 experiences and	The more precisely a design task's criteria	All human activity draws on natural resources and has both short
progresses to specifying relationships between	and constraints can be defined, the more	and long-term consequences, positive as well as negative, for the
variables, and clarifying arguments and models.	likely it is that the designed solution will	health of people and the natural environment. The uses of
Define a design problem that can be solved through	be successful. Specification of constraints	technologies and limitations on their use are driven by individual or
the development of an object, tool, process or	includes consideration of scientific	societal needs, desires, and values; by the findings of scientific
system and includes multiple criteria and	principles and other relevant knowledge	research; and by differences in such factors as climate, natural
constraints, including scientific knowledge that may	that are likely to limit possible solutions.	resources, and economic conditions.
limit possible solutions.		

Connections to MS-ETS1.A: Defining and Delimiting Engineering Problems include: Physical Science: MS-PS3-3

Articulation of DCIs across grade-bands: 3-5.ETS1.A; 3-5.ETS1.C; HS.ETS1.A; HS.ETS1.B

NJSLS- ELA: RST.6-8.1, WHST.6-8.8

NJSLS- Math: MP.2, 7.EE.3

MS-ETS1-2 Engineering Design

MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Evidence Statements: MS-ETS1-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Engaging in Argument from Evidence	ETS1.B: Developing Possible Solutions	
Engaging in argument from evidence in 6–8 builds on K–5	There are systematic processes for evaluating solutions	
experiences and progresses to constructing a convincing	with respect to how well they meet the criteria and	
argument that supports or refutes claims for either	constraints of a problem.	
explanations or solutions about the natural and designed		
<u>world.</u>		
Evaluate competing design solutions based on jointly		
developed and agreed-upon design criteria.		

Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5

Articulation of DCIs across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C; HS.ETS1.A; HS.ETS1.B

NJSLS ELA: RST.6-8.1, RST.6-8.9, WHST.6-8.7, WHST.6-8.9

NJSLS- Math: MP.2, 7.EE.3

MS-ETS1-3 Engineering Design

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Evidence Statements: MS-ETS1-3

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	ETS1.B: Developing Possible Solutions	
Analyzing data in 6–8 builds on K–5 experiences	There are systematic processes for evaluating solutions with	
and progresses to extending quantitative analysis	respect to how well they meet the criteria and constraints of a	
to investigations, distinguishing between	problem.	
correlation and causation, and basic statistical	Sometimes parts of different solutions can be combined to	
techniques of data and error analysis.	create a solution that is better than any of its predecessors.	
Analyze and interpret data to determine	ETS1.C: Optimizing the Design Solution Although one design may	
similarities and differences in findings.	not perform the best across all tests, identifying the	
	characteristics of the design that performed the best in each test	
	can provide useful information for the redesign process—that is,	
	some of those characteristics may be incorporated into the new	
	design.	

Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5

Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6

Articulation of DCIs across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C; HS.ETS1.B; HS.ETS1.C

NJSLS- ELA: RST.6-8.1, RST.6-8.7, RST.6-8.9

NJSLS- Math: MP.2, 7.EE.3

PHYSICAL SCIENCE

MS. Motion and Stability: Forces and Interactions

MS-PS2-2. Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.

Clarification Statement: Emphasis is on balanced (Newton's First Law) and unbalanced forces in a system, qualitative comparisons of forces, mass and changes in motion (Newton's Second Law), frame of reference, and specification of units.

Assessment Boundary: Assessment is limited to forces and changes in motion in one-dimension in an inertial reference frame and to change in one variable at a time. Assessment does not include the use of trigonometry.

Evidence Statements: MS-PS2-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Planning and Carrying Out Investigations	PS2.A: Forces and Motion	Stability and Change
Planning and carrying out investigations to answer	The motion of an object is determined by the sum of	Explanations of stability and change in natural
questions or test solutions to problems in 6–8 builds on	the forces acting on it; if the total force on the object is	or designed systems can be constructed by
K–5 experiences and progresses to include investigations	not zero, its motion will change. The greater the mass of	examining the changes over time and forces
that use multiple variables and provide evidence to support	the object, the greater the force needed to achieve the	at different scales.
explanations or design solutions.	same change in motion. For any given object, a larger	
Plan an investigation individually and collaboratively, and in	force causes a larger change in motion.	
the design: identify independent and dependent variables	All positions of objects and the directions of forces and	
and controls, what tools are needed to do the gathering,	motions must be described in an arbitrarily chosen	
how measurements will be recorded, and how many data	reference frame and arbitrarily chosen units of size. In	
are needed to support a claim.		

Born on August 24, 2016 by the South Bergen Jointure Commission Board of Education

Connections to Nature of	Science order to share information with other people, these			
	ased on Empirical Evidence choices must also be shared.			
_	ed upon logical and conceptual			
connections between evic				
	s in this grade-band: MS.PS3.A; MS.PS3.B; MS.ESS2.C			
	ss grade-bands: 3.PS2.A ; HS.PS2.A ; HS.PS3.B ; HS.ESS1.B			
NJSLS- ELA: RST.6-8.3, WH				
NJSLS- Math: MP.2, 6.EE.				
140 D00 0 D1	5E Model			
	gation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the			
object.				
	Begin lesson by carrying out one of the Newton's Law Demonstrations from the following resource			
Engage	http://www.exo.net/~donr/activities/Newton's_Laws_Demonstrations.pdf			
Anticipatory Set	Have students explore the following interactive site. This site will allow students to explore how gravity impacts the motion of objects.			
http://www.glencoe.com/sites/common_assets/science/virtual_labs/E25/E25.html				
	Marble Roll- Let's Move It			
	http://it.pinellas.k12.fl.us/Teachers3/gurianb/files/AD5483E493EE4299BDAF1BABAD473540.pdf			
	Ask groups to set up their experiment. Provide the "Science Mini-boards" to record their data and have a notebook for them to record			
	observations. During the actual experiments time, the teacher should be constantly assessing, looking for and correcting			
Exploration	misconceptions. This is also where the teacher should be doing a lot of "playing dumb" and asking lots of "whys". Probing is essential to			
Student Inquiry	encourage scientific discussions.			
' '	Student Procedures (See mini-board): 1. Decide on the number of books your group will use for this experiment. 2. Make your			
	hypothesis about what you think will happen in your experiment. 3. Find the mass of the marbles. 4. Set up books and put the ruler on			
	the edge. 5. Put the carton at the base of the ruler. 6. Use a pencil to hold the marble 2 inches from the top of the ruler. 7. Release the			
	pencil so that no force is applied to the marble. 8. Measure the distance the carton was moved. 9. Repeat for a total of 10 trials. 10. The			
	teacher will teach you how to use a calculator to find the average or mean. 11. Repeat procedures for the next marble.			
	In these lessons:			
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.			
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.			
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):			
Concepts and Practices				
	The motion of an object is determined by the sum of the forces acting on it; if the total force on the object is not zero, its motion will			
	change. The greater the mass of the object, the greater the force needed to achieve the same change in motion. For any given object, a			
	larger force causes a larger change in motion.			

