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Introduction 
This eponymous course on computational thinking has been hailed by many foremost computer 
experts and computer scientists. We refer you to Kai Wu’s comprehensive post (sometimes 
inaccessible – but we have the Wayback Machine!) which talks about why SICP matters to 
computer scientists and computer professionals. It is clear that we decided to take up SICP 
based on the impressions of many stalwarts of the field. But it is one thing to read about an elixir 
and another to drink it. We have now decided to taste the elixir. 
 
This document describes why we decided to take up SICP, how we made the allied decisions 
like the choice of the programming environment, and the notes and exercises during the entire 
course. The course is expected to last about 6 months (Nov 2022 - May 2023). 

Programming Environment 
Lisp is great. One should get a taste of programming in Lisp. But neither Kedar nor Apoorv have 
gotten it. JavaScript has some “good parts.” The good parts of JavaScript are good parts of any 
programming language. Some sensible folks like Martin Henz and Tobias Wrigstad developed a 
JavaScript Edition of SICP. They also provided open access to it! Samuel Fang developed the 
Interactive JS interface to SICP. 
 
As a practical choice, I (Kedar) opted for JS. We’ll read SICP JS and do all the exercises. From 
time to time we’ll consult the comparison edition (that describes differences between the JS 
edition and the original). It is true that learning the Scheme dialect of Lisp opens up new vistas 
and school is perhaps the best place to learn Scheme. Still, using a subset of JavaScript to 
implement ideas in SICP feels like not such a bad decision because 

1)​ JS is widely used everywhere (on the browser and server). 
2)​ Good parts of JS are good. They make JS feel at least like a poor man’s Scheme. 
3)​ Learning Scheme is not a distraction, but it is another tool to learn and it may be better to 

defer doing that. However, I do think that during the undergrad years Apoorv should 
learn to think and code in Scheme (and get over the parenthesitis: initial mental 
inflammation due to an overuse of parentheses ;-)). 

 
The programming language used by SICPJS is not one language. It is a progressively bigger 
language named Source: at each “step” (or revision) it is a “sublanguage” of the next step. The 
final step and each previous step is, by definition, a sublanguage of the “full” JS: 

. They have also defined variants of each step. 𝑆𝑜𝑢𝑟𝑐𝑒1 ⊂ 𝑆𝑜𝑢𝑟𝑐𝑒2 ⊂ 𝑆𝑜𝑢𝑟𝑐𝑒3 ⊂ 𝑆𝑜𝑢𝑟𝑐𝑒4 ⊂ 𝐽𝑆
Looking at their source code, it is clear that one can learn how to implement languages. I highly 
recommend taking a look at it. The team at Source Academy has done quite some work on this! 

 

https://archive.ph/uTOol
https://web.archive.org/web/20220000000000*/https://archive.ph/uTOol
https://mitpress.mit.edu/9780262543231/structure-and-interpretation-of-computer-programs/
https://sourceacademy.org/sicpjs/index
https://sourceacademy.org/sicpjs/foreword02
https://sicp.sourceacademy.org/
https://docs.sourceacademy.org/
https://github.com/source-academy/js-slang
https://github.com/source-academy/js-slang
https://github.com/source-academy/js-slang
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Exercise 1.40 
Declare a function, cubic, that can be used together with the newtons_method function in 
expressions of the form newtons_method(cubic(a, b, c), 1) to approximate zeros of 

the cubic . 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐
 
Solution. 
A polynomial function may not have a real zero. We need to address that problem, but let’s first 
find out how to approximate a zero of a cubic that has a real zero. Newton’s method is a way to 
do that: A zero of a function f is the fixed-point of its Newton's transform. 
 
We want to define a function cubic(a, b, c) such that, for instance, 
newtons_method(cubic(1, 2, 3), 1), returns an approximation of a zero of the function 

. 𝑥3 + 𝑥2 + 2𝑥 + 3
 
 

// returns a function that represents the cubic  𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐
function cubic(a, b, c) { 
    return x => cube(x) + a * square(x) + b * x + c; 
} 
 
// returns a real number that is square of the given number, x 
function square(x) { 
    return x * x; 
} 
 
Desmos helps us plot this. 

