

Animal House
Minimum experience: Grades K+, 1st year using ScratchJr, 1st quarter or later

At a Glance

Overview and Purpose

Coders use a variety of blocks and sprites to create their own interactive diorama about animals on a farm. The purpose of this
project is to introduce coders to the sound blocks.

Objectives and Standards

Process objective(s): Product objective(s):

Statement:
●​ I will learn how to trigger sounds and other algorithms

when sprites are tapped.
Question:

●​ How can we trigger sounds and other algorithms
when sprites are tapped?

Statement:
●​ I will create an interactive diorama that responds to a

user.
Question:

●​ How can we create an interactive diorama that
responds to a user?

Main standard(s): Reinforced standard(s):

1A-AP-10 Develop programs with sequences and simple loops,
to express ideas or address a problem.

●​ Programming is used as a tool to create products that
reflect a wide range of interests. Control structures
specify the order in which instructions are executed
within a program. Sequences are the order of
instructions in a program. For example, if dialogue is
not sequenced correctly when programming a simple
animated story, the story will not make sense. If the
commands to program a robot are not in the correct
order, the robot will not complete the task desired.
Loops allow for the repetition of a sequence of code
multiple times. For example, in a program to show the
life cycle of a butterfly, a loop could be combined with
move commands to allow continual but controlled
movement of the character. (source)

1A-AP-08 Model daily processes by creating and following
algorithms (sets of step-by-step instructions) to complete tasks.

●​ Composition is the combination of smaller tasks into
more complex tasks. Students could create and follow
algorithms for making simple foods, brushing their
teeth, getting ready for school, participating in
clean-up time. (source)

1A-AP-11 Decompose (break down) the steps needed to solve
a problem into a precise sequence of instructions.

●​ Decomposition is the act of breaking down tasks into
simpler tasks. Students could break down the steps
needed to make a peanut butter and jelly sandwich, to
brush their teeth, to draw a shape, to move a character
across the screen, or to solve a level of a coding app.
(source)

1A-AP-14 Debug (identify and fix) errors in an algorithm or
program that includes sequences and simple loops.

●​ Algorithms or programs may not always work correctly.
Students should be able to use various strategies, such
as changing the sequence of the steps, following the
algorithm in a step-by-step manner, or trial and error
to fix problems in algorithms and programs. (source)

1A-AP-15 Using correct terminology, describe steps taken and

https://bootuppd.org/
https://images.ctfassets.net/1devtjk7knks/34nw2pmVYre1tQlVoMR0n5/f4ef1b5561302dd4a85671ada2b0371a/Sounds.png
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards

choices made during the iterative process of program
development.

●​ At this stage, students should be able to talk or write
about the goals and expected outcomes of the
programs they create and the choices that they made
when creating programs. This could be done using
coding journals, discussions with a teacher, class
presentations, or blogs. (source)

Practices and Concepts
Source: K–12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org.

Main practice(s): Reinforced practice(s):

Practice 5: Creating computational artifacts
●​ "The process of developing computational artifacts

embraces both creative expression and the
exploration of ideas to create prototypes and solve
computational problems. Students create artifacts
that are personally relevant or beneficial to their
community and beyond. Computational artifacts can
be created by combining and modifying existing
artifacts or by developing new artifacts. Examples of
computational artifacts include programs,
simulations, visualizations, digital animations, robotic
systems, and apps." (p. 80)

●​ P5.2. Create a computational artifact for practical
intent, personal expression, or to address a societal
issue. (p. 80)

●​ P5.3. Modify an existing artifact to improve or
customize it. (p. 80)

Practice 6: Testing and refining computational artifacts
●​ "Testing and refinement is the deliberate and iterative

process of improving a computational artifact. This
process includes debugging (identifying and fixing
errors) and comparing actual outcomes to intended
outcomes. Students also respond to the changing needs
and expectations of end users and improve the
performance, reliability, usability, and accessibility of
artifacts." (p. 81)