	All positions of objects and the directions of forces and motions must be described in an arbitrarily chosen reference frame and		
	arbitrarily chosen units of size. In order to share information with other people, these choices must also be shared.		
Elaboration	Science of NFL Football: Newton's Second Law of Motion		
Extension Activity	http://science360.gov/obj/video/58e62534-e38d-430b-bfb1-c505e628a2d4/science-nfl-football-newtons-second-law-motion		
	Assessment Task A: Marble Roll Experiment		
Evaluation	Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls,		
	what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim.		
Assessment Tasks	Students will complete the Science Mini Board to provide evidence of mastery of the standard.		
	Mini Board - pages 5 & 6		

ENGINEERING DESIGN

MS-ETS1-4 Engineering Design

MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Evidence Statements: MS-ETS1-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	ETS1.B: Developing Possible Solutions	
Modeling in 6–8 builds on K–5 experiences and	A solution needs to be tested, and then modified on the	
progresses to developing, using, and revising models to	basis of the test results, in order to improve it.	
describe, test, and predict more abstract phenomena	Models of all kinds are important for testing solutions.	
and design systems.	ETS1.C: Optimizing the Design Solution The iterative	
Develop a model to generate data to test ideas about	process of testing the most promising solutions and	
designed systems, including those representing inputs	modifying what is proposed on the basis of the test	
and outputs.	results leads to greater refinement and ultimately to an	
	optimal solution.	

Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5

Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6

Articulation of DCIs across grade-bands: 3-5.ETS1.B; 3-5.ETS1.C; HS.ETS1.B; HS.ETS1.C

NJSLS- ELA: SL.8.5

NJSLS- Math: MP.2, 7.SP

Unit 6: Types of Interactions

Grade: 6

Content Area: Physical Science

Pacing: 25 Instructional Days

Essential Question

Is it possible to exert on an object without touching it?

Student Learning Objectives (Performance Expectations)

MS-PS2-3. Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

MS-PS2-4. Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

MS-PS2-5. Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Unit Summary

Students use cause and effect; system and system models; and stability and change to understand ideas that explain why some materials are attracted to each other while others are not. Students apply ideas about gravitational, electrical, and magnetic forces to explain a variety of phenomena including beginning ideas about why some materials attract each other while others repel. In particular, students develop understandings that gravitational interactions are always

attractive but that electrical and magnetic forces can be both attractive and negative. Students also develop ideas that objects can exert forces on each other even though the objects are not in contact, through fields. Students are expected to consider the influence of science, engineering, and technology on society and the natural world. Students are expected to demonstrate proficiency in asking questions, planning and carrying out investigations, designing solutions, and engaging in argument. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Gravitational forces, electrical forces, magnetic forces, attract, repel, attractive, negative, air resistance, centripetal acceleration, centripetal force, joule, kinetic energy, mechanical energy, electrical conductors, electrical insulators, semiconductors, superconductors, induction, polarization

Formative Assessment Measures

Part A: Can you apply a force on something without touching it?

Students who understand the concepts are able to:

Students will conduct an investigation and evaluate an experimental design to produce data that can serve as the basis for evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Students will identify the cause-and-effect relationships between fields that exist between objects and the behavior of the objects.

Part B: How does a Maglev train work?

Students who understand the concepts are able to:

Students will ask questions about data to determine the effect of the strength of electric and magnetic forces that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles.

Students will perform investigations using devices that use electromagnetic forces.

Students will collect and analyze data that could include the effect of the number of turns of wire on the strength of an electromagnet or the effect of increasing the number or strength of magnets on the speed of an electric motor.

Part C: If I were able to eliminate air resistance and dropped a feather and a hammer at the same time, which would land first?

Students who understand the concepts are able to:

Students construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Students use models to represent the gravitational interactions between two masses.

bradents ase models to represent the gravitational interactions between two masses.			
Interdisciplinary Connections			
NJSLS- ELA NJSLS- Mathematics			
Conduct short as well as more sustained research projects to answer	Use units as a way to understand problems and to guide the solution of multi-step		
a question (including a self-generated question) or solve a problem;	problems; choose and interpret units consistently in formulas; choose and interpret the		
narrow or broaden the inquiry when appropriate; synthesize	scale and the origin in graphs and data displays. (HS-PS2-5),(HS-PS2-4) HSN.Q.A.1		
multiple sources on the subject, demonstrating understanding of the Define appropriate quantities for the purpose of descriptive modeling.			
subject under investigation.(HS-PS2-5), (HS-PS2-3) WHST.11-12.7 (HS-PS2-5),(HS-PS2-4) HSN.Q.A.2			

Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, Reason abstractly and quantitatively. (HS-PS2-4) MP.2 purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS2-5) WHST.11-12.8 Draw evidence from informational texts to support analysis,

reflection, and research. (HS-PS2-5) WHST.11-12.9

Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-5),(HS-PS2-4) HSN.Q.A.3

Model with mathematics. (HS-PS2-4) MP.4

Interpret expressions that represent a quantity in terms of its context. (HS-PS2-4)

HSA.SSE.A.1

Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-4) HSA.SSE.B.3

Core Instructional Materials	Can include: Textbooks Series, Lab Materials, etc.		
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8 ,CRP11,CRP12		
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A.4, 8.1.8.A.5, 8.1.8.D.4, 8.1.8.D.5		

Modifications				
English Language Learners	Special Education	At-Risk	Gifted and Talented	
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	
Word walls	Visual aides	Peer tutoring	Challenge assignments	
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities	
Think alouds	Leveled readers	Extended time	Independent research/inquiry	
Read alouds	Assistive technology	Parent communication	Collaborative teamwork	
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning	
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks	
Think-pair- share	Answer masking		Self-directed activities	
Visual aides	Answer eliminator			
Modeling	Highlighter			
Cognates	Color contrast			

PHYSICAL SCIENCE

MS. Motion and Stability: Forces and Interactions

MS-PS2-3. Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Clarification Statement: Examples of devices that use electric and magnetic forces could include electromagnets, electric motors, or generators. Examples of data could include the effect of the number of turns of wire on the strength of an electromagnet, or the effect of increasing the number or strength of magnets on the speed of an electric motor.