 

https://sourceacademy.org/sicpjs/1.3.4#ex-1.40


 
 
An application of newtons_method: newtons_method(cubic(1, 2, 3), 1) returns 
-1.2756823846964038, which is indeed an approximation of the zero of the given function. 
 

Exercise 1.41 
Declare a function double that takes a function of one argument as argument and returns a 
function that applies the original function twice. For example, if inc is a function that adds 1 to 
its argument, then double(inc) should be a function that adds 2. What value is returned by 
double(double(double))(inc)(5)? 
 
Solution. 
This is fairly straightforward. 
function double(f) { 

return x => f(f(x)); 
} 

 

 

https://sourceacademy.org/sicpjs/1.3.4#ex-1.41


That is how the functions, f, double(f), work; both have their domain and codomain as the 
set of numbers (reals). Note that double(f) is the name of a function that takes a number and 
returns a number, e.g. double(inc)(5) applies inc to 5 first and then again to the number 
that (the previous) application returns. Thus, double(inc)(5) returns 7. 
 
The function double, on the other hand, is the name of a (higher-order) function that takes a 
function and returns another function. Thus, double(6) has no meaning because 6 is not a 
function. 
 
Wrapping your head around function declarations and function calls can be really tricky (albeit 
intellectually stimulating) in functional programming. The way it builds abstractions is pretty 
impressive and powerful, but, although the syntax (or the source code line noise) is thankfully 
minimal, the semantic load is rather high.  
 
Let’s analyze how the interpreter interprets double(inc):  

1)​ double is a function which means it can be called with (), the function call operator. 
2)​ double applies to a single argument which is itself a function. inc is the name of a 

function; it qualifies as an argument to double. 
3)​ double(inc) is a valid function application (or function call). The interpreter 

immediately calls the function. The result of this function application is another (hitherto 
unnamed) function. To be useful, it must be called immediately. We can make up a name 
for this function, say, inc_doubler although it is not necessary. 

4)​ double(inc)(5) then can be renamed to inc_doubler(5) which applies 5 to inc 
that results in 6 and then again applies inc to 6 that results in 7 which it returns. 

And that’s it.  
 
So far so good. The next challenge is to decipher double(double(double))(inc)(5). 
 
Before that, let’s try double(double)(inc)(5). 
 
Will the substitution model help? Let’s try. First, let’s try to expand the definition of double. It’s 
like expanding the function from its lambda-expression form: 
 
function double(f) { 
    function d(x) { 
      const o1 = f(x); 
      return f(o1); 
    } 
    return d; 
} 
 
Calling this function will return the inner function d. 

 



 
So, what does the function call double(double) result in? Right, it’s still the inner function 
d. But certain binding of names occurs because of that function call. The name f, which is local 
to double, is bound to the value double.  
 
Let’s give double(double) a name, say d1. Then, double(double)(inc)(5) will result in 
d1(inc)(5). 
 
Clearly, double(double) returns the inner function, d.  
 
I think I lack a theoretical tool to analyze recursive functions properly. Till then, I guess I need to 
continue with the primitive methods I know.  
 
The question we need to answer is “How many calls to the function inc are made?” Or, 
thinking inductively, “if n successive appearances to double (i.e. 
double(double(double))...) in a source line result in c calls to inc, then n+1 th 
appearance will result in how many calls to inc?” 
 
Perhaps tree-recursion will help. 
 
Distraction or not, I am taking a few days to learn the basics of λc (Lambda Calculus). 

17 February 2024 

Abstractions and First-class Functions 
Let’s recap what we have done so far to find square-roots of real numbers. 
 
First, we devised a general-purpose mechanism (we call it abstraction) to try to iteratively find a 
fixed-point (a real number) of a given function starting with a random guess. This abstraction 
was realized as a function, fixed_point. A caveat is that fixed_point may fail to notice 
that the given function has no fixed-point. 
 