●​ P6.1. Systematically test computational artifacts by
considering all scenarios and using test cases." (p. 81)

●​ P6.2. Identify and fix errors using a systematic process.
(p. 81)

Practice 7: Communicating about computing
●​ "Communication involves personal expression and

exchanging ideas with others. In computer science,
students communicate with diverse audiences about
the use and effects of computation and the
appropriateness of computational choices. Students
write clear comments, document their work, and
communicate their ideas through multiple forms of
media. Clear communication includes using precise
language and carefully considering possible audiences."
(p. 82)

●​ P7.2. Describe, justify, and document computational
processes and solutions using appropriate terminology
consistent with the intended audience and purpose. (p.
82)

Main concept(s): Reinforced concept(s):

Control
●​ "Control structures specify the order in which

instructions are executed within an algorithm or
program. In early grades, students learn about
sequential execution and simple control structures.
As they progress, students expand their
understanding to combinations of structures that
support complex execution." (p. 91)

●​ Grade 2 - "Computers follow precise sequences of
instructions that automate tasks. Program execution

Algorithms
●​ "Algorithms are designed to be carried out by both

humans and computers. In early grades, students learn
about age-appropriate algorithms from the real world.
As they progress, students learn about the
development, combination, and decomposition of
algorithms, as well as the evaluation of competing
algorithms." (p. 91)

http://www.csteachers.org/page/standards
http://www.k12cs.org
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101

can also be nonsequential by repeating patterns of
instructions and using events to initiate instructions."
(p. 96)

●​ Grade 2 - People follow and create processes as part of
daily life. Many of these processes can be expressed as
algorithms that computers can follow." (p. 96)

ScratchJr Blocks

Primary blocks Triggering, Sound

Supporting blocks Control, Looks, Motion

Vocabulary

Algorithm ●​ A step-by-step process to complete a task. (source)
●​ A formula or set of steps for solving a particular problem. To be an algorithm, a set of rules must

be unambiguous and have a clear stopping point. (source)

Debugging ●​ The process of finding and correcting errors (bugs) in programs. (source)
●​ To find and remove errors (bugs) from a software program. Bugs occur in programs when a line

of code or an instruction conflicts with other elements of the code. (source)

Event (trigger) ●​ An action or occurrence detected by a program. Events can be user actions, such as clicking a
mouse button or pressing a key, or system occurrences, such as running out of memory. Most
modern applications, particularly those that run in Macintosh and Windows environments, are
said to be event-driven,because they are designed to respond to events. (source)

●​ The computational concept of one thing causing another thing to happen. (source)
●​ Any identifiable occurrence that has significance for system hardware or software.

User-generated events include keystrokes and mouse clicks; system-generated events include
program loading and errors. (source)

Simulation ●​ Imitation of the operation of a real-world process or system. (source)
●​ The process of imitating a real phenomenon with a set of mathematical formulas. Advanced

computer programs can simulate weather conditions, chemical reactions, atomic reactions,
even biological processes. In theory, any phenomena that can be reduced to mathematical data
and equations can be simulated on a computer. In practice, however, simulation is extremely
difficult because most natural phenomena are subject to an almost infinite number of
influences. One of the tricks to developing useful simulations, therefore, is to determine which
are the most important factors. (source)

Sprite ●​ A media object that performs actions on the stage in a Scratch project. (source)

More vocabulary
words from CSTA

●​ Click here for more vocabulary words and definitions created by the Computer Science Teachers
Association

Connections

Integration Potential subjects: Media arts, science

Example(s): This project could connect with science classes as it models the motions and sounds of
creatures within an environment or system. Rather than making this project about the farm, coders
could explore other creatures within other environments.

