
GPU Web 2021-09-13 
 
Chair: Jeff Gilbert 
Scribe: Ken / Kai / others 
Location: Google Meet 

Tentative agenda 
●​ CTS updates 
●​ Issue triaging / milestone discussion (timebox 10m) 
●​ TF.js status and feedback (timebox 10m?) 
●​ timestamp-query is unimplementable on TBDR architectures #2046 (alternative proposal 

in Hao's comment) 
●​ ​​GPUExternalTexture: Deal with Chroma Reconstruction #2098 
●​ Stretch 

○​ Should depth-stencil render attachments require views to have aspect = "all" for 
combined depth-stencil formats? #2062 

○​ Implicit GPUTextureSampleType for texture_2d<f32> #2064 
○​ (stretch) Feature request: ignore shader writes to color attachments #2060 

●​ Agenda for next meeting 

Attendance 
●​ Apple 

○​ Myles C. Maxfield 
●​ Google 

○​ Austin Eng 
○​ Brandon Jones 
○​ Kai Ninomiya 
○​ Ken Russell 
○​ Shrek Shao 

●​ Intel 
○​ Hao Li 
○​ Jiajia Qin 
○​ Jiawei Shao 
○​ Xing Xu 
○​ Yang Gu 
○​ Yunchao He 
○​ Zhaoming Jiang 

●​ Microsoft 
○​ Rafael Cintron 

https://github.com/gpuweb/gpuweb/issues/2046
https://github.com/gpuweb/gpuweb/issues/2046#issuecomment-915688213
https://github.com/gpuweb/gpuweb/issues/2098
https://github.com/gpuweb/gpuweb/issues/2062
https://github.com/gpuweb/gpuweb/issues/2064
https://github.com/gpuweb/gpuweb/issues/2060


●​ Mozilla 
○​ Dzmitry Malyshau 
○​ Jeff Gilbert 

●​ Michael Shannon 

CTS updates 
●​ KN: talking with DM about getting CTS running on wgpu via deno (Rust-based JS native 

engine) 
●​ Exciting! will have test coverage on multiple impls. 
●​ DM: already running on CI on every PR! Gradually enabling more tests. 
●​ MM: as distinct from running in-browser? 
●​ DM: right. It's not in browser, but via deno. 
●​ MM: is it easier? 
●​ KN: way of running it on wgpu's CI without building Firefox. 
●​ JG: it's running on the "interior" project. Working on a harness for Firefox. 
●​ KN: yes - also very exciting. 
●​ KN: couple of good testing updates. DM was just running tests, weren't in his current 

checkout, because his checkout was 1 day old. Moving pretty fast. :) 
●​ JG: that's great news. 

Issue triaging / milestone discussion (timebox 10m) 
●​ JG: MVP vs. V1. 
●​ JG: last week's WGSL call - surprise from ppl not on previous WebGPU API call where 

there was rough consensus to change milestones from dealing with pre/post MVP, to 
pre/post V1. 

●​ JG: had quorum that day. Some WGSL ppl were a little gun-shy about characterizing 
things as V1 vs. MVP. But already changed everything. Don't think worth changing 
everything back. 

●​ JG: felt Chrome's OT constituted MVP officially, and I don't agree with that. 
●​ KN: Yes. We didn't really have an MVP definition. Using it to tell whether a change was 

breaking or not. "Stable point" should be called 1.0. Would like to have something before 
1.0, but because we haven't had such a label it's been hard to have an MVP label. 

●​ KN: OT doesn't really have anything to do with it. 
●​ KN: if we can come up for definition for MVP, would be great to have a milestone and 

move some things into it. API side, it was being used as a marker of a breaking change - 
needed before 1.0. 

●​ JG: imp't aspect: not that we know what MVP is, but - things that are requirements for 
V1, vs. things we want in V1 that we don't necessarily need for it. MVP = only the things 
we need for V1. But the initial product's not just the MVP. May not be a super important 
distinction. If it is imp't and comes up in another WGSL issue, we can add more tags if 
we need to. 



●​ KN: I think we have been fairly minimal about MVP; most things are in V1 milestone 
because they involve breaking changes. Some very core things like - compressed 
texture format stuff, etc. But conservative about putting things in V1 bucket, formerly 
MVP bucket. Lot of things in it, not sure how to divide it up. Nice if we could though. 

●​ JG: main idea - there are shipping requirements, those are MVP. 
●​ KN: i see. 
●​ JG: and other things we may want to talk about for V1 - those are in post-MVP category. 

Deferring them, but still before V1, to keep things open. Thought is, we don't absolutely 
need those changes. 

●​ KN: on API side, we should probably stop punting things. But maybe WGSL isn't at that 
point yet. That definition seems reasonable. 

