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I am a second-year student pursuing a B.Tech. in Civil engineering at 
the Indian Institute of Technology, Tirupati. My semester will complete 
in The 2nd week of May exactly 2 to 3 days before the start of GSoC 
2022. After that, I will be having holidays up to the 1st week of August. 
If I am selected, I shall be able to work around 40 hrs a week on the 
project, though am open to putting in more effort if the work requires it.  

 
 
2. Why this project? And Inspiration for this project. 
I am a civil engineer but I always liked learning to code and solving 
problems on platforms like HackerRank and CodeChef. 
I was seeking to do a challenging project this summer, and the google 
summer of code 2022 provides the perfect opportunity. After going 
through the organization list of GSoC 2022, the Heat projects list 
offered a perfect match. 
I really like working with Data. That is the reason I learned Data 
Science and all the related areas(Numpy, pandas, PyTorch). When I 
saw your projects list I was 100% sure that I will work on one of these 
but not on any other projects for GSoC 2022, because it is the best 
way I can contribute to an open-source project and Also, at the same 
time learn so much in the areas which I liked the most. Once I made 
this decision, after reaching out to the Heat community, it provided to 
be a good fit for reaching my project goals. Becoming a part of the 
Heat community not only for GSoC but, in the future as well, is 
planned.  
While being very well versed with the applications of python, Numpy, 
PyTorch, and Linear Algebra. This project will give me a head start on 
the learning curve. I hope to have an impact on Heat's mission to fill 
the gap between data analytics and machine learning libraries, 
through this project. 
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3. Project 
The project Memory Distributed Singular value Decomposition 
intrigues me, here’s an idea on how to go about this project: 
 

Synopsis/ Project Abstract 
The major goal of the project is to develop a distributed SVD algorithm 
that is both efficient and numerically stable in Heat. This will be a 
major boost as the number of applications of the SVD algorithm is 
high, In most of the applications, the basic principle of Dimensionality 
Reduction is used. It means You want to reduce a high-rank matrix to 
a low-rank matrix while preserving most of the important information 
present in the matrix. This makes data visualization, and data analysis 
easy for a given input of very large DataSets, SVD algorithm does this 
by removing unnecessary data(Denoising data).  
The most important applications are Image Compression, For 
recognition of faces, Removing Background from Videos, and Finally, 
the SVD algorithm is also the backbone of recommender systems 
such as Amazon, YouTube, Netflix, and many others. So, if we 
effectively implement this algorithm in Heat. It will be a great benefit 
for Heat and its users.  

 
What it means to accomplish 
The most important steps of this project are: 

●​ Converting the given input matrix to a product of 2 matrices 
(Q&R) using QR factorization, where matrix R is an upper 
triangular matrix(band matrix). 

●​ The reduction of the matrix R to a bidiagonal real matrix, This 
step uses the bulge chasing algorithm. 

●​ Reducing the matrix from a bidiagonal to a diagonal matrix. 
Which will give us the matrix Σ(sigma) Its diagonal contains all 
the singular values. We can do this by the QR iteration 
technique. 
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Technical Details 
Below I have explained the significant steps of the algorithm. 

●​ We will assume the matrix taken as input be A and has m rows 
and n columns.  

●​ If m >> n (or in some articles, it is given as If m > 5/3*n) then we 
will reduce the matrix A into a product of 2 matrices Q&R using 
the QR factorization. Here R will be an upper triangular matrix. 

●​When m > n (tall matrix), as R is upper triangular, its last m - n 
rows are zero. In this case, we can drop the last m - n 
columns of Q to form the reduced QR decomposition: 

●​  

●​ The function is already implemented. 
https://github.com/helmholtz-analytics/heat/blob/main/heat/c
ore/linalg/qr.py 

●​ During the initial period, I will try to optimize the already 
implemented code and try to make it as better as possible. 

https://github.com/helmholtz-analytics/heat/blob/main/heat/core/linalg/qr.py
https://github.com/helmholtz-analytics/heat/blob/main/heat/core/linalg/qr.py
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●​ We will also try to add some more parameters like mode = 
reduced, complete, R, etc which will give output specifically 
based on the value of parameters like in Numpy or PyTorch. 