Vocations Scientists and researchers often create models or simulations of environments in order to better
understand the processes and systems at play. Click here to visit a website dedicated to exploring

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=106
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=106
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png
https://images.ctfassets.net/1devtjk7knks/34nw2pmVYre1tQlVoMR0n5/f4ef1b5561302dd4a85671ada2b0371a/Sounds.png
https://images.ctfassets.net/1devtjk7knks/3k9lPOiHl21kSk5HVLgJa7/8f287dc199ef945c9187430550a9ee56/Control.png
https://images.ctfassets.net/1devtjk7knks/PGEFzTkmMIczvIIWCfDTM/94562b203167a6399af02ab345ed7c0a/Looks.png
https://images.ctfassets.net/1devtjk7knks/1nSYTcYm3mgNc2EWTOIkMI/54cba1856ce09bfccec4168d4f79b7c0/Motion.png
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=269
http://www.webopedia.com/TERM/A/algorithm.html
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=271
http://www.webopedia.com/TERM/D/debug.html
http://www.webopedia.com/TERM/E/event.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=139
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=272
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=274
http://www.webopedia.com/TERM/S/simulation.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=141
https://csteachers.org/k12standards/glossary/
https://csteachers.org/k12standards/glossary/
https://careerswithstem.com.au/

potential careers through coding.

Resources

●​ Sample project file
○​ Video: Downloading project files (1:04)

●​ Sample project images

Project Sequence

Preparation (At least one day prior)

Suggested preparation Resources for learning more

Ensure all devices are
plugged in for charging over
night and prepare
headphones for each device.

(10+ minutes) Read through
each part of this lesson plan
and decide which sections
the coders you work with
might be interested in and
capable of engaging with in
the amount of time you have
with them. If using projects
with sound, individual
headphones are very helpful.

●​ BootUp ScratchJr Tips
○​ Videos and tips on ScratchJr from our YouTube channel

●​ BootUp Facilitation Tips
○​ Videos and tips on facilitating coding classes from our YouTube channel

●​ Block Descriptions
○​ A document that describes each of the blocks used in ScratchJr

●​ Interface Guide
○​ A reference guide that introduces the ScratchJr interface

●​ Paint Editor Guide
○​ A reference guide that introduces features in the paint editor

●​ Tips and Hints
○​ Learn even more tips and hints by the creators of the app

●​ Coding as another language (CAL)
○​ A set of curriculum units for K-2 using both ScratchJr and KIBO robotics

●​ ScratchJr in Scratch
○​ If you’re using ScratchJr in Scratch, this playlist provides helpful tips and

resources

Getting Started (10+ minutes)

Suggested sequence Resources, suggestions, and connections

1. Review and demonstration (8+ minutes):
Begin by asking coders to talk with a neighbor for 30 seconds
about something they learned last time; assess for general
understanding of the practices and concepts from the previous
project.

Explain to the class we are going to create a project about
animals on a farm that make sounds when we press them.
Demonstrate the sample project or your own farm diorama,
but don’t display the code.

Review how to open ScratchJr, create a new project, delete
Scratch Cat, and select an outside background.

Practices reinforced:
●​ Communicating about computing

Video: Project Preview (0:50)
Video: Lesson pacing (1:48)

Example review discussion questions:

●​ What’s something new you learned last time you
coded?

○​ Is there a new block or word you learned?
●​ What’s something you want to know more about?
●​ What’s something you could add or change to your

previous project?
●​ What’s something that was easy/difficult about your

previous project?