Assessment Boundary: Assessment about questions that require quantitative answers is limited to proportional reasoning and algebraic thinking.

Evidence Statements: MS-PS2-3

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Asking Questions and Defining Problems	PS2.B: Types of Interactions	Cause and Effect
Asking questions and defining problems in grades 6–8	Electric and magnetic (electromagnetic) forces can	Cause and effect relationships may be used to
builds from grades K–5 experiences and progresses to	be attractive or repulsive, and their sizes depend	predict phenomena in natural or designed systems.
specifying relationships between variables, and	on the magnitudes of the charges, currents, or	
clarifying arguments and models.	magnetic strengths involved and on the distances	
Ask questions that can be investigated within the scope	between the interacting objects.	
of the classroom, outdoor environment, and museums		
and other public facilities with available resources and,		
when appropriate, frame a hypothesis based on		
observations and scientific principles.		

Connections to other DCIs in this grade-band: N/A

Articulation of DCIs across grade-bands: 3.PS2.B; HS.PS2.B

NJSLS- ELA: RST.6-8.1 NJSLS- Math: MP.2

5E MODEL

MS-PS2-3. Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Use these short video clips to explain magnetism, magnetic forces, electric currents, and motors.

Magnetism

http://www.neok12.com/video/Magnetism/zX4752067171765e67545d45.htm

Engage Anticipatory Set

Try the experiment to view the magnetic field lines seen on the video. You will need white paper, iron filings, and several different magnets for each group. Make sure to record your findings and to draw pictures of what you observe in your science notebooks! View the How does electricity create a magnet video clip (4:57 minutes)

http://www.neok12.com/video/Magnetism/zX57555a4f5f0b606e625063.htm

	1
	Try to create your own electromagnet as described in the video. You will need 20-30 staples, a piece of paper, a length of fine copper wire, and several batteries for each group. Make sure to record your data and findings and to draw pictures of what you observe in your science notebooks! So, How do motors work? The transformation of electrical energy to mechanical energy is best seen in a short video such as NeoK12's 2:20 minute video about How to build a simple motor, and how it works: http://www.neok12.com/php/watch.php?v=zX5b4c696f007c5c7d525a6b&t=How-It-Works
	Put the Charge in the Goal To Explore electric fields and electric charges, students will utilize the following interactive. This interactive challenges students to put the electron into the goal using positive and negative charges.
	http://www.physicsclassroom.com/Physics-Interactives/Static-Electricity/Put-the-Charge-in-the-Goal
Exploration Student Inquiry	Electromagnets In this activity, students will make an electromagnet and evaluate how the strength of the electromagnet can be changed. http://betterlesson.com/lesson/637179/electromagnets
Explanation Concepts and Practices	In these lessons: Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas): PS2.B: Types of Interactions Electric and magnetic (electromagnetic) forces can be attractive or repulsive, and their sizes depend on the magnitudes of the charges, currents, or magnetic strengths involved and on the distances between the interacting objects.
Elaboration Extension Activity	Related Activities: MS-PS2-3 http://www.ck12.org/ngss/middle-school-physical-sciences/motion-and-stability:-forces-and-interactions
Evaluation Assessment Tasks	Assessment Task A: Electromagnets, Students in Action (activity guide and summary). Students should be assessed based upon the quality of their questions and ability for frame a hypothesis based on observations and scientific principles. Ask questions that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles.

PHYSICAL SCIENCE

MS. Motion and Stability: Forces and Interactions

MS-PS2-4. Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Clarification Statement: Examples of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction, distance from the Sun, and orbital periods of objects within the solar system.

Assessment Boundary: Assessment does not include Newton's Law of Gravitation and Kepler's Laws.

Evidence Statements: MS-PS2-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Engaging in Argument from Evidence	PS2.B: Types of Interactions	Systems and System Models
Engaging in argument from evidence in 6–8 builds from	Gravitational forces are always attractive. There is a	Models can be used to represent systems and
K–5 experiences and progresses to constructing a	gravitational force between any two masses, but it is	their interactions—such as inputs, processes
convincing argument that supports or refutes claims for	very small except when one or both of the objects	and outputs—and energy and matter flows
either explanations or solutions about the natural and	have large mass—e.g., Earth and the sun.	within systems.
designed world.		
Construct and present oral and written arguments		
supported by empirical evidence and scientific reasoning		
to support or refute an explanation or a model for a		
phenomenon or a solution to a problem.		
Connections to Nature of Science		
Scientific Knowledge is Based on Empirical Evidence		
Science knowledge is based upon logical and conceptual		
connections between evidence and explanations.		
Connections to other DCIs in this grade hand, MS ESS1 A	. NAC FCC4 D . NAC FCC2 C	

Connections to other DCIs in this grade-band: MS.ESS1.A; MS.ESS1.B; MS.ESS2.C

Articulation of DCIs across grade-bands: 5.PS2.B; HS.PS2.B; HS.ESS1.B

NJSLS- ELA: WHST.6-8.1

NJSLS- Math: N/A

5E MODEL

MS-PS2-4. Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

	Ask students "How would life be different without gravity?" Students should record their thoughts first in their notebooks. Class
Engage	should then hold a discussion sharing ideas in how they lives would be different and what adjustments they would need to be make.
Anticipatory Set	All ideas should be recorded on a large piece of posterboard/paper
	Super Planet Crash
	http://www.stefanom.org/spc/
	To beat Planet Crash, students must create a planetary system that can survive for 500 years. Students will play 5 rounds. Students
	should observe that the closer the object is to the Sun the quicker the object moves and the larger the mass the more interference
	happens on the rest of the solar system. (Hint: Have your students at least in one of their rounds add the very massive Dwarf star.)
	Gravity and Orbits Lab
	https://phet.colorado.edu/en/simulation/gravity-and-orbits
Exploration	The two labs investigate how the force of gravity depends on mass as well as that the planets would continually move in a straight
1 -	line due to inertia if the Sun suddenly disappeared. The labs also illustrate that the farther away the two planets are the longer (more
Student Inquiry	time it takes to revolve around the Sun"
	How Much Do I Weight on Different Planets?
	http://www.exploratorium.edu/ronh/weight/
	Have students calculate their weight on different planets. Once students have calculated their weight ask students to answer, "If your
	weight is different on different planets, does your mass differ on those same planets?"
	Gravity Exploration
	http://sciencespot.net/Media/gravlab.pdf
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Concepts and Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Fractices	PS2.B: Types of Interactions
	Gravitational forces are always attractive. There is a gravitational force between any two masses, but it is very small except when one
	or both of the objects have large mass—e.g., Earth and the sun.
Elaboration	The Great Gravity Escape
Extension Activity	https://www.teachengineering.org/view_activity.php?url=collection/cub_/activities/cub_mars/cub_mars_lesson04_activity1.xml
Evaluation	Assessment Task A
Assessment Tasks	

Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.