●​ Note: The QR decomposition is only unique up to the sign of the 
diagonal of R when the first k = min(m, n) columns of A are 
linearly independent. We have to take care of this as different 
outcomes are possible for the same matrix A given as input and 
this will produce different answers for U, , and V. Σ

●​ The matrix Q will be orthogonal(A real square matrix whose 
columns and rows are orthonormal vectors.) in the real case and 
unitary(A matrix whose inverse equals its conjugate transpose) 
in the complex case. 

●​ The next step will be to convert the matrix R(a square matrix) to 
a band matrix(A matrix whose only nonzero elements lie on 
diagonal bands above and/or below the main diagonal). 

 

●​ This process is done by computing a QR factorization of a block 
column to annihilate entries below the diagonal then computes 
an LQ factorization of a block row to annihilate entries right of the 
upper bandwidth, and updates the trailing matrix. This process is 
repeated until the entire matrix is brought to band form. 

This picture shows how we will gradually reduce the given matrix into 
a band matrix. 
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●​ The next step is to reduce the band matrix to a real bidiagonal 
matrix. In this step, we will use the bulge chasing algorithm. 

 
●​ The second stage proceeds in a series of sweeps, each sweep 

bringing one row to bidiagonal and chasing the created fill-in 
elements down to the bottom right of the matrix using successive 
orthogonal transformations. 

 
●​ In this process, we use 3 kernels, kernel 1, kernel 2, and kernel 

3. Kernel 1 applies a Householder reflector from the right to 
eliminate a row right off the super diagonal(The diagonal of a 
matrix that lies directly above and to the right of the main 
diagonal), which also creates a bulge of fill-in beneath the 
diagonal.   

 
●​ Then it applies a Householder reflector from the left to eliminate 

the first column of the bulge below the diagonal and applies the 
update to the first block column only. 
  

●​ Kernel 2 continues to apply the left Householder reflector from 
kernel 1 to the next block column, creating a bulge above the 
upper bandwidth. It then applies a right Householder reflector to 
eliminate the first row of the bulge right of the upper bandwidth, 
updating only the first block row. 
  

●​ Kernel 3 continues to apply the right Householder reflector from 
kernel 2, creating a bulge below the main diagonal. As in kernel 
1, it then applies a left Householder reflector to eliminate the first 
column of the bulge below the diagonal and updates just the 
current block column. 

●​ After kernel 3, kernel 2 is called again to continue the application 
of the left Householder reflector in the next block column.  
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●​ So, finally, we can say in short that, A sweep consists of calling 
kernel 1 to bring a row to bidiagonal, followed by repeated calls 
to kernels 2 and 3 to eliminate the first column or row of the 
resulting bulges, until the bulges are chased off the bottom-right 
of the matrix. 

 

 
 

●​ At this point, we converted the given input matrix into a 
bidiagonal matrix.  

●​ Let the matrix obtained be D2(which is characterized by dual 
diagonality) let,  where R is the 𝐷2 =  𝐿1·𝑅(𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒) ·𝑅1.
matrix obtained in the 1st step. 

●​ Now, we will perform the last step, which is to convert the given 
matrix from a bidiagonal to a diagonal matrix.  

●​ Bringing the Matrix D2 to a Diagonal Form: To make it diagonal, 
we will gradually assign a zero value to elements that are not on 
the main matrix diagonal. When operations are performed with 
elements below the main diagonal, the matrix is multiplied by the 
left rotation matrix. When processing the elements located above 
the main diagonal, multiplication by the right rotation matrix is 
performed. 
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●​ After iterative processing of the matrix D2, it is gradually reduced 
to a diagonal form. Then the resulting diagonal matrix is = D1. 

 as a result we get, 𝐷1 =  𝐿2·𝐷2·𝑅2
​ ​ ​ ​  𝑅𝑇 =  𝐿1𝑇 ·𝐷2·𝑅1𝑇 ,  
​ ​ ​ ​  𝐷2 =  𝐿 𝑇 2 ·𝐷1·𝑅 𝑇 2 ,