https://drive.google.com/file/d/0B342uiaCLSS3MXJXbF95ZmRBajA/preview?resourcekey=0-4uAUFsLHuE0cqKhyeTYoug
https://youtu.be/0mfnVV36SiE
https://drive.google.com/drive/folders/0B342uiaCLSS3Rl9ESlBtcVhCN00?resourcekey=0-2SAU-bqsN1B11JvAl8GgUw&usp=sharing
https://www.youtube.com/playlist?list=PLV4zluvZAlMrwM6kOo-jpdLlk3D_Hibzj
https://youtube.com/bootuppd
https://www.youtube.com/playlist?list=PLV4zluvZAlMpHQ0MbOkE52QC9f0SYNJVh
https://youtube.com/bootuppd
https://drive.google.com/open?id=0B3nMatUGHrRWZ2QyVFExQk1yejg
https://drive.google.com/open?id=0B3nMatUGHrRWbzFZWVV4R1dCSk0
https://drive.google.com/open?id=0B3nMatUGHrRWWVpCaVRadGc5VzA
https://www.scratchjr.org/learn/tips
https://sites.tufts.edu/codingasanotherlanguage/
https://youtube.com/playlist?list=PLV4zluvZAlMoE6P8y0VW4om93BkZqGakQ
https://drive.google.com/open?id=0B342uiaCLSS3MXJXbF95ZmRBajA
https://images.ctfassets.net/1devtjk7knks/eaKZdfO6IifvE3q57x0ou/d09fb0710644e9cdc3c9ae9850e37c4e/Scratch_Cat.png
https://youtu.be/ie-PcCGplu4
https://youtu.be/B2sPAmQxiGc

Review how to add in a sprite by looking at the different
animals and objects we might find, then select and add in an
animal. Demonstrate how to record a sound and then trigger a
recorded sound block using a start on tap trigger.

2. Discuss (2+ minutes):
Have coders talk with each other about how they might create
a project like the one demonstrated. If coders are unsure, and
the discussion questions aren’t helping, you can model
thought processes: “I noticed the sprite moved around, so I
think they used a motion block. What motion block(s) might
be in the code? What else did you notice?” Another approach
might be to wonder out loud by thinking aloud different
algorithms and testing them out, next asking coders “what do
you wonder about or want to try?”

After the discussion, coders will begin working on their project
as a class, in small groups, or at their own pace.

Practices reinforced:
●​ Communicating about computing

Note: Discussions might include full class or small groups, or
individual responses to discussion prompts. These discussions
which ask coders to predict how a project might work, or think
through how to create a project, are important aspects of
learning to code. Not only does this process help coders think
logically and creatively, but it does so without giving away the
answer.

Example discussion questions:

●​ What would we need to know to make something like
this in ScratchJr?

●​ What kind of blocks might we use?
●​ What else could you add or change in a project like

this?
●​ What code from our previous projects might we use in

a project like this?
●​ What kind of sprites might we see on a farm?

○​ What kind of code might they have?

Project Work (30+ minutes; 2+ classes)

Suggested sequence Resources, suggestions, and connections

3. Create a farm sound project (20+ minutes):
Ask coders to create a project about farm sounds and animals.
Facilitate by walking around and asking questions and
encouraging coders to try out new blocks.

Standards reinforced:
●​ 1A-AP-10 Develop programs with sequences and

simple loops, to express ideas or address a problem
Practices reinforced:

●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

4. Reverse engineering even more ideas (10+ minutes each):
1 minute intro demonstration
Demonstrate one of the following example sprites on the
board without displaying the code (they are in order of
complexity):

●​ Pig breaking out of a fence
●​ Barn sounds
●​ Horse sounds
●​ Chicken dance
●​ Pig rolling in mud

4+ minute reverse engineering and peer-to-peer coaching
Ask coders to see if they can figure out how to use their code
blocks to create an algorithm that makes a sprite do

Standards reinforced:
●​ 1A-AP-10 Develop programs with sequences and

simple loops, to express ideas or address a problem
●​ 1A-AP-11 Decompose (break down) the steps needed

to solve a problem into a precise sequence of
instructions.

●​ 1A-AP-14 Debug (identify and fix) errors in an
algorithm or program that includes sequences and
simple loops.