We tried to apply fixed_point to a function x => a/x (expressed here as a lambda 
expression) and some guess. That is when we identified a practical issue with the 
fixed_point function wherein a function f passed to it shows an oscillatory behavior: f(a) 
returns b, f(b) returns a, and none of a or b is close to f’s fixed-point. Therefore, applying 
fixed_point to f results in indefinite oscillation. Nothing is inherent in the fixed_point 
procedure to address this situation. Still, without changing the implementation of fixed_point, 
we remedied the situation by using another abstraction, average damping (function 
average_damping), applied to the given function: x => average(f(x), x). 
 

 



We kept the fixed_point abstraction untouched, introduced a transform of the given function, 
and used that transform to calculate the square-root of a real number a: 
fixed_point(average_damping(x => a/x), 1.0).  
 
This gave birth to a generally useful separate abstraction, average_damping. The fixed-point 
of f and its average-damped transform are the same. We thought that, to find f’s fixed-point, we 
might as well find avarage_damping(f)’s fixed-point. In doing so, we addressed the 
oscillatory behavior of fixed_point that hindered its convergence (how quickly it reaches the 
fixed-point). 
 
Then we discovered Newton’s Method (function newton_method) which said that if for a 
function f(x), that has a zero (value of x for which f(x) is 0), g is an approximation of its zero, 
then g - f(g)/f’(g) is a better approximation. We called g - f(g)/f’(g) Newton’s 
Transform (function newton_transform) of f. It turned out that the fixed-point of Newton’s 
Transform of f coincided with a zero of f. Thus, we discovered another general purpose 
abstraction. We used that to find the square-root of a real number a: 
fixed_point(newton_transform(x => square(x) - a)). 
 
Thus, in both these methods, we applied fixed_point not directly to a function but to a 
certain transform of it. 
 
Is there another abstraction lurking here? Can we express this process in order for it to be more 
generally useful?  
 
This question often comes when one is learning to define abstractions, the heart of computer 
programming. Only with enough practice can one get better at creating generally useful 
abstractions. 
 
In the present case, is abstracting out transform to another function generally useful? When 
finding square-root by the first method, we commit to average damping, whereas when doing so 
by the second method, we commit to Newton’s transform. Can we abstract that out in the form 
of a new parameter? Perhaps we can. 
 
Consider a new function: fixed_point_of_transform(f, transform, guess). This 
function dissociates the transform from fixed-point iteration and passes on the choice of a 
transform to the code that applies or calls this function. This is also known as behavior 
parameterization. This function is pretty straightforward: 
 
function fixed_point_of_transform(f, transform, g) { 
    return fixed_point(transform(f), g)); 
} 
 

 



Now we have two ways to find the square-root of a real number by choosing appropriate 
transforms and functions: 
 
function square_root_1(a) { 
    return fixed_point_of_transform(x => a/x, average_damping, 1); 
} 
function square_root_2(a) { 
    return fixed_point_of_transform(x => square(x) - a, 
newton_transform, 1); 
} 
 
Does this enhance your power to express yourself through programs? Does this ease of 
expressiveness matter to you?  
 
Answers to such questions may be subjective. But one thing is clear: Providing fundamental 
abstractions is like providing fundamental tools of trade. It is up to the craftsmen to utilize these 
tools to their advantage. A sort of hierarchy of programmers emerges here. Perhaps the first in 
this hierarchy is the hardware designer who provides the basic instruction set of a computer and 
things happen in the physical layer – the semiconductor. The amount of flexibility that they can 
offer to others is limited because of the complexity involved at the “low level.” 
 
A higher-level programming language designer is perhaps the next level. They provide a 
hopefully minimal set of rules and programming elements to other programmers who solve real 
problems of the end users. A function is a fundamental programming element. Every 
programming element has certain restrictions. The elements that have fewest restrictions are 
called the first-class citizens (of that programming language). Features of every first-class 
citizen include: 

1)​ Referral using names, 
2)​ Use as arguments of functions, 
3)​ Use as values returned from functions, 
4)​ Use in data structures. 