​ ​  𝑅 𝑇 2 =  𝐿 𝑇 1 ·𝐿 𝑇 2 ·𝐷1·𝑅 𝑇 2 ·𝑅 𝑇 1 ,
​ ​ ​ ​ ​  𝑅 =  𝑅1·𝑅2·𝐷 𝑇 1 ·𝐿1,
​ ​ ​ ​ ​  𝑅 =  𝑅1·𝑅2·𝐷1·𝐿1·𝐿2,
​ ​ ​ ​ ​  𝐴 =  𝑄·𝑅1·𝑅2·𝐷1·𝐿2·𝐿1,
​ ​ ​ ​ ​  
Hence finally we will compute the values of U, , and V.  Σ

 𝑈 =  𝑄·𝑅1·𝑅2
 ∑ =  𝐷1

 𝑉𝑇 =  𝐿2·𝐿1

​ ​ ​ ​ ​  𝐴 =  𝑈 · ∑ · 𝑉 𝑇
 
Here, in the above equations, T represents the transpose of the 
matrix that is present at the left to it. 

 
 
 
 
 



  8 
 

An alternative way: 
●​ Similar to the above process If m >> n (or in some articles, it is 

given as If m > 5/3*n) then we will reduce the matrix A into a  
product of 2 matrices Q&R using the QR factorization. Here R 
will be an upper triangular matrix.  
​ ​ ​ ​  𝐴 =  𝑄 · 𝑅

●​ Now, we will apply the Golub-Kahan algorithm to R, by which 
we will get  𝑅 =  𝑈 · 𝐵 · 𝑉 𝑇
Together this results in  𝐴 =  𝑄 · 𝑈 · 𝐵 · 𝑉 𝑇.
 

●​ In Golub-Kahan Bidiagonalization, we use two different sets of 
Householder reflectors to get a bidiagonal (instead of an upper 
Hessenberg) matrix.  

●​ The difference between the previous method and this method is 
that in the previous method we go from a full matrix to a band 
matrix and then we will convert the band matrix to a bidiagonal 
matrix using the bulge chasing algorithm. 
 

●​ But here in this method, We will convert the given input matrix 
directly from full to bidiagonal matrix. 
 

This procedure is just like applying two separate QR factorizations, 
alternatingly applied to   𝐴 𝑎𝑛𝑑 𝐴𝑇
The operations count is that for two QR factorizations, i.e., 
approximately 

  2 · 𝑚 · 𝑛^2 +  2 · 𝑛^3 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑚𝑜𝑟𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑖𝑓 𝑚 >  5/3 · 𝑛
 
We can also use Golub-Kahan -Lanczos Bidiagonalization 
Procedure. Which also converts the given matrix into a bidiagonal 
matrix directly but its algorithm/ process is different. 
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I read many articles about these 2 methods, they are also Improved 
over the years, and in one of the latest methods - the algorithm is like 
this:

 
 
One example showing Golub-Kahan Bidiagonalization:(I am attaching 
the photos because it is not possible to write these methods and 
algorithms directly.) 

 
 
 
 
 
 
 
 
We 
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We can discuss and decide on the most efficient method to implement 
the SVD algorithm in Heat after observing all these methods based on 
their Time complexity, accuracy for large Data sets, and how well they 
will parallelize. 
As most of this is math, it is difficult to explain some steps directly 
here. So, I tried to explain as many details as possible and used 
photos so that every small step is understandable. 
 
 

4. Applying the algorithm to the memory-distributed data 
 
With increasing data dimensions, there is a need to process data not 
on a single computing device, but in a distributed computing system. 
It is possible to modify the Singular Value Decomposition method, in 
which the same type of operations, such as adding data or multiplying 
matrices, are divided into smaller parts and processed simultaneously 
by different devices, through this approach, it is possible to speed up 
the running time of the method. 
I read a research article in which they divided the existing SVD 
algorithm into two parts: 
1. Operations that could be performed in parallel by different 
computing devices. 
2. Operations that were too difficult to perform in parallel, so it was 
decided to use traditional sequential data processing.  
They distributed some operations that were of the same type, such as 
the multiplication of matrices and exponentiation among several 
computational processes, which speed up the algorithm. 
 