●​ YH: from spec standpoint - there are V1 targets. Will we add labels for MVP features? 
●​ JG: idea - anything previously labeled MVP, we just label for V1. Just difference in labels. 

Room for things we may want in V1 but not critical. Still in V1 label for now. 
●​ KN: makes sense. YH do you mean inside spec document? 
●​ YH: yes, in incomplete areas. 
●​ KN: probably won't have that distinction in the spec. Stuff that's in the spec is "done", 

unless there are missing details - adding those could be MVP or V1, depending on their 
impact. 

●​ YH: so is spec targeted at MVP or V1? 
●​ KN: spec should always be trying to move toward V1. Can go past V1 in some aspects if 

it wants to, for example adding details about optional features that wouldn't have been 
called V1. If they're done, they're done, and in the spec. Not parts of spec that are 
V1/MVP/Post-V1. Whatever wording's in the spec is written. 

●​ YH: OK, so my understanding - spec's V1, and MVP is temp status for implementation. 
●​ JG: that's right, that's a good way to think about it. 
●​ MM: once V1 ships in 2+ browsers - marking things as V1/V2/V3 is meaningless. MVP, 

V1 only useful for the next few months. After that, there'll be no point to these 
milestones. 

●​ KN: that's correct, except for things that are agreed-upon / tested behavior that we don't 
know/have yet. 

●​ KR: Is that because there’s no versioning capability besides optional features? Is nothing 
new going in to core ever again? Does everything need feature detection? 

●​ MM: way this works - features are just added to spec. 
●​ KN: planning on living spec. Everything added after 1.0 should be feature detectable. If 

we need to add feature detection for each new feature we'll do that. 
●​ JG: MVP is more project management. Now just talking about it in terms of 1.0. 

TF.js status and feedback (timebox 10m?) 
●​ JQ: Have been working on it for two years, lots of input and development. From the data 

we’ve collected, WebGPU behaves really well, and is 1.1-3x as fast as WebGL. 
●​ JQ: issues: 



○​ Out-of-bounds clamping. Big perf regressions. 30%. Reported on WebGPU 
Github. Some discussions. Hasn't been solution. Currently using vec4 instead of 
floats to reduce impact of clamping. But still about 8% hit. 

○​ https://github.com/gpuweb/gpuweb/issues/1202 
○​ We investigated that shared memory array clamping is the heaviest one. So I am 

wondering whether you can provide a special optimization path for shared 
memory robustness access. Or give users a hint on how to use the shared 
memory index so that we can avoid index clamping under the hood. 

●​ JQ: hardware limitations 
○​ Ex. max workgroup shared memory size. 
○​ Reduced usage of shmem from 32KB -> 8 KB. 7% regression on some modules 

on Windows. 
○​ One module: 2x slower than before on another platform. shmem size probably 

the culprit. 
○​ Can we expose those maximum values per device? 
○​ MM: you're asking for more workgroup shared memory? 
○​ JQ: yes, if hardware supports more. 
○​ KN: we have support for this in the spec: maxComputeWorkgroupStorageSize. 

There's a limit you can raise when device is created, but we don't implement it in 
Chrome right now. 

●​ JQ: timestamp query APIs 
○​ Imp't for us to debug perf. E.g. perf impact tuning same operator's perf with 

different input shape/size. 
○​ So we need to know each dispatching call's accurate time for performance. 
○​ But, won't be convenient to get these measurements if we can only measure on 

the pass level as in the TBDR timestamp proposal. 
●​ JQ: warmup time. 

○​ Currently WebGPU has long inference time compared with WebGL. Time mainly 
in shader compilation. Compute pipelines seem not cached in browser. Want 
browser to support caching compute pipelines. 2x-10x slower than WebGL for 
first run / first-time inference. 

○​ MM: spec allows caching these modules, not sure if a browser does so yet. 
Ideally before changing spec, browsers would implement some kind of caching. 

○​ JQ: testing on Windows, Chrome Canary. 
○​ KR: Dawn's DX12 backend? 
○​ JQ: yes. 
○​ KR: so maybe fxc is the main problem. Have had a lot of issues fxc just in 

WebGL fragment shaders, can imagine more problems using it for compute 
shaders. 

○​ Discussion about dxc, and SPIRV->DXIL. 
●​ JQ: dxc support. What's the plan? We'd like to try SM 6.0 features. 

○​ Subgroup support, for example. 

https://github.com/gpuweb/gpuweb/issues/1202


○​ MM: float16 support too? fxc only supports min-something types, but dxc 
supports real float16? 

●​ MM: should we open issues for all of these? Try to discuss one-by-one? 
●​ JG: they're more or less in bullet points already. 4 issues. Perhaps have discussion on 

how to mitigate. JQ could you file them? 
○​ JQ: yes. We can do it. 