Based upon the various exploration activities, students will construct and present an oral and written argument supported by evidence and scientific reasoning. Distribute the quick guide to a well developed paragraph document to help students craft their written argument.

https://docs.google.com/document/d/1QKaULOTkKr4z0F6PHvTR41E44noNdP2NupnibESg2ss/pub

PHYSICAL SCIENCE

MS. Motion and Stability: Forces and Interactions

MS-PS2-5. Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Clarification Statement: Examples of this phenomenon could include the interactions of magnets, electrically-charged strips of tape, and electrically-charged pith balls. Examples of investigations could include first-hand experiences or simulations.

Assessment Boundary: Assessment is limited to electric and magnetic fields, and limited to qualitative evidence for the existence of fields.

Evidence Statements: MS-PS2-5

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Planning and Carrying Out Investigations	PS2.B: Types of Interactions	Cause and Effect
Planning and carrying out investigations to answer	Forces that act at a distance (electric, magnetic, and	Cause and effect relationships may be used to
questions or test solutions to problems in 6-8 builds on	gravitational) can be explained by fields that extend	predict phenomena in natural or designed
K–5 experiences and progresses to include	through space and can be mapped by their effect on a	systems.
investigations that use multiple variables and provide	test object (a charged object, or a ball, respectively).	
evidence to support explanations or design solutions.		
Conduct an investigation and evaluate the experimental		
design to produce data to serve as the basis for		
evidence that can meet the goals of the investigation.		

Connections to other DCIs in this grade-band: N/A

Articulation of DCIs across grade-bands: 3.PS2.B; HS.PS2.B; HS.PS3.A; HS.PS3.B; HS.PS3.C

NJSLS- ELA: RST.6-8.3, WHST.6-8.7

NJSLS- Math: N/A

5E MODEL

MS-PS2-5. Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Engage	Force: Definitions and Types- Video and Quiz
Anticipatory Set	http://study.com/academy/lesson/force-definition-and-types.html
	Measurement: Forces
Exploration	In this lesson, students. will explore the idea that forces happen every time objects interact and will learn how these invisible pushed
Student Inquiry	and pulls can be measured.
	http://betterlesson.com/lesson/637564/measurement-forces
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Evalenation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Practices	PS2.B: Types of Interactions
	Forces that act at a distance (electric, magnetic, and gravitational) can be explained by fields that extend through space and can be
	mapped by their effect on a test object (a charged object, or a ball, respectively).
Elaboration	Measurement: Mass Relearn Activity
Extension Activity	
	Assessment Task A: Measurement Force Exploration Worksheet
	Conduct an investigation and evaluate the experimental design to produce data to serve as the basis for evidence that can meet the
Evaluation	goals of the investigation.
Assessment Tasks	Measurement Force Exploration
	As students collect data, make sure the data provides evidence that fields exist between objects exerting forces on each other even
	though the objects are not in contact

Unit 7: Astronomy

Grade: 6

Content Area: Earth and Space Science

Pacing: 20 Instructional Days

Student Learning Objectives (Performance Expectations)

MS-ESS1-1. Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.

MS-ESS1-2. Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.

MS-ESS1-3. Analyze and interpret data to determine scale properties of objects in the solar system.

Unit Summary

This unit is broken down into three sub-ideas: the universe and its stars, Earth and the solar system, and the history of planet Earth. Students examine the Earth's place in relation to the solar system, the Milky Way galaxy, and the universe. There is a strong emphasis on a systems approach and using models of the solar system to explain the cyclical patterns of eclipses, tides, and seasons. There is also a strong connection to engineering through the instruments and technologies that have allowed us to explore the objects in our solar system and obtain the data that support the theories explaining the formation and evolution of the universe. Students examine geosciences data in order to understand the processes and events in Earth's history. The crosscutting concepts of patterns, scale, proportion, and quantity and systems and systems models provide a framework for understanding the disciplinary core ideas. Students are expected to demonstrate proficiency in developing and using models and analyzing and interpreting data. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Solar system, Milky Way galaxy, cyclical patterns, eclipses, tides, seasons, geosciences data, geocentric system, heliocentric system, inertia, gravity, nuclear fusion, photosphere, chromosphere, solar wind, prominence, retrograde rotation, geosynchronous orbit, apparent magnitude, barred galaxy, central bulge, cepheid variable, galactic center, globular clusters, halo, luminosity

Formative Assessment Measures

Part A: What pattern in the Earth—sun—moon system can be used to explain lunar phases, eclipses of the sun and moon, and seasons?

Students who understand the concepts are able to:

Students will develop and use a physical, graphical, or conceptual model to describe patterns in the apparent motion of the sun, moon, and stars in the sky.

Part B: What is the role of gravity in the motions within galaxies and the solar system?

Students who understand the concepts are able to:

Students develop and use models to explain the relationship between the tilt of Earth's axis and seasons.

Part C: What are the scale properties of objects in the solar system?

Students who understand the concepts are able to:

Analyze and interpret data to determine similarities and differences among objects in the solar system.