When a 4-processor architecture of a distributed system has been 
used the results showed that with increasing the number of distributed 
operations, the duration of calculations first decreased and then 
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increased. The reason behind this is that distributed computations of 
small operations take more time than their simple sequential 
execution. 
This graph shows the time taken vs the Number of operations 
performed by distribution.  

 
To find the number of distributed operations and the number of 
operations performed sequentially, an algorithm was proposed. This 
proposed algorithm allowed us to determine the required degree of 
modification of the SVD algorithm for different architectures of 
distributed systems with the highest efficiency.  
 
In the algorithm, for every operation(at each step where it was 
necessary) to perform a certain action on the data, the possibility of its 
slave division for processing by different processors was checked. 
When modeling the operation of the algorithm, the researchers used a  
4-processor architecture of a distributed system. 
 
Similarly, we will divide the algorithm into steps and at each step, we 
will observe whether the particular operation is fast when performed 
by multiple processors or when performed sequentially based on that 
we can implement the complete algorithm (by merging all the 
individual steps) with as much efficiency as possible. 
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The flowchart below shows the algorithm for modifying the SVD 
method in distributed systems. 

 
 
 
The following figure below shows the operation of an unmodified 
Singular Value Decomposition method, in which all data is processed 
by one processor, and a modified one, in which the task is distributed 
to several processors. Distributed processing can increase the 
efficiency of the computing system. Elements of the modified 
method are highlighted in red. 
 
I found this figure in one of the articles. It gives a very good picture of 
how the SVD algorithm is implemented in a distributed system. 
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The figure shows a real-life use case of the SVD algorithm which is 
the recommendation systems in Amazon, YouTube, Netflix, and 
many others(which I already mentioned in the project abstract section) 
which helps all users get the best recommendations possible from 
these companies. The modified SVD method uses distributed system 
in which data is distributed to several processors because of which 
required results are calculated fast. In the end, all the obtained results 
are collected and used.  
 
I searched many articles related to memory distributed SVD, but I 
found only a few explaining all the details properly, and I understood 
as much as I can from them. I am not an expert in parallel computing 
but I am very good at linear algebra and coding, so I hope to get a 
little support in the areas related to parallel/distributed computing.  
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5. Timeline 
​ ​   ​ Before the community bonding period 

●​ Discuss different possible approaches for the project with the 
mentors. 

●​ Learn more about parallel programming and linear algebra. 
●​ Contribute in general to Heat. 
●​ Remain in constant touch with my mentors through Mattermost 

or GitHub. 
 

Community Bonding Period(May 20 - June 12) 
●​ Get acquainted with the code base of Heat and the procedure 

that needs to be followed to submit the code and get it reviewed.  
●​ Discuss with the team what exactly needs to be done, That is 

discussing the effective implementation of the algorithm 
(including minute details, like the kind of dataset that is failing to 
give the correct output now,  what should be algorithmically 
decided based on input data type, etc).   

●​ Try to fix bugs to get further understanding. 
●​ Completely understood the already present here,   

https://github.com/helmholtz-analytics/heat/tree/main/heat/core/li
nalg (Code related to the implementation of the svd algorithm). 
 