●​ JQ: would like to have short discussion about out-of-bounds clamping. One proposal: is 
it portable to have special optimization pass for shmem robust access? shmem is fixed 
size. Usually use local invocation ID as index. Max one depends on workgroup size, 
which is constant value. If WG size is smaller than shmem size, easy to avoid the 
shmem index clamping. Could solve our problem. Does that sound good? 

○​ https://github.com/gpuweb/gpuweb/issues/1202 
○​ MM: think the compiler knows the workgroup size and shmem size. Can just 

detect, no API change needed. 
○​ JQ: Tint inserts clamping of all indices. Driver doesn't do this optimization. If we 

don't insert the clamping, perf is ~2x faster. 
○​ MM: do you have potential solutions? What would you like this group to do? 
○​ JQ: for Tint project, can you analyze the shader and find that the memory index 

will never exceed the max value? Maybe don't need to insert the clamping. 
○​ JG: sounds viable. Sounds more like a Tint enhancement request than a 

WebGPU spec bug. Maybe better to talk about this in the WGSL meeting. 
○​ KN: agree, this would be a Tint / Naga enhancement. Compiler optimization. 

Involves some analysis. Think purely implementation issue. If reason to believe 
not viable with current state of the language - can discuss. But today, think it can 
be done. 

●​ MM: you mention you use workgroup memory extensively. Are these shaders created at 
runtime? Do you know before the app starts running what the full text of the shader is? 

○​ JQ: we construct the shaders at runtime. Only impacts the first-time inference. 
Shader cached afterward. 

●​ MM: when you generate these shaders, is each one distinct? Or are most of the shaders 
similar, with a few tweaks? 

○​ JQ: if same operator, almost only one shader. Different ops, shader will be 
different. Some shaders - based on input shapes, workgroup size will be 
different, maybe have different shaders. 

○​ MM: I see. 
●​ JQ: another issue: hardware limitation. Opinions on this? 

○​ KN: the API already defines a way to raise the limit when you create a device. 
Our impl doesn't let you do that yet. Only exposes base limits; doesn't let you see 
the adapter's real limits. The spec supports this. 

○​ JG: Chrome will eventually support this? 
○​ KN: yes. 

●​ JQ: I'll go through my issues and post them into Github. 

https://github.com/gpuweb/gpuweb/issues/1202


●​ JG: thanks so much for coming and glad we had this meeting at this time so you could 
attend! 

timestamp-query is unimplementable on TBDR architectures 
#2046 (alternative proposal in Hao's comment) 

●​ HL: another proposal. Myles' is great - thanks for it. But eliminates the ability to measure 
time between draw calls/dispatches on immediate mode devices. Need it for TF.js 
profiling. 

●​ HL: from perf data on issue #2046, don't think we'll split dispatches into passes. 
●​ HL: suggest new timestamp API, something for TBDR, and immediate-mode devices. 

Like Metal, supports two kinds of timestamps. 
●​ HL: we've discussed, timestamp query's a developer feature. Detect which kinds of 

queries are supported on their platforms. 
●​ MM: are you proposing two separate, distinct extensions? 
●​ HL: yes. Current extension is, we can call writeTimestamp between draw 

calls/dispatches. And the other one is to record timestamps in the pass descriptor. 
●​ HL: We batch multiple dispatches into compute passes thanks to your performance 

investigation that compute passes have overhead cost. 
●​ MM: TF.js runs on iPhones, and M1 Mac (I believe). On iPhones / M1 Macs, what does 

TF.js do there? 
●​ JQ: why do you think it will change with other platforms? Currently it's the same. 
●​ MM: on immediate-mode GPUs (like Intel's), you ask for current time, then execute 

dispatch, ask for current time again. If you can't ask for current time around individual 
dispatches then you lose information. Need info about individual dispatches. Correct? 

●​ JQ: yes. 
●​ MM: on iPhones / M1 macs, can't get info about single dispatch. Can't write that. You 

have to get current time around an entire pass. Believe TF.js (or TensorFlow) runs on 
iPhones / M1 Macs, so what does TF do on those platforms where it can't use that kind 
of code? 

●​ JQ: I think we can support both. Can get whole pass's time, and each dispatch's time. 
Each dispatch's time is useful for profiling. And on Mac can get whole pass time. 

●​ MM: what benefit do you get get from profiling draw calls/ dispatches rather than 
passes? 

●​ JQ: need to know operators' accurate time. One operator may be executed multiple 
times with different input shapes. Different input shapes, different performance. 

●​ MM: do you do that at runtime? Or does the app developer have to be involved in tuning 
process? 