 
Making functions first-class citizens of a language is a conscious decision that a programming 
language designer makes. When functions are first-class citizens, they demonstrate all the 
above capabilities (of course that comes at a cost, but the cost is justified). The computer 
scientist Christopher Stratchey is often credited with making functions first-class citizens of 
programming languages. 
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Newton’s Method 
Being stuck is not fun. I was stuck on the inverse problem for quite some time: To which 
function can the fixed-point iteration be applied to get the solution of the equation 

 (provided  is differentiable)? 𝑔(𝑥) = 0 𝑔(𝑥)
 
And this section provides a readymade answer:  

The solution of  is the fixed-point of the function f – , where 𝑔(𝑥) = 0 𝑓(𝑥) = 𝑥 − 𝑔(𝑥)
𝑔'(𝑥)

 is the derivative (function) of : . (The limit should be 𝑔'(𝑥) 𝑔(𝑥) 𝑔'(𝑥) =
ℎ→0
lim 𝑔(𝑥+ℎ)−𝑔(𝑥)

ℎ

defined because  is differentiable.) 𝑔
And the classical definition of Newton’s method is 
about approximating a solution of . It says 𝑔(𝑥) = 0
that if  satisfies certain conditions and  is an 𝑔 𝑥

0

approximation for the solution of , then 𝑔(𝑥) = 0

 is a better approximation. 𝑥
0

−
𝑔(𝑥

0
)

𝑔'(𝑥
0
)

 
‘Better Approximation’ is a qualitative term. We’ll see 
what better means. 
 
The key idea in Newton’s method is  which is 𝑔'(𝑥)
itself a function. We call it the derivative (function) of 

. Since the derivative of a given differentiable 𝑔(𝑥)
function is a function, after making sure it exists, we 

can calculate its value at a given value of . 𝑥
 
What the above says can be illustrated by an example. Consider the function 

, whose root we want to find (assuming a real root exists). Then, 𝑔(𝑥) = 𝑥3 − 27

. Both the functions are plotted in the adjacent figure. The claim is 𝑓(𝑥) = 𝑥 − 𝑥3−27

3𝑥2

that the solution of the polynomial (in red) is the fixed-point of the function in blue. 
 
This is illustrated in the figure below. 

 

https://en.wikipedia.org/wiki/Newton%27s_method


 
 
The point A depicts the solution of . The point B depicts the fixed-point of . The claim is 𝑔(𝑥) 𝑓(𝑥)
that the X-coordinates of A and B are the same. 
 
Come back to a proof of this. 
 
Once we accept this, however, it is a small matter of programming it clearly. 
 
Derivative function can be clearly expressed as a function that is returned by another function 
(along with a declaration for a sufficiently small positive real number, dx): 
 
const dx = 1e-5; 
function deriv(g) { 
    return x => (g(x + dx) - g(x)) / dx; 
}  
 
This little function, deriv, like that little function average_damping, provides enormous 
expressive power: when called on a point (x), it finds the value of the derivative of a 
differentiable function at that point: 
 
function cube(x) { 
​ return x * x * x; 
} 
 

 



Note that deriv(cube) is just a function that is waiting to be called.  
deriv(cube)(5);  
// returns 75.00014999664018 which is the value of the derivative of 
the cube(x) function at x = 5 
 
Now, Newton’s method can be more effortlessly transformed into a fixed-point method: 
 
function newton_transform(g) { 
    return x => x - g(x) / deriv(g)(x); 
} 
// Finds a root of g 
function newtons_method(g, guess) { 
    return fixed_point(newton_transform(g), guess); 
} 
 
In a straightforward manner, Newton’s method, with a function and starting with a reasonable 
guess, becomes the fixed-point iteration applied to Newton’s transform of that function and 
starting with that guess. Newton’s method then finds a root (or zero) of the given function. 
 
I think that the whole endeavor in functional programming is about being able to express oneself 
simply.  
 