Official Coding Period(June 13 - September 4) 
 

Week 1 (June 13 to 20) 
●​ Understand the relevant parts of the Heat’s codebase 

(https://github.com/helmholtz-analytics/heat/blob/main/heat/core/l
inalg/basics.py and 
https://github.com/helmholtz-analytics/heat/blob/main/heat/core/li
nalg/qr.py) and try to figure out what the final product should look 
like, and start implementing the algorithm. 

https://github.com/helmholtz-analytics/heat/tree/main/heat/core/linalg
https://github.com/helmholtz-analytics/heat/tree/main/heat/core/linalg
https://github.com/helmholtz-analytics/heat/blob/main/heat/core/linalg/basics.py
https://github.com/helmholtz-analytics/heat/blob/main/heat/core/linalg/basics.py
https://github.com/helmholtz-analytics/heat/blob/main/heat/core/linalg/qr.py
https://github.com/helmholtz-analytics/heat/blob/main/heat/core/linalg/qr.py
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Week 2-3  (June 20 to 30) 
●​ Begin optimizing the 1st step of the algorithm, that is QR 

factorization based on the dimensions of the input matrix(i.e 
based on the number of rows m and number of columns n) and 
taking care of special cases like complex numbers in the input 
matrix. 

●​ Make sure that the matrix R is an upper triangular matrix for any 
type of input.  

●​ This step is very important as it is necessary for both the ways 
discussed(Golub Kahan Bidiagonalization or bulge chasing 
algorithm in both of these the 1st step is QR factorization only). 

●​ Workload has been kept less this week so that I can practice 
other crucial techniques such as adding test cases and 
understanding code review workflow. 

 
Week 4  (July 1 to 7) 

●​ By this time It would be completely clear regarding which 
algorithm we will use to convert the matrix R from upper 
triangular to Bidiagonal matrix. So I will be implementing the 
bulge chasing algorithm or Golub-Kahan Bidiagonalization.  

●​ I will also test the QR algorithm this week and make sure that it 
is perfectly working by running some tests. 

●​ If any issues need to be fixed then 1st priority will be to fix them 
before moving on to the 2nd step of the algorithm. 

 

Week 5-6 (July 8 to 20) 
●​ Implementing the bulge chasing algorithm or its alternative. 

Checking the outcomes for different datasets(input matrices) and 
fixing the bugs related to wrong outcomes. 

●​ This implementation is the toughest part of the SVD algorithm, 
so I will be focusing on implementing this efficiently for most of 
July.  
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Note: Before July 29th(Phase 1 evaluation) 
 
Week 7-8 (July 20 to 31) 

●​ Evaluation of code by mentors and taking their insights for 
making it much better. 

●​ Optimizing both the algorithms and code written until now, Also 
fixing issues if there are any. 

●​ During this period I will again discuss with mentors regarding the 
best possible ways to optimize the code without affecting any 
other functions and try to make the whole code neat and 
organized. 
 

Week 9 (August 1 to 7) 
●​ Now, I will implement the last step, which is reducing the          

bidiagonal matrix into a diagonal matrix. This will be done using either 
the QR iteration method or the Divide & Conquer method, one 
provides more accuracy whereas the other provides results fast.  

●​ Implementing one of these 2 algorithms.  
 

Week 10 (August 8 to 15) 
●​ Implementing the algorithm further and testing it. 

Week 11 (August 15 to 21) 
●​ Buffer time for testing the algorithm and fixing bugs or issues 

present. 
●​ Using all the implemented techniques to finally get U, , and Σ

V(transpose). 

 
Week 12 (August 22 to 30) 

●​ Making the algorithm better for some special cases.  
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●​ Take feedback from the community and iterate on all the 3 steps 
again and improvise on use cases. Ensure code quality by 
adding more test cases and working with more input Data Sets. 

●​ Work to make documents, blogs, or videos to help increase the 
user base for this product(Subject to developer community 
approval). 

 
Week 13 (September 1 to 5) 

●​ Spare week in case of some work getting delayed, in case of any 
emergency or otherwise. 

 
Week 14 (September 5 to 12) 

●​Final week: Final Evaluation of code by mentors and taking their 
insights for making it much better. 

●​ Once again try to Optimize the code further and make the whole 
code much more understandable and organized. 

September 12 - September 19 
●​ Mentors submit final GSoC contributor evaluations 

 
 
By this time the algorithm will be implemented, but if we want to 
extend the project further to 22 weeks. I am completely fine with it but 
I may not be able to work 35hrs a week as my new semester will start 
again. I can only spend around 20hrs a week after September 12th. 
 