●​ JQ: we do the profiling in profiling mode. Not in release mode. 
●​ MM: sounds like it would be better for developer tools to expose. Our developer tools on 

iPhones will give you much finer detail than an individual draw call. iPhones will give you 
info about assembly statements in shaders. 

https://github.com/gpuweb/gpuweb/issues/2046
https://github.com/gpuweb/gpuweb/issues/2046#issuecomment-915688213


●​ JQ: thanks for that. But we need it on other platforms. If only can measure at pass level, 
how to evaluate on Windows? 

●​ MM: think browsers should expose developer tools. 
●​ JQ: so depend on developer tools? 
●​ KR: objection to not giving Intel the opportunity to spec these extensions. 
●​ DM: would be nice to have detailed timestamps in the APi. But not in core. My priority is 

to get the core finalized. Would like us to not spend too much time on timestamps 
specifically. for Intel team, native GPU tools give you superior info to anything we can 
give in the near future. Would like to not rush this in. 

●​ MS: we discussed it at our company. For us, it's more of a developer feature. Would like 
to keep what we have, but we'd turn it off before distributing an app. So we don't care if 
it's officially in, but would like to keep the functionality we currently have. 
(writeTimestamp between calls/dispatches.) But we don't care if it's ever published. 

○​ MM: when you say developer feature, you mean for the employees in our 
company? 

○​ MS: yes. We wouldn't publish to the web with it init. 
○​ MM: if you have to start browser with a flag, that's fine with you./ 
○​ MS: yes. And it's OK if the interface changes. 

●​ SY: think TF.js is using timestamp query because we have regression prevention 
mechanism. We run TF.js benchmarks every day. We'd use more powerful tools for 
analysis. 

●​ MM: every proposal offers regression prevention. 
●​ SY: if you can only get the pass timestamps you can't get the individual operator times. 
●​ JQ: if we support timestamp queries for individual dispatches behind a flag it's fine. 

​​GPUExternalTexture: Deal with Chroma Reconstruction #2098 
●​ SY: hoping for more comments on this. Internal discussion about correctness of 

GPUExternalTexture. Pre/Post filters are questions. 
●​ SY: how to handle chroma reconstruction step in implementations? 
●​ SY: Does spec need to add words for GPUExternalTexture correctness? E.g. we don't 

commit postfilter? 
●​ JG: sounds like you're asking - are we committing to make sure we're decoding these 

with proper chroma reconstruction? Or want to specify chroma reconstruction for video? 
●​ SY: first, how can we support it? We could choose one as impl detail. Other, more wide 

support - e.g. implicit reconstruction, or don't support postfilters in the spec, or just ignore 
it? 

●​ JG: wish we'd timeboxed earlier to have time to discuss this. 

Stretch 
●​ Should depth-stencil render attachments require views to have aspect = "all" for 

combined depth-stencil formats? #2062 

https://github.com/gpuweb/gpuweb/issues/2098
https://github.com/gpuweb/gpuweb/issues/2062


●​ Implicit GPUTextureSampleType for texture_2d<f32> #2064 
●​ (stretch) Feature request: ignore shader writes to color attachments #2060 

Agenda for next meeting 
●​ JG: are we having a WebGPU APAC office hour this week? 

○​ KN: EMEA/APAC office hour's still on the calendar for the usual time. 
●​ MM: bunch of issues that require Intel. We could say, next week's WebGPU call is at this 

time also. 
○​ JG: maybe...trying to balance it. Not sure whether it's better to go for continuity 

between meetings, or reduce latency with other people. 
○​ MM: what does Intel team think? 
○​ SY: for my issue I'm not in that much of a hurry. Need input from other team 

members in the interim. 
○​ JQ: for TF.js, I'll file all the issues I have on Github. Want to collect more 

discussions there, see feedback. See if we need separate meeting to discuss. 
○​ JG: OK. GIven that feedback, I think meeting at EMEA time next week, but 

should consider another APAC-friendly meeting the week after. 
○​ KN: thikn that would be good. 
○​ JG: OK, let's do that - next week, 12-1 PM Pacific time. Tentatively, the week 

after, this meeting again at this time slot. (5-6PM pacific) 
○​ JG: thank you Jiajia and Shaobo for presenting things 

●​ TPAC meeting(s)? 

https://github.com/gpuweb/gpuweb/issues/2064
https://github.com/gpuweb/gpuweb/issues/2060

	GPU Web 2021-09-13 
	Tentative agenda 
	Attendance 
	CTS updates 
	Issue triaging / milestone discussion (timebox 10m) 
	TF.js status and feedback (timebox 10m?) 
	timestamp-query is unimplementable on TBDR architectures #2046 (alternative proposal in Hao's comment) 
	​​GPUExternalTexture: Deal with Chroma Reconstruction #2098 
	Stretch 
	Agenda for next meeting 