Practices reinforced:
●​ Communicating about computing
●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:

https://images.ctfassets.net/1devtjk7knks/18kNqJ8IlDNweXLv2IYyHF/2e705acbb1e46fa66782f821ec71f862/T_-_Start_on_tap.png
https://images.ctfassets.net/1devtjk7knks/3EGStYliixNrfADMPtdBX0/dece9a98fa8063237c98464b556d85dd/Pig_breaking_out_of_fence.png
https://images.ctfassets.net/1devtjk7knks/6d6iMRgoBRg26m3LH8u7No/5902b7a8265f5f777f20b46ea196eda0/Barn_sound.png
https://images.ctfassets.net/1devtjk7knks/5wGokzn1AHX4rg2FbkvmDK/818ea1eb75731b718c42e7e7baeb0d19/Horse_sound.png
https://images.ctfassets.net/1devtjk7knks/7cdDRaQD0s4PkZLbWIYUqG/83b202ad9fd9b57f5768e0aa99279a63/Chicken_dance.png
https://images.ctfassets.net/1devtjk7knks/380Kls82hIrgSwuPgseKWF/129df6d0f278e98c15262dc2ed1b690a/Pig_rolling_in_mud.png

something similar to what was demonstrated. Facilitate by
walking around and asking guiding questions.

1 minute explanation demonstration
If coders figured out how to get their sprite to do something
similar, have them document in their journal, share with a
partner, or have a volunteer show the class their code and
thought processes that led to the code. Otherwise, reveal the
code, walk through each step of the algorithm, and explain any
new blocks. If coders haven’t figured it out, demonstrate how
to record a sound and add it to their project.

4+ minute application and exploration
Encourage coders to try something similar, and leave your
code up on display while they work. Facilitate by walking
around and asking questions about how coders might change
their code so it’s not the same as yours.

●​ Algorithms
●​ Control

Video: Suggestions for reverse engineering (4:25)

Note: It is not recommended to show each of these ideas at
once, but to show one idea, give time for application and
exploration, show another idea, give time for application and
exploration, etc. This process could take multiple classes. Also,
some of these examples may be difficult for young coders, so
go slow and encouraging copying and modifying code as it’s
good practice.

Alternative suggestion: If reverse engineering is too difficult
for the coders you work with, you could display the source
code and have coders predict what will happen.

Suggested guiding questions:

●​ What kind of blocks do you think you might need to do
something like that?

●​ Do you see a pattern where we might use a repeat?
●​ What trigger blocks do you think I used for that sprite?
●​ Did I use one trigger block or more than one?

○​ What makes you think that?

Suggested application and exploration questions:

●​ What other code blocks could you use?
●​ What other sprites might use similar code?

Assessment

Standards reinforced:
●​ 1A-AP-15 Using correct terminology, describe steps taken and choices made during the iterative process of program

development
Practices reinforced:

●​ Communicating about computing

Although opportunities for assessment in three different forms are embedded throughout each lesson, this page provides
resources for assessing both processes and products. If you would like some example questions for assessing this project, see
below:

Summative
Assessment of Learning

Formative
Assessment for Learning

Ipsative
Assessment as Learning

The debugging exercises, commenting
on code, and projects themselves can all
be forms of summative assessment if a
criteria is developed for each project or
there are “correct” ways of solving,
describing, or creating.

For example, ask the following after a
project:

●​ Can coders debug the

The 1-on-1 facilitating during each
project is a form of formative
assessment because the primary role of
the facilitator is to ask questions to
guide understanding; storyboarding can
be another form of formative
assessment.

For example, ask the following while
coders are working on a project:

The reflection and sharing section at the
end of each lesson can be a form of
ipsative assessment when coders are
encouraged to reflect on both current
and prior understandings of concepts
and practices.

For example, ask the following after a
project:

●​ How is this project similar or

https://youtu.be/--CZwUaK4So
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png
https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk

debugging exercises?
●​ Did coders create a project

similar to the project preview?
○​ Note: The project

preview and sample
projects are not
representative of what
all grade levels should
seek to emulate. They
are meant to generate
ideas, but expectations
should be scaled to
match the experience
levels of the coders you
are working with.