 

I hope to finish all the requirements of the project and 
successfully implement the algorithm by the 2nd week of 
September. 
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6. Technical Knowledge. (Also, proof that I am not just saying 
things but I have good knowledge in development and coding). 
I am a 2nd-year undergraduate student at IIT Tirupati. I am enrolled in 
a 4-year B.Tech course. My major is Civil Engineering(it’s more of 
Maths and Physics though). But as I am studying at an IIT  we have a 
good amount of free time to learn multiple things. 
My current CGPA = 8.41/10 
These are some of the programming-related things I learned and 
achieved apart from my college courses. 
 

●​ C++ (I did so much competitive programming during the last 2-3 
months, C++, Data structures, and Algorithms are the main tools 
for it and I reached a 3-star rating.). 

https://www.codechef.com/users/saisuraj27 (link to my CodeChef 
profile where I did most of my competitive programming with C++). 
CE20B031 SAI SURAJ - ce20b031 | HackerRank(My Hacker rank 
profile where I learned python, and C++ and solved many problems). 
 

●​ Python (I did the following 3 major projects in python along with 
solving many problems on the platforms mentioned above). 

●​ Rock, paper, Scissors. 
●​ Sudoku solver. 
●​ Shortest Path-finder. 

●​ Data Science(Numpy, pandas) Apart from learning it from my 
pure interest, I also participated in a Boot Camp organized by 
Geeks for Geeks, and there I analyzed 2 Datasets and 
achieved a Top 10 rank in the assignment conducted after 
the Bootcamp where more than 2000 people participated. 

○​ https://www.kaggle.com/code/saisuraj27/geeks-for-geeks-article
s-analysis-by-suraj 

○​ https://www.kaggle.com/code/saisuraj27/ted-talk-analysis-suraj 

https://www.iittp.ac.in/
https://www.codechef.com/users/saisuraj27
https://www.hackerrank.com/ce20b031?hr_r=1
https://www.kaggle.com/code/saisuraj27/geeks-for-geeks-articles-analysis-by-suraj
https://www.kaggle.com/code/saisuraj27/geeks-for-geeks-articles-analysis-by-suraj
https://www.kaggle.com/code/saisuraj27/ted-talk-analysis-suraj
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●​ I also completed Web Development Training from Internshala where I 
learned HTML & CSS, Bootstrap, SQL, and PHP and I scored 84% 
marks. In the Final Exam. 
https://trainings.internshala.com/s/v/815163/f8bd30c4 

 

●​ Linear Algebra: I have a good idea in this field as I am studying 
this course for the 2nd time, 1st - during my 1st year in college 
as a part of the Basic engineering mathematics course, 
https://nptel.ac.in/courses/111105121. 
And now, for the 2nd time, in my current semester, as a math 
elective, I am studying this for the last 1 month and will be 
studying up to May 1st week. 
https://www.iittp.ac.in/pdfs/syllabus/MA2021.pdf 

 

●​ Parallel computing: I have less prior understanding of this 
concept but I watched most of the tutorials and read the articles 
provided on the Heats GitHub page, Which increased my 
understanding of the project, and I am reading it continuously 
and will surely get good at it by the end of April. I am trying to get 
a complete understanding of it. Edit: Now I got a better 
understanding of this. 

 

●​ PyTorch: I have pretty good knowledge of PyTorch, I didn’t do 
any complete projects in this, but I learned this as suggested by 
a few of my seniors and this helped me to understand Heat’s 
goals and this project. 

 

●​  Git: I have also learned about version-controlled systems and I 
also read so much about Git for this project, I also downloaded 
Git Bash and practiced different commands, created different 
repositories in GitHub, and also created repositories directly in 
my local system with Vs code and committed the changes to my 
GitHub repositories. This gave me a good idea of Git. 

https://trainings.internshala.com/s/v/815163/f8bd30c4
https://nptel.ac.in/courses/111105121
https://www.iittp.ac.in/pdfs/syllabus/MA2021.pdf
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7. Expectations from Mentor. 