Analyze and interpret data to determine similarities and differences among objects in the solar system.				
Interdisciplinary Connections				
NJSLS- ELA		NJ	NJSLS- Mathematics	
Cite specific textual evidence to support analysis of science and		Reason abstractly and quantitatively.(MS-ESS1-3) MP.2		
technical texts.(MS-ESS1-3) RST.	6-8.1	Model with mathematics.(MS-ESS1-1)	,(MS-ESS1-2) MP.4	
Integrate quantitative or technic	al information expressed in words in a	Understand the concept of a ratio and	use ratio language to describe a ratio relationship	
text with a version of that inforn	nation expressed visually (e.g., in a	between two quantities.(MS-ESS1-1),(MS-ESS1-2),(MS-ESS1-3) 6.RP.A.1	
flowchart, diagram, model, grap	h, or table).(MS-ESS1-3) RST.6-8.7	Recognize and represent proportional	relationships between	
Integrate multimedia and visual	displays into presentations to clarify	quantities.(MS-ESS1-1),(MS-ESS1-2),(N	/IS-ESS1-3) 7.RP.A.2	
information, strengthen claims a	and evidence, and add	Use variables to represent numbers ar	nd write expressions when solving a real-world or	
interest.(MS-ESS1-1),(MS-ESS1-2	2) SL.8.5	mathematical problem; understand th	at a variable can represent an unknown number, or,	
		depending on the purpose at hand, an	depending on the purpose at hand, any number in a specified set.(MS-ESS1-2) 6.EE.B.6	
		Use variables to represent quantities in a real-world or mathematical problem, and		
		construct simple equations and inequalities to solve problems by reasoning about the		
		quantities.(MS-ESS1-2) 7.EE.B.6		
Core Instructional Materials	Can include: Textbooks Series, Lab M	aterials, etc.		
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8	3 ,CRP11,CRP12		
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A	A.4, 8.1.8.A.5, 8.1.8.D.4, 8.1.8.D.5		
		Modifications		
English Language Learners	Special Education	At-Risk	Gifted and Talented	
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	
Word walls	Visual aides	Peer tutoring	Challenge assignments	
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	
Bilingual dictionaries/translation Multimedia		Graphic organizers	Tiered activities	
Think alouds	Leveled readers	Extended time	Independent research/inquiry	
Read alouds	Assistive technology	Parent communication	Collaborative teamwork	
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning	

Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

EARTH AND SPACE SCIENCES

MS-ESS1-1 Earth's Place in the Universe

MS-ESS1-1. Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.

Clarification Statement: Examples of models can be physical, graphical, or conceptual.

Assessment Boundary: N/A

Evidence Statements: MS-ESS1-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	ESS1.A: The Universe and Its Stars	<u>Patterns</u>
Modeling in 6–8 builds on K–5 experiences and	Patterns of the apparent motion of the sun, the	Patterns can be used to identify cause-and-effect
progresses to developing, using, and revising	moon, and stars in the sky can be observed,	<u>relationships.</u>
models to describe, test, and predict more	described, predicted, and explained with models.	Connections to Nature of Science
abstract phenomena and design systems.	ESS1.B: Earth and the Solar System	Scientific Knowledge Assumes an Order and
Develop and use a model to describe	This model of the solar system can explain eclipses	Consistency in Natural Systems
phenomena.	of the sun and the moon. Earth's spin axis is fixed	Science assumes that objects and events in natural
	in direction over the short-term but tilted relative	systems occur in consistent patterns that are
	to its orbit around the sun. The seasons are a	understandable through measurement and
	result of that tilt and are caused by the differential	observation.
	intensity of sunlight on different areas of Earth	
	across the year.	
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS2.B		
Articulation of DCIs across grade-bands: 3.PS2.A; 5.PS2.B; 5.ESS1.B; HS.PS2.A; HS.PS2.B; HS.ESS1.B		

NJSLS- ELA: SL.8.5	
NJSLS- Math: MP.4, 6.RP	A.1, 7.RP.A.2
MS-ESS1-1. Develop and	use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and
seasons.	
Engage Anticipatory Set	Begin by having students view the following video series: http://www.visuallearningsys.com/digital-science/preview. This series will provide students with an introduction to the Earth-sun-moon system by discussing the following topics: Planet Earth, Earth in Space, The Sun, Earth's Moon, Phases of the Moon, Eclipses and Tides. Provide students with the worksheet Video Review from the following learning guide to complete as they watch the video series (p. 18). http://s3.amazonaws.com/VLCmedia/Digital Science Preview/Guide/Exploring Earth Sun and Moon Guide.pdf .
	Following the videos, review the post-video questions from the Video Review worksheet as a class.
Exploration Student Inquiry	To begin the lesson, have students view the following animations: These short animations provide visual representations of the following topics: Gravity, Lunar Eclipses, Phases of the Moon, Size of Earth to Sun, Size of Moon to Earth, Solar Eclipses and Tides. http://www.visuallearningsys.com/digital-science/preview Lab Activity: Moon Phases and Eclipses Use the following resources to guide students through a series of lab activities. http://www.myips.org/cms/lib8/IN01906626/Centricity/Domain/8123/Moon.pdf Lab Activity 1: What do You Think Causes the Phases of the Moon? Lab Activity 2: Modeling the Phases of the Moon Lab Activity 3: Determining which way the moon revolves around Earth Lab Activity 4: Synthesizing Your Understanding of the Phases of the Moon Lab Activity 5: Why Do We Always See the Same Side of the Moon? Lab Activity 6: What Causes Solar and Lunar Eclipses? Lab Activity 7: Why Don't We Have Solar and Lunar Eclipses Every Month?
Explanation Concepts and Practices	In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. ESS1.A: The Universe and Its Stars Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed, described, predicted, and explained with models. ESS1.B: Earth and the Solar System This model of the solar system can explain eclipses of the sun and the moon. Earth's spin axis is fixed in direction over the short-term but tilted relative to its orbit around the sun. The seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year.

Elaboration Extension Activity	Phases of the Moon: In this activity, students will create a model to show how the regular motions of the Moon because Moon phases. http://betterlesson.com/lesson/636034/phases-of-the-moon
Evaluation Assessment Tasks	Assessment Task A: Post-Lab Reflection Questions (Activities 1-7) Assessment Task B: Model Evaluation & Reflection Develop and use a model to describe phenomena. Once students have made their models and reviewed them with the teacher, ask them to reflect on the accuracy of their model. Ask them to write a paragraph that compares the theory the developed in Lab Activity 1 to the actual arrangement of the sun, moon and Earth to create the phases of the moon, eclipses. and the seasons. What was similar? What was different? Were they surprised by the outcome? Did it bring up any questions? Ask students to hold a discussion with their partner before drafting the final paragraph.

EARTH AND SPACE SCIENCES

MS-ESS1-2 Earth's Place in the Universe

MS-ESS1-2. Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.

Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as students' school or state).

Assessment Boundary: Assessment does not include Kepler's Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.

