
Lecture 10 – Addresses, Equality and ArrayLists

Lesson: Memory Diagrams with Addresses Explicit

// the list [3, 7]
MutableList<Integer> L = new MutableList<>();
L.addFirst(7);
L.addFirst(3);

Activity: Draw the memory diagram with

addresses for the following program

public void Example2() {
 MutableList<Integer> L = new MutableList<>();
 L.addFirst(6);
 Course ai = new Course(“CSCI 1410”, 200);
 L.addFirst(3);
}

public void addFirst(T newElt) {
 Node<T> newNode = new Node<T>(newElt, this.start);
 this.start = newNode;
}

Question: What does it mean for lists to be “the same”

public static void equalityExample() {
 MutableList<Integer> L1 = new MutableList<Integer>();
 L1.addFirst(6);
 L1.addFirst(8);
 System.out.println("L1 is " + L1);

 MutableList<Integer> L2 = new MutableList<Integer>();
 L2.addFirst(6);
 L2.addFirst(8);
 System.out.println("L2 is " + L2);

 // what do you expect each of these to produce? (what do == and .equals mean?)
 System.out.println(L1 == L2);
 System.out.println(L1.equals(L2));
 System.out.println(L1.toString() == L2.toString());
 System.out.println(L1.toString().equals(L2.toString()));
}

@1020 MutableList(start: @1022)

@1021 Node(item: 6, next: null)

@1022 Node(item: 8, next: @1021)

@1023 MutableList(start: @1025)

@1024 Node(item: 6, next: null)

@1025 Node(item: 8, next: @1024)

Review: Continuing from last lecture–memory layouts of lists

Consider the following layouts for the list [8, 3, 6, 4] – what program might generate this heap layout?

@1012 MutableList(start:@1017)

@1013 Node(item:6, next:@1016)

@1014 Node(item:3, next:@1013)

@1015 Course(name: “CSCI1410”, enrollment: 200)

@1016 Node(item:4, next:null)

@1017 Node(item:8, next:@1014)

@1018

Question: How would this memory layout be different if we were making an immutable list with the same
sequence of addLast/addFirst calls?

Question: Imagine this list were named L in the environment. What sequence of memory objects get visited to
compute L.get(2) [which should return 6]?

Activity: Now imagine the list had the following layout in memory (all the items consecutive and in order).
What sequence of memory objects would get visited to compute L.get(2)?

@1012 ConsecList

@1013 8

@1014 3

@1015 6

@1016 4

@1017

@1018

Arrays in Code

import java.util.Arrays;

public class Main {
 public static void main(String[] args) {

	Lesson: Memory Diagrams with Addresses Explicit
	
	Question: What does it mean for lists to be “the same”