●​ Can coders explain how to
record a sound in ScratchJr?

●​ Did coders use a variety of block
types in their algorithms and
can they explain how they work
together for specific purposes?

●​ Did coders create a farm
simulation with at least ##
different sprites with different
algorithms that include
recorded sounds?

○​ Choose a number
appropriate for the
coders you work with
and the amount of time
available.

●​ What are three different ways
you could change that sprite’s
algorithm?

●​ What happens if we change the
order of these blocks?

●​ What could you add or change
to this code and what do you
think would happen?

●​ How might you use code like
this in everyday life?

●​ See the suggested questions
throughout the lesson and the
assessment examples for more
questions.

different from previous
projects?

●​ What new code or tools were
you able to add to this project
that you haven’t used before?

●​ How can you use what you
learned today in future
projects?

●​ What questions do you have
about coding that you could
explore next time?

●​ See the reflection questions at
the end for more suggestions.

Extended Learning

Project Extensions

Suggested extensions Resources, suggestions, and connections

Adding even more (5+ minutes):
If time permits, encourage coders to explore what
else they can create in ScratchJr. Although future
lessons will explore different features and blocks,
early experimentation should be encouraged.

While facilitating this process, monitor to make
sure coders don’t stick with one feature for too
long. In particular, coders like to edit their
sprites/backgrounds by painting on them or
taking photos. It may help to set a timer for
creation processes outside of using blocks so
coders focus their efforts on coding.

Standards reinforced:
●​ 1A-AP-10 Develop programs with sequences and simple loops, to

express ideas or address a problem
Practices reinforced:

●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Suggested questions:

●​ What else can you do with ScratchJr?
●​ What do you think the other blocks do?

a.​ Can you make your sprites do ____?
●​ What other sprites can you add to your project?

https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk#heading=h.p8l6f58fzth5

●​ What else might we find on a farm?
●​ What other sounds might we hear when the green flag is pressed?
●​ What other simulated spaces might we create?

a.​ How might we create simulations related to what we are
learning in other classes?

Similar projects:
Have coders explore the sample projects built into
ScratchJr (or projects from other coders), and ask
them to find code similar to what they worked on
today.

Standards reinforced:
●​ 1A-AP-10 Develop programs with sequences and simple loops, to

express ideas or address a problem
Practices reinforced:

●​ Testing and refining computational artifacts
Concepts reinforced:

●​ Algorithms

Note: Coders may need a gentle reminder we are looking at other projects
to get ideas for our own project, not to simply play around. For example,
“look for five minutes,” “look at no more than five other projects,” or “find
three projects that each do one thing you would like to add to your
project.”

Generic questions:

●​ How is this project similar (or different) to something you worked
on today?

●​ What blocks did they use that you didn’t use?
a.​ What do you think those blocks do?

●​ What’s something you like about their project that you could add
to your project?

Differentiation

Less experienced coders More experienced coders

ScratchJr is simple enough that it can be picked up relatively
quickly by less experienced coders. However, for those who
need additional assistance, pair them with another coder who
feels comfortable working cooperatively on a project. Once
coders appear to get the hang of using ScratchJr, they can
begin to work independently.

Because ScratchJr is not inherently difficult, experienced
coders might get bored with simple projects. To help prevent
boredom, ask if they would like to be a “peer helper” and have
them help their peers when they have a question. If someone
asks for your help, guide them to a peer helper in order to
encourage collaborative learning, and remind them the helper
is “hands off” and does not take over working on another
person’s project.

Another approach is to encourage experienced coders to
experiment with their code or give them an individual
challenge or quest to complete within a timeframe (e.g., a
reverse engineering challenge).

Debugging Exercises (1-5+ minutes each)

Debugging exercises Resources and suggestions

Why does the barn get bigger and not bigger, then
smaller?