How can we use the latest realization that Newton’s method finds a root of a given function to 
find the square root of a real number? This question seems to recur. Has my understanding of 
the machinations improved? Here is the puzzle represented pictorially: 
 

 
Using the newtons_method function (knowing what it does), can we devise another function, 
say sqrt, that when applied to a real number returns its square-root? 
 

 



As I was waking up on the morning of 08 Feb 2024, some things became clearer (and Knuth’s 
Literate Programming dawned upon me once again as I ran into a computer algebra system 
called Axiom): 

1)​ The Wikipedia page on root-finding methods says: ​
​
Solving an equation f(x) = g(x) is the same as finding the roots (zeros) of the function h(x) 
= f(x) – g(x). Thus root-finding algorithms allow solving any equation defined by 
continuous functions. 

2)​ This leads to the idea that square-root of a positive real number  is same as the root 𝑎

(zero) of the function . Starting from some value of , we want to move to 𝑓(𝑥) = 𝑥2 − 𝑎 𝑥
that value of  whose square is almost the same as  (if not the same as ).  𝑥 𝑎 𝑎

 
On 13 February, back in Pune, I decided to write it down again with the help of a developing 
picture. 
 

Consider that I want to find the square root of a positive real number  represented on a 𝑎
number line by the point A. On the coordinate plane, coordinates of A are . Let the (𝑎,  0)
square root of A be represented by the point T. T’s coordinates are . In our figure ( 𝑎,  0)
(Figure 0213.1), T is to the left of A, but that does not matter. We only symbolically know the 
coordinates of T. Our task is to locate T using a general procedure. 

 
Figure 0213.1: Locate T, given A. 

The key idea we need to realize is that  is a zero of the polynomial . See 𝑇( 𝑎, 0) 𝑥2 − 𝑎
Figure 0213.2. Without this realization, further discussion is not helpful. 

 

http://axiom-developer.org/axiom-website/documentation.html
http://axiom-developer.org/axiom-website/documentation.html
https://en.wikipedia.org/wiki/Root-finding_algorithms
https://en.wikipedia.org/wiki/Equation_solving


 
Figure 0213.2 Square root as a zero of a polynomial. 
 
Now, given this polynomial, we want to locate, even approximately, the point T using some 
general procedure. Some people call that procedure linear approximation.  
 
We make a guess; start with some point  on the X-axis. It does not matter where  is. We 𝐺

0
𝐺

0

examine if  is sufficiently close to T. The test we use to determine if they T and  are close 𝐺
0

𝐺
0

enough is straightforward – verify if the square of ’s X-coordinate is close to . If yes, we are 𝐺
0

𝑎
done. We found  at . But chances are that T and  are far apart. See Figure 0213.3 where 𝑎 𝐺

0
𝐺

0

where we illustrate our start with  as . 𝐺
0

( 𝑎
2 , 0)

 
Figure 0213.3: Start with a random guess , not close enough to T. 𝐺

0

 

 



Now we use what Newton’s method proposes. It asks that we find the point  𝑃(𝑔
0
,  𝑓(𝑔

0
))

on the curve that represents our polynomial: , 𝑓(𝑥) = 𝑥2 − 𝑎

 

Figure 0213.4 Newton’s Method, first approximation, . 𝐺
1

 

and draw a tangent  to it at . Let  intersect X-axis in  (this will always happen as long as  𝐿 𝐿 𝐿 𝐺
1

𝐿

is not parallel to X-axis, or, in other words, ). Then , the X-coordinate of , is a 𝑓'(𝑔
0
) ≠ 0 𝑔

1
𝐺

1

better approximation of  than . We use the derivative in finding : The slope of  equals 𝑎 𝑔
0

𝐿 𝐿

. 𝑓'(𝑔
0
)

 
We now repeat the procedure:  is the new .  𝐺

1
𝐺

0

 
This is the theory of Newton’s method. How do we weave our functional programming story 
around it?   
 