Evidence Statements: MS-ESS1-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	ESS1.A: The Universe and Its Stars	Systems and System Models
Modeling in 6–8 builds on K–5 experiences and	Earth and its solar system are part of the Milky	Models can be used to represent systems and their
progresses to developing, using, and revising	Way galaxy, which is one of many galaxies in	<u>interactions.</u>
models to describe, test, and predict more	the universe.	Connections to Nature of Science
abstract phenomena and design systems.	ESS1.B: Earth and the Solar System	Scientific Knowledge Assumes an Order and Consistency
Develop and use a model to describe	The solar system consists of the sun and a	in Natural Systems
phenomena.	collection of objects, including planets, their	Science assumes that objects and events in natural systems
	moons, and asteroids that are held in orbit	occur in consistent patterns that are understandable
	around the sun by its gravitational pull on	through measurement and observation.
	them.	
	The solar system appears to have formed from	
	a disk of dust and gas, drawn together by	
	gravity.	

Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS2.B

Articulation of DCIs across grade-bands: 3.PS2.A; 5.PS2.B; 5.ESS1.A; 5.ESS1.B; HS.PS2.A; HS.PS2.B; HS.ESS1.A; HS.ESS1.B

NJSLS- ELA: SL.8.5

NJSLS- Math: MP.4, 6.RP.A.1, 7.RP.A.2, 6.EE.B.6, 7.EE.B.6

5E Model

MS-ESS1-2. Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.		
Engage Anticipatory Set The following link provides introductory resources on the topic including videos and discussion questions. Gravity in the Solar System		
Exploration Student Inquiry	Students will make a 3D model of gravity. The following website provides a full lesson plan and explanation of procedures. Group students into small groups. Have the following supplies for each group: hula hoop, approximately 1m2 (depends on size of hula hoop) of stretchy Lycra material (or a garbage bags), Bulldog clips, a rock and three or four balls (marble, golf ball, ping pong ball)	

	The Pull of the Planets Following the activity, each group will be assigned a common misconception about gravity. Students will use research material to explain the misconceptions. When Gravity Gets You Down
Explanation Concepts and Practices	In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. ESS1.A: The Universe and Its Stars Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe. ESS1.B: Earth and the Solar System The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them. The solar system appears to have formed from a disk of dust and gas, drawn together by gravity.
Elaboration Extension Activity	Additional Activities: Better Lessons MS-ESS1-2
Evaluation Assessment Tasks	Assessment Task A: Model Creation Develop and use a model to describe phenomena. Students will create models that conclude that based on the mass and distance of the object (planet, comet, asteroid, meteoroid, etc), the object's gravitational force is proportional. Within the explanation of the model, students will conclude that the orbital motion is caused by gravity. Develop a rubric to assess the above criteria.

EARTH AND SPACE SCIENCES

MS-ESS1-3 Earth's Place in the Universe

MS-ESS1-3. Analyze and interpret data to determine scale properties of objects in the solar system.

Clarification Statement: Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.

Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system bodies.

Evidence Statements: MS-ESS1-3

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	ESS1.B: Earth and the Solar System	Scale, Proportion, and Quantity
Analyzing data in 6–8 builds on K–5	The solar system consists of the sun and a	Time, space, and energy phenomena can be observed at
experiences and progresses to extending	collection of objects, including planets, their	various scales using models to study systems that are too
quantitative analysis to investigations,	moons, and asteroids that are held in orbit	large or too small.
distinguishing between correlation and	around the sun by its gravitational pull on them.	Connections to Engineering, Technology, and Applications
causation, and basic statistical techniques of		of Science
data and error analysis.		Interdependence of Science, Engineering, and Technology
Analyze and interpret data to determine		Engineering advances have led to important discoveries in
similarities and differences in findings.		virtually every field of science and scientific discoveries have
		led to the development of entire industries and engineered
		<u>systems.</u>

Connections to other DCIs in this grade-band: MS.ESS2.A

Articulation of DCIs across grade-bands: 5.ESS1.B; HS.ESS1.B; HS.ESS2.A

NJSLS- ELA: RST.6-8.1, RST.6-8.7

NJSLS- Math: MP.2, 6.RP.A.1, 7.RP.A.2

5E Model

MC ESS1.2. Analyze and interpret data to determine scale properties of chiects in the solar system

<u>IVIS-ESS1-3. Analyze</u>	e and interpret data to determine scale properties of objects in the solar system.
	Begin lesson by asking students to draw a diagram of the solar system in and label all items. Remind students that they can use only one
Engage	sheet of paper. Have students walk around the room and look at each other's diagrams. Have them discuss what they noticed about each
Anticipatory Set	other's diagrams. If you have access to a document camera you can use this to share the diagrams. Guide the discussion to focus on the size
	and distance of objects.
	Explain that all the images we know of the solar system are not to scale. In order to create a true model of the solar system, a much bigger is
Exploration	needed. Have students view the video: A Scale Model of the Solar System
Student Inquiry	http://digg.com/video/scale-model-solar-system
	<u>Distance Between Objects</u>

Born on August 24, 2016 by the South Bergen Jointure Commission Board of Education

	http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
	Create a worksheet or chart on which student will record the distance from the sun for each planet. After completing the worksheet, create questions which require the student to analyze and interpret the data they recorded on the distance between these solar system objects.
	Size and Distance Comparison http://education.nationalgeographic.com/activity/planetary-size-and-distance-comparison/
	Culminating Activity After having viewed and analyzed the data presented in these resources, have students work independently to summarize, in writing, what they learned about our solar system, including: - locations of planets in relation to the sun and one another - relative sizes of planets, including Earth - relative distances of planets - any conclusions they can draw about the locations of the asteroid belt and Kuiper belt
Explanation Concepts and Practices	In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. ESS1.B: Earth and the Solar System The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them.
Elaboration Extension Activity	Have student explore the following site: Build a Solar System Model. This website provides digital tools to determine accurate size and distance between the objects in our solar system, assisting students in creating an accurate model. http://www.exploratorium.edu/ronh/solar_system/
Evaluation Assessment Tasks	Assessment Task A: Planetary Size Comparison Chart http://media.education.nationalgeographic.com/assets/file/Planetary Size Comparison Worksheet.pdf Assessment Task B: Stepping Out in the Solar System http://media.education.nationalgeographic.com/assets/file/Stepping Out the Solar System Worksheet.pdf Assessment Task C: Analysis & Interpretation of Data Analyze and interpret data to determine similarities and differences in findings. Have students work independently to summarize, in writing, what they learned about our solar system, including: - locations of planets in relation to the sun and one another - relative sizes of planets, including Earth - relative distances of planets - any conclusions they can draw about the locations of the asteroid belt and Kuiper belt

Unit 8: Weather and Climate

Grade: 6

Content Area: Earth and Space Science

Pacing: 20 Instructional Days

Essential Question

What factors interact and influence weather and climate?