●​ The second grow block should be a shrink
block

Standards reinforced:
●​ 1A-AP-14 Debug (identify and fix) errors in an algorithm or

program that includes sequences and simple loops
Practices reinforced:

https://www.scratchjr.org/learn/tips/sample-projects
https://images.ctfassets.net/1devtjk7knks/6h8uF9v75r8qy0jpoExJRn/1665ced901ecc31d0ed6c6461b3ed4d2/Animal_House_-_Debugging_1.png
https://images.ctfassets.net/1devtjk7knks/6h8uF9v75r8qy0jpoExJRn/1665ced901ecc31d0ed6c6461b3ed4d2/Animal_House_-_Debugging_1.png
https://images.ctfassets.net/1devtjk7knks/6d6iMRgoBRg26m3LH8u7No/5902b7a8265f5f777f20b46ea196eda0/Barn_sound.png
https://images.ctfassets.net/1devtjk7knks/6d6iMRgoBRg26m3LH8u7No/5902b7a8265f5f777f20b46ea196eda0/Barn_sound.png

Why does the chicken play a pop sound and not
the recorded sound?

●​ The pop block sound be a play recorded
sound block

Why does the horse play the same recording twice
instead of two different recordings?

●​ The second play recorded sound block
should have a number 2 and not a number
1

ScratchJr Debugging List

●​ Testing and refining computational artifacts
Concepts reinforced:

●​ Algorithms
●​ Control

Display one of the debugging exercises and ask the class what they think
we need to fix in our code to get our project to work correctly. Think out
loud what might be wrong (e.g., did I use the wrong trigger block? Did I
forget to repeat something? Did I put a block in the wrong place? Am I
missing blocks?, etc.). Explain that mistakes in code are called bugs. To fix
the bugs students need to find the bug and get rid of it. This is called
debugging. Ask the class to talk with a neighbor about how we might fix
the code. Have a volunteer come up to try and debug the code (or
demonstrate how). Repeat with each debugging exercise.

Unplugged Lessons and Resources

Standards reinforced:
●​ 1A-AP-08 Model daily processes by creating and following algorithms (sets of step-by-step instructions) to complete

tasks

Although each project lesson includes suggestions for the amount of class time to spend on a project, BootUp encourages
coding facilitators to supplement our project lessons with resources created by others. In particular, reinforcing a variety of
standards, practices, and concepts through the use of unplugged lessons. Unplugged lessons are coding lessons that teach
core computational concepts without computers or tablets. You could start a lesson with a short, unplugged lesson relevant to
a project, or use unplugged lessons when coders appear to be struggling with a concept or practice.
​
Suggested unplugged lessons:

1.​ Human crane
a.​ A lesson where kids create and test crane algorithms that move blocks from one bowl to another.

2.​ How to train your robot
a.​ The game works as follows: every kid is turned into a “robot master” and their mom or dad becomes their

“robot”. I give each kid a “Robot Language Dictionary” and explain to them that this is the language their robot
understands. The dictionary has symbols for “move left leg forward”, “turn left”, “grab”, “drop” etc.

List of 100+ unplugged lessons and resources

Reflection and Sharing

Reflection suggestions Sharing suggestions

Coders can either discuss some of the following prompts with
a neighbor, in a small group, as a class, or respond in a physical
or digital journal. If reflecting in smaller groups or individually,
walk around and ask questions to encourage deeper responses
and assess for understanding. Here is a sample of a digital
journal designed for Scratch (source) and here is an example of
a printable journal useful for younger coders.

Sample reflection questions or journal prompts:

●​ How did you use computational thinking when
creating your project?