We have two basic abstractions: 

1)​ The function fixed_point: It finds the fixed-point (a real number) of a given function (if 
it has one) starting from a random guess. Unfortunately, it does not know a priori if a 
given function does not have a fixed-point.  

 



2)​ The function derivative: It finds the value of a derivative (a real number) of a given 
function at a particular value. It assumes that the given function is differentiable. 

 

We need to use them to our advantage: to find the square-root of a real number, say, . Given 𝑎 𝑎

(represented by the point A), we need to find  (i.e. reach the point T). The above discussion 𝑎
tells us that in order to find a zero of , we need to find the fixed-point of Newton’s transform 𝑓(𝑥)

of . For the square-root of , we just need to do that to the function : 𝑓(𝑥) 𝑎 𝑥2 − 𝑎
 
function sqrt(a) { 
    return newtons_method(x => square(x) - a, 1); 
} 
 
Here’s a more complete listing: 
 
function fixed_point(f, guess) { 
    const e = 1e-5; 
    function try_with(curr) { 
        const next = f(curr); 
        return math_abs(curr - next) <= e 
             ? curr 
             : try_with(next); 
    } 
    return try_with(guess); 
} 
 
function square(x) { 
    return x * x; 
} 
const h = 1e-6; 
function deriv(g) { 
    return x => (g(x+h) - g(x)) / h; 
} 
 
function newton_transform(g) { 
    return x => x - g(x)/deriv(g)(x); 
} 
 
function newtons_method(g, guess) { 
    return fixed_point(newton_transform(g), guess); 
} 

 



 
function sqrt(x) { 
    return newtons_method(y => square(y) - x, 1); 
} 
sqrt(89); // 9.433981132085753 
 
 
 

19 January 2024 
I finally finished the exercises on 1.3 and am ready to move on. I think I have learned enough 
about recursive and iterative processes and applying functions to other functions (or, in other 
words, passing functions as function arguments to other functions). The simple ability to pass 
functions to other functions provides expressive power to your programs.  
 
One thing to bear in mind is that although functions (like ordinary numbers) can be passed to 
other functions, only functions (unlike ordinary numbers) can be applied to arguments. We 
capture this speciality of functions in: Functions can be called. 
 

1.3.4 Functions as Return Values 
Just like we can pass functions to other functions, we should be able to return them from other 
functions as well; and we can!  
 
The book aptly describes what we have done and what we can do with functions as return 
values:  

We can illustrate this idea by looking again at the fixed-point example described at the 
end of section 1.3.3. We formulated a new version of the square-root function as a 
fixed-point search, starting with the observation that  is a fixed-point of the 𝑥
function . Then we used average damping to make the approximations converge. 𝑦 → 𝑥

𝑦

Average damping is a useful general technique in itself. Namely, given a function 𝑓
, we consider the function whose value at  is equal to the average of  and . 𝑥 𝑥 𝑓(𝑥)

 
Consider the following function: 
function average_damp(f) { 
​ return x => average (x + f(x)); 
} 
 
It accepts a function and returns a function which, when invoked, does the job of average 
damping. What this function returns must be applied to some other arguments: 
 

 

https://sourceacademy.org/sicpjs/1.3.3


average_damp(square)(10); // => 55 – in-place application 
 
Let’s write down clearly what various functions are doing: 

1)​ sqrt(x): accepts a number and returns a number that is its square-root. 
2)​ fixed_point(f, g): accepts a function f and an initial guess and returns the number 

that is f’s fixed-point. 
3)​ average_damp(f): accepts a function f and returns another function that when 

applied to a number, say, x, returns ½(x+f(x)). 
 
Recall how we found the square-root of a number using the fixed-point iteration and average 
damping for faster convergence: 
 
function sqrt(x) { // (1) 
    return fixed_point(y => average(y, x / y), 1); 
} 
 
How can this procedure be expressed differently now that we know that functions can be 
returned as values from other functions (like the function average_damp)? 
 
It turns out that (we added * just for identification, it serves no other purpose) 
* function sqrt(x) { // (2) 
    return fixed_point(average_damp(y => x / y), 1); 
} 
is equivalent to the above function. 
 