Student Learning Objectives (Performance Expectations)

MS-ESS2-4. Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

MS-ESS2-5. Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.

MS-ESS2-6. Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Unit Summary

This unit is broken down into three sub-ideas: Earth's large-scale systems interactions, the roles of water in Earth's surface processes, and weather and climate. Students make sense of how Earth's geosystems operate by modeling the flow of energy and cycling of matter within and among different systems. A systems approach is also important here, examining the feedbacks between systems as energy from the Sun is transferred between systems and circulates though the ocean and atmosphere. The crosscutting concepts of cause and effect, systems and system models, and energy and matter are called out as frameworks for understanding the disciplinary core ideas. In this unit, students are expected to demonstrate proficiency in developing and using models and planning and carrying out investigations as they make sense of the disciplinary core ideas. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Geosystems, cycling of matter, flow of energy, advection, radiation, conduction, convection, insulation, albedo, troposphere, stratosphere, thermosphere, ionosphere, trophism

Formative Assessment Measures

Part A: What are the processes involved in the cycling of water through Earth's systems?

Students who understand the concepts are able to:

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

Model the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle.

Part B: What is the relationship between the complex interactions of air masses and changes in weather conditions?

Students who understand the concepts are able to:

Collect data to serve as the basis for evidence for how the motions and complex interactions of air masses result in changes in weather conditions.

Part C: What are the major factors that determine regional climates?

Students who understand the concepts are able to:

Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Born on August 24, 2016 by the South Bergen Jointure Commission Board of Education

	Ini	terdisciplinary Connections	
NJSLS- ELA		NJSLS- Mathematics	
Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS2-5), (MS-ESS3-5) RST.6-8.1 Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-ESS2-5) RST.6-8.9 Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of		Reason abstractly and quantitatively. (MS-ESS2-5), (MS-ESS3-5) MP.2 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-ESS2-5) 6.NS.C.5 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS3-5) 6.EE.B.6	
Core Instructional Materials			
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8, CRP11, CRP12		
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.	8.A.4, 8.1.8.A.5, 8.1.8.D.2, 8.1.8.D.	3, 8.1.8.D.4, 8.1.8.D.5, 8.2.8.A.5
		Modifications	
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides Enrichment activities	
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

EARTH AND SPACE SCIENCE

MS-ESS2-4 Earth's Systems

MS-ESS2-4. Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

Clarification Statement: Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.

Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.

Evidence Statements: MS-ESS2-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	ESS2.C: The Roles of Water in Earth's Surface	Energy and Matter
Modeling in 6–8 builds on K–5 experiences	<u>Processes</u>	Within a natural or designed system, the transfer of
and progresses to developing, using, and	Water continually cycles among land, ocean, and	energy drives the motion and/or cycling of matter.
revising models to describe, test, and predict	atmosphere via transpiration, evaporation,	
more abstract phenomena and design	condensation and crystallization, and precipitation,	
systems.	as well as downhill flows on land.	
Develop a model to describe unobservable	Global movements of water and its changes in form	
mechanisms.	are propelled by sunlight and gravity.	

Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS2.B; MS.PS3.A; MS.PS3.D

Articulation of DCIs across grade-bands: 3.PS2.A; 4.PS3.B; 5.PS2.B; 5.ESS2.C; HS.PS2.B; HS.PS3.B; HS.PS3.D; HS.PS4.B; HS.ESS2.A; HS.ESS2.C; HS.ESS2.D

NJSLS- ELA: N/A

NJSLS- Math: N/A

5F Mode

	SE MODEL		
MS-ESS2-4. Develop a mod	MS-ESS2-4. Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.		
Engage Anticipatory Set	Amazon Water Cycle Role Play http://www.calacademy.org/educators/lesson-plans/amazon-water-cycle-role-play		
Exploration Student Inquiry	Modeling Watershed In this activity, students use models to demonstrate how energy from the sun and the force of gravity impacts how groundwater moves. http://betterlesson.com/lesson/638308/modeling-watersheds		
Explanation Concepts and Practices	In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. ESS2.C: The Roles of Water in Earth's Surface Processes Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation, condensation and crystallization, and precipitation, as well as downhill flows on land.		

	Global movements of water and its changes in form are propelled by sunlight and gravity.
Elaboration Extension Activity	Hands-on Activity: Natural and Urban "Stormwater" Water Cycle Models https://www.teachengineering.org/view activity.php?url=collection/usf /activities/usf stormwater/usf stormwater lesson01 act ivity1.xml Monthly Climate Tables/Precipitation Charts http://climate.rutgers.edu/stateclim_v1/data/index.html Discussion Questions: How does duration and intensity of precipitation impact the water cycle? Compare the precipitation totals of different regions of NJ How would storms affect the movement of water through the water cycle? Related Activities: Earth Science Week http://www.earthsciweek.org/ngss-performance-expectations/ms-ess2-4
Evaluation Assessment Tasks	Assessment Task A: Groundwater Simulator Model Rubric

EARTH AND SPACE SCIENCE

MS-ESS2-5 Earth's Systems

MS-ESS2-5. Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.

Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation).

Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.

Evidence Statements: MS-ESS2-5

Disciplinary Core Ideas	Cross-Cutting Concepts
ESS2.C: The Roles of Water in Earth's Surface Processes	Cause and Effect
The complex patterns of the changes and the movement of	Cause and effect relationships may be used
water in the atmosphere, determined by winds, landforms,	to predict phenomena in natural or designed
and ocean temperatures and currents, are major	systems.
determinants of local weather patterns.	
ESS2.D: Weather and Climate	
Because these patterns are so complex, weather can only be	
predicted probabilistically.	
	ESS2.C: The Roles of Water in Earth's Surface Processes The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. ESS2.D: Weather and Climate Because these patterns are so complex, weather can only be

Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS2.A; MS.PS3.A; MS.PS3.B

Articulation of DCIs across grade-bands: 3.ESS2.D; 5.ESS2.A; HS.ESS2.C; HS.ESS2.D

NJSLS- ELA: RST.6-8.1, RST.6-8.9, WHST.6-8.8

NJSLS- Math: MP.2, 6.NS.C.5

5E Model

Begin lesson by showing a short video clip of a broadcast weather forecast by going to following website:

MS-ESS2-5. Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.