●​ Help me understand the existing code of Heat whenever I am 
incapable of doing so on my own. 

●​ Suggest me some study material to have a clearer view of how 
things are done ideally, especially if I face a problem related to 
Parallel computing. 

●​ Help me to come to a decision when I have more than one way 
of doing things and tell me why that is the best option. 

●​ Take time to review my work and provide your timely insight and 
feedback. 

8. Commitments 

My university exams will be completed by May 17th, just 2 to 3 days 
before the announcement of accepted proposals. After this, I will have 
holidays up to the 1st week of August. Up to August 10th, I will be 
available for at least 40hrs a week through online platforms and am 
ready to extend whenever needed. I don’t have any other 
commitments except learning and practicing problems related to data 
structures and algorithms for my future interviews, although My 1st 
preference would always be working for the GSOC project. 

 

9. After GSoC 

I would love to keep contributing to Heat even after GSOC and will be 
available to resolve issues. I would like to help with different projects 
by suggesting new ideas and participating in discussions. I will do 
whatever I can to help.  
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●​ https://www.research.manchester.ac.uk/portal/files/82231
456/17m1117732.pdf 

●​ https://www.researchgate.net/publication/350978772_Dis
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t/core/linalg 

 

 

11. What would you consider to be successful participation 
in GSoC? What would make it a valuable experience from 
your point of view? 

I would consider implementing each step in the algorithm a 
success. Contributing to an open-source project during my 
summer will be a wonderful experience for me. 

From my point of view discussing ideas with the mentors, 
implementing algorithms from scratch, and making a good impact 
on the project will be valuable experiences for me. 
 

https://www.research.manchester.ac.uk/portal/files/82231456/17m1117732.pdf
https://www.research.manchester.ac.uk/portal/files/82231456/17m1117732.pdf
https://www.researchgate.net/publication/350978772_Distributed_Singular_Value_Decomposition_Method_for_Fast_Data_Processing_in_Recommendation_Systems
https://www.researchgate.net/publication/350978772_Distributed_Singular_Value_Decomposition_Method_for_Fast_Data_Processing_in_Recommendation_Systems
https://www.researchgate.net/publication/350978772_Distributed_Singular_Value_Decomposition_Method_for_Fast_Data_Processing_in_Recommendation_Systems
https://towardsdatascience.com/simple-svd-algorithms-13291ad2eef2
https://towardsdatascience.com/simple-svd-algorithms-13291ad2eef2
https://wwwmayr.in.tum.de/konferenzen/Jass09/courses/2/Kleine_Albers_paper.pdf
https://wwwmayr.in.tum.de/konferenzen/Jass09/courses/2/Kleine_Albers_paper.pdf
http://www.netlib.org/utk/people/JackDongarra/etemplates/node198.html
http://www.netlib.org/utk/people/JackDongarra/etemplates/node198.html
https://github.com/helmholtz-analytics/heat/tree/main/heat/core/linalg
https://github.com/helmholtz-analytics/heat/tree/main/heat/core/linalg
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12. GSoC participation and TimeZone: 

●​ This is my first time applying for the Google Summer of Code. 
I did not submit a proposal to any other organization. 

●​ The difference between the TimeZone of the mentors and 
mine is just 3.5 hours. So our working hours are 90%(almost) 
the same. So the difference in times will not at all be a 
problem. 

 

 

Conclusion​  

I thank all the mentors for spending their valuable time 
answering all my doubts and also giving suggestions related to 
my proposal. 

I would be happy to receive any kind of suggestions or 
feedback. Also, you can contact me any time through 
mattermost or WhatsApp.  

My WhatsApp number is: +91 9441128115 

 

Finally, I would love to get the opportunity to work with 
Heat during my summer, I want to discuss various ideas 
with the mentors and tackle the problems together. 

 

​ ​ ​ ​ ​ ​ ​ ​ ​  Thank you, 

​ ​ ​ ​ ​ ​ ​ ​ ​   Yours sincerely 

​ ​ ​ ​ ​ ​ ​ ​ ​   V. Sai Suraj.​  
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