Standards reinforced:
●​ 1A-AP-15 Using correct terminology, describe steps

taken and choices made during the iterative process of
program development

Practices reinforced:
●​ Communicating about computing
●​ Fostering an inclusive culture

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity
●​ Program development

https://images.ctfassets.net/1devtjk7knks/3krSfdMGd7Qs5CR8c6wfbd/b6ffbdc8ec02803ba564725b384e153d/Animal_House_-_Debugging_2.png
https://images.ctfassets.net/1devtjk7knks/3krSfdMGd7Qs5CR8c6wfbd/b6ffbdc8ec02803ba564725b384e153d/Animal_House_-_Debugging_2.png
https://images.ctfassets.net/1devtjk7knks/7cdDRaQD0s4PkZLbWIYUqG/83b202ad9fd9b57f5768e0aa99279a63/Chicken_dance.png
https://images.ctfassets.net/1devtjk7knks/7cdDRaQD0s4PkZLbWIYUqG/83b202ad9fd9b57f5768e0aa99279a63/Chicken_dance.png
https://images.ctfassets.net/1devtjk7knks/5LB3LfAClMI8hMwK6t8o7Y/204f8433feb6c9b4abea769406c1afaa/Animal_House_-_Debugging_3.png
https://images.ctfassets.net/1devtjk7knks/5LB3LfAClMI8hMwK6t8o7Y/204f8433feb6c9b4abea769406c1afaa/Animal_House_-_Debugging_3.png
https://images.ctfassets.net/1devtjk7knks/5wGokzn1AHX4rg2FbkvmDK/818ea1eb75731b718c42e7e7baeb0d19/Horse_sound.png
https://images.ctfassets.net/1devtjk7knks/5wGokzn1AHX4rg2FbkvmDK/818ea1eb75731b718c42e7e7baeb0d19/Horse_sound.png
https://images.ctfassets.net/1devtjk7knks/5wGokzn1AHX4rg2FbkvmDK/818ea1eb75731b718c42e7e7baeb0d19/Horse_sound.png
https://docs.google.com/document/d/1j8_UMI8aNhQqHSxflkwQJpxRumn6LtQyoKQqVv-mQvI/edit?usp=sharing
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png
http://code-it.co.uk/wp-content/uploads/2015/05/humancraneplan.pdf
https://drtechniko.com/2012/04/09/how-to-train-your-robot/
https://csteachers.org/k12standards/glossary/
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
http://scratched.gse.harvard.edu/ct/assessing.html
https://drive.google.com/file/d/1q2XYo7Y8XYOpRbqFFwj1fRS3Tmkvpiuz/view?usp=sharing
https://drive.google.com/file/d/1q2XYo7Y8XYOpRbqFFwj1fRS3Tmkvpiuz/view?usp=sharing

●​ What’s something we learned while working on this
project today?

○​ What are you proud of in your project?
○​ How did you work through a bug or difficult

challenge today?
●​ How did you help other coders with their projects?

○​ What did you learn from other coders today?
●​ What’s a fun algorithm you created today?
●​ What’s something you could create next time?
●​ What questions do you have about coding?

○​ What was challenging today?
●​ How did using sounds make your project more

interesting?
●​ Should everything have a sound?

○​ Why or why not?
●​ How can you use sound to make your project more

natural for other users?
●​ More sample prompts (may need adapting for

younger coders)

Peer sharing and learning video: Click here (1:33)
At the end of class, coders can share with each other
something they learned today. Encourage coders to ask
questions about each other’s code or share their journals with
each other. When sharing code, encourage coders to discuss
something they like about their code as well as a suggestion
for something else they might add.

http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
https://youtu.be/WC4qykY3OPI

	
	Animal House
	At a Glance
	Overview and Purpose
	Objectives and Standards
	Process objective(s):
	Practices and Concepts
	ScratchJr Blocks
	Vocabulary
	Connections
	Resources

	Project Sequence
	Preparation (At least one day prior)
	Getting Started (10+ minutes)
	Project Work (30+ minutes; 2+ classes)
	Assessment

	Extended Learning
	Project Extensions
	Differentiation
	Debugging Exercises (1-5+ minutes each)
	Unplugged Lessons and Resources
	Reflection and Sharing

	