, ,

Weather Channel

Engage

Anticipatory Set

Select the Forecast tab. Choose the national forecast and play this for the class. You can also try any of the major network station websites either in your area or nationally for their videos.

After showing the video, ask the class how daily information is presented?

What units are given? Where is evidence of fronts, high/low pressure, temperature, precipitation, cloud cover, humidity or wind speeds?

	Much of what they will be studying is captured in a few minutes of video and now it's their turn to try their hand at predicting the weather.
Exploration Student Inquiry	Weather Forecasting Online Activity In this lesson, students will analyze weather maps as they develop their own understanding of the relationships between air pressure and clouds, factors that influence climate, weather fonts and the jet stream. http://betterlesson.com/lesson/638300/weather-forecasting-online-activity
Explanation Concepts and Practices	In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. ESS2.C: The Roles of Water in Earth's Surface Processes The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. ESS2.D: Weather and Climate Because these patterns are so complex, weather can only be predicted probabilistically.
Elaboration Extension Activity	Once students have made their predictions and reviewed them with the teacher, ask them to reflect on the accuracy of their model. Ask them to write a paragraph that compares their prediction to the actual forecast for day 4. What was similar? What was different? Were they surprised by the outcome? Did it bring up any questions? Ask students to hold a discussion with their partner before drafting the final paragraph.
Evaluation Assessment Tasks	Assessment Task A: Weather Forecasting Packets http://betterlesson.com/lesson/resource/3250148/weather-forecasting-internet-packet?from=resource_title Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions. Assessment Task B: Weather Forecasting Discussion Questions http://betterlesson.com/lesson/resource/3250150/weather-forecasting-discussion-questions Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions.

EARTH AND SPACE SCIENCE

MS-ESS2-6 Earth's Systems

MS-ESS2-6. Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.

Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.

Evidence Statements: MS-ESS2-6

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	ESS2.C: The Roles of Water in Earth's Surface Processes	Systems and System Models
Modeling in 6–8 builds on K–5	<u>Variations in density due to variations in temperature and salinity drive a</u>	Models can be used to represent
experiences and progresses to	global pattern of interconnected ocean currents.	systems and their interactions—such
developing, using, and revising models	ESS2.D: Weather and Climate	as inputs, processes and outputs—and
to describe, test, and predict more	Weather and climate are influenced by interactions involving sunlight, the	energy, matter, and information flows
abstract phenomena and design	ocean, the atmosphere, ice, landforms, and living things. These	within systems.
systems.	interactions vary with latitude, altitude, and local and regional geography,	
Develop and use a model to describe	all of which can affect oceanic and atmospheric flow patterns.	
phenomena.	The ocean exerts a major influence on weather and climate by absorbing	
	energy from the sun, releasing it over time, and globally redistributing it	
	through ocean currents.	

Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS3.B; MS.PS4.B

Articulation of DCIs across grade-bands: 3.PS2.A; 3.ESS2.D; 5.ESS2.A; HS.PS3.B; HS.PS3.D; HS.ESS1.B; HS.ESS2.A; HS.ESS2.D

NJSLS- ELA: SL.8.5
NJSLS- Math: N/A

5E Model

MS-ESS2-6. Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

EngageAnticipatory Set

Begin with a question-answer activity- Have you ever been to the beach on a hot day? Where is it cooler, on the water or on the sand? Demonstration- using two lamps. One lamp should be over a tray of water, one lamp should be over a tray of sand. Students will be able to touch the water and the sand and compare and contrast the difference in the temperature. Thermometers can also be used to determine the temperature of the sand and water. Ask students, If sand and water both absorb energy from the sun why do they feel so different?

Day 1:

Group students into pairs. Conduct the following experiment using these resources:

Before conducting experiment have students make predictions about the rate of heating for each material. During experiment, students will collect data and make inferences based on their observations. Students will record information in data tables and later analyze their data.

- 1. Fill one cup with water.
- 2. Fill one cup with soil.
- 3. Stand one thermometer in the water and one in the soil.
- 4. Read and record the temperatures of each cup at room temperature.
- 5. Place both cups under the lamp. Wait several minutes for cups to absorb the lamp's heat.
- 6. Read and record the temperatures of each cup a second time.
- 7. Were there any changes in temperature? The temperature of the soil should rise (heat up) first, as the soil absorbs heat faster than water.
- 8. Remove the cans from under the lamp and leave at room temperature for several minutes.
- 9. Read and record the temperatures of each cup.

Day 2:

ExplorationStudent Inquiry

Students will create a graph based on the data they collected. They will graph the temperature increase and decrease over a period of minutes.

Students will use the data collected to draw a model (line graph) of the land and water and predict how temperature will change during the course of 24 hours (the model should show that the land heats up and cools down faster than the water). Students will present their graphs and models.

Day 3:

Exploration Questions

Hold a class discussion. Ask students to describe the heating and cooling rates of land and water in this investigation. Have students record their findings and answers to the following questions:

Which material held its heat longer?

What factors may have influenced your results?

Why did the land change temperature the faster than the water?

Next, students will observe animations of land and sea breezes.

Animation of Land and Sea Breezes:

http://www.classzone.com/books/earth_science/terc/content/visualizations/es1903/es1903page01.cfm

They will compare the animation to their model and prediction. Students will have to explain their models.

- Is the pattern in your model similar or different to those shown in the animation? Explain your findings.

Explanation

In these lessons

Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.

Concepts and	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Practices	ESS2.C: The Roles of Water in Earth's Surface Processes
	Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents.
	ESS2.D: Weather and Climate
	Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These
	interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns.
	The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally
	redistributing it through ocean currents.
Elaboration Extension Activity	Students will work in groups to choose a geographical area (with teacher approval) and will develop and present a weather report for this region. Some presentation options include: posters, PowerPoint Presentations and videos. Teachers will identify the components which are to be included in the presentation through the use of a rubric. Additional Resource: http://www.nea.org/tools/lessons/hurricane-season-grades-6-8.html
	Assessment Task A: Line Graph Model
	Develop and use a model to describe phenomena.
	Students will be assessed on accuracy of line graph and their ability to describe phenomena based upon data collected. Use the discussion
Evaluation	questions as a guide.
Assessment Tasks	
	Assessment Task B: Model Reflection Questions
	Students will compare their models to the animation. Students must be able to answer the following question: Is the pattern in your
	model similar or different to those shown in the animation? Explain your findings.