Does this version of sqrt(x) (2) have more expressive power than that version of sqrt(x) 
(1)? Is this a question of aesthetics? 
 
It is perhaps difficult to choose. But the second way seems to more simply translate into code 
the following: you get the square-root of a real number when the fixed-point iteration is applied 
to the average-damped version of the function: y => x / y and a suitable guess. 
 
The average-damped version of the function y => x/y is simply returned by 
average_damp(y => x / y) when fixed_point is called (remember the applicative-order 
evaluation?). The function y => average(y, x/y) is also an average-damped version of the 
function y => x/y. What’s the difference then? 
 
One difference is that the version (2) abstracts the process of averaging out of the function to 
which fixed-point iteration is applied. In version (1), that function carries out averaging itself. 
 

 



Is that such a big difference? I think it is a matter of perspective and experience. If 
average-damping is deemed a general facility that promotes code reuse then it is more 
applicable.  
 
At the same time, arguably, the overall structure has become slightly more complex. Is that 
complexity justified? How much abstraction is too much? These questions are difficult to answer 
in isolation. Some contextual knowledge of the overall module or library that delivers a particular 
functionality in software is required to satisfactorily answer such questions. The book says that 
good experienced programmers develop the ability to write such lucid abstractions that are 
more generally applicable. 
 
Here, having an abstraction of two kinds: 

1)​ An ability to do average-damping, and 
2)​ An ability to return functions from other functions 

 
seems to be of some very good general use.  
 
Let’s now demonstrate the use of this abstraction to take the cube-root of a real number: 
 
function cube_root(x) { 
​ return fixed_point(average_damp(y => x/square(y), 1); 
} 
 
Or, equivalently, using the older construct: 
 
function cube_root(x) { 
​ return fixed_point(y => average(y, x/square(y)), 1); 
} 
 
Another subtle point is that of syntax. Source1’s syntactic sugar just enhances the expressive 
power of abstractions (which relates to semantics) . Consider the following version of the 
average_damp function: 
 
function average_damp(f) { 
   function g(x) { 
        return average(x, f(x)); 
    } 
    return g; 
} 
 
This is equivalent to 
 
function average_damp(f) { 

 



return x => average(x, f(x)); 
} 
but rather less compact. 
 

14 January 2024 
I believe I am keeping the SICP flame burning. Writing functional programs to solve problems 
keeps me interested. I guess I should increase the pace. I am doing many things anyway. 

 
Source Academy guys are awesome. I just noticed that they added support for Scheme and 
Python on the playground!  
 

Exercise 1.39 
A continued fraction representation of the tangent function was published in 1770 by the 
German mathematician J.H. Lambert: 

 tan 𝑥 = 𝑥

1− 𝑥2

3− 𝑥2

5− 𝑥2

···

Solution. 
 
// We reuse the continued fraction's iterative process 
function cont_frac(n, d, k) { 
    function sum(curr, acc) { 
        const partial = n(curr) / (acc + d(curr)); 
        return (curr <= 1) 
             ? partial 
             : sum(curr - 1, partial); 
    } 

 

https://sourceacademy.org/sicpjs/1.3.3#ex-1.39


    return sum(k, 0); 
} 
 
// J. H. Lambert's approximation of the tan function as a cont_frac 
function tan_cf(x, k) { 
    return cont_frac(i => i <= 1 ? x : -x * x, i => 2 * i - 1, k); 
} 
const theta = math_PI / 10; 
const k = 100; 
math_tan(theta) - tan_cf(theta, k); // difference must be very small 
// prints -5.551115123125783e-17 on my computer 
(Again, I can not stop wondering how Lambert came up with this formulation!) 

Exercise 1.38 
In 1737, the Swiss mathematician Leonhard Euler published a memoir, De Fractionibus 

Continuis, which included a continued fraction expansion for , where  is the base of the 𝑒 − 2 𝑒
natural logarithms. In this fraction, the ’s are all 1 and ’s are successively 1, 2, 1, 1, 4, 1, 1, 𝑁

𝑖
𝐷

𝑖

6, 1, 1, 8, …. Write a program that uses your cont_frac function from exercise 1.37 to 
approximate , based on Euler's expansion. 𝑒
 
Solution. 
This is an exercise in devising and applying the functions n and d (required by the cont_frac 
function) correctly.  
 
// We reuse the continued fraction's iterative process 
function cont_frac(n, d, k) { 
    function sum(curr, acc) { 
        const partial = n(curr) / (acc + d(curr)); 
        return (curr === 1) 
             ? partial 
             : sum(curr - 1, partial); 
    } 
    return sum(k, 0); 
} 
 
// For e, n_i's are all 1, d_i's are drawn from this curious sequence: 
// 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, ... 
// Expressing that as a function is perhaps not that difficult, but 
// I keep wondering how Euler came up with that! 
 

 

https://sourceacademy.org/sicpjs/1.3.3#ex-1.38
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// function dfun(i) { 
//     const d = i % 3 < 2 
//          ? 1 
//          : 2 * (math_ceil(i/3)); 
 
//     display(d); 
//     return d; 
// } 
cont_frac(i => 1, i => i % 3 < 2 ? 1 : 2 * (math_ceil(i/3)), 100); // 
prints 0.7182818284590453 ~ e-2 
 
 

31 October 2023 
Exercises on fixed_point. 

Exercise 1.35 
Show that the golden ratio  (section 1.2.2) is a fixed point of the transformation  φ

 and use this fact to compute  by means of the fixed_point function. 𝑥 → 1 + 1
𝑥 φ

Solution. 
 

 
Figure 1.35.1 – Graphs showing fixed points of certain transformations 
 
Showing that some value is a fixed point of a function (or transformation)  is to solve 𝑦 = 𝑓(𝑥)
the system of equations: 

 

https://sourceacademy.org/sicpjs/1.3.3#ex-1.35
https://sourceacademy.org/sicpjs/1.2.2


 𝑦 = 𝑓(𝑥) −−−−−−  (1. 35. 1)
 𝑦 = 𝑥 −−−−−−−− (1. 35. 2)

 
Or, in other words, finding the value of  that satisfies the equation . 𝑥 𝑥 = 𝑓(𝑥) −−−−−  (1. 35. 3)
 
Given the transformation, we get:  

 1 + 1
𝑥 = 𝑥

which are the two values, , and  (the golden ∴ 𝑥2 = 𝑥 + 1 ⇒ 𝑥2 − 𝑥 − 1 = 0 ⇒ 𝑥 = 1± 5
2  φ φ

^

ratio and its conjugate). 
 
Applying fixed_point to the lambda expression x => 1 + 1/x yields . φ
 

Exercise 1.36 
Modify fixed_point so that it prints the sequence of approximations it generates, using the 

primitive function display shown in exercise 1.22. Then find a solution to  by finding 𝑥𝑥 = 1000

the fixed-point of . (Use the primitive function math_log which computes the 𝑥↦ 𝑙𝑜𝑔(1000)
𝑙𝑜𝑔(𝑥)

natural logarithms.)  
 
Compare the number of steps this takes with and without average damping. (Note that you 
cannot start with a guess of 1, as that would cause division by 0 (since )). 𝑙𝑜𝑔(1) = 0

15 November 2023 
Solution. 
The first part is easy. Displaying the sequence of approximations is just calling the display 
function with appropriate arguments. 
 
const tolerance = 0.0001; // some small value 
function fixed_point(f, guess) { 
    function close_enough(a, b) { 
        return math_abs(a - b) < tolerance; 
    } 
    function try_with(guess) { 
        const next = f(guess); 
        display(“guess ”, i, “ = ” 
        return close_enough(guess, next) 
               ? next  // one may return guess 
               : try_with(next); 
    } 

 

https://sourceacademy.org/sicpjs/1.3.3#ex-1.36


    return try_with(guess); 
} 
 
The second part is rather tricky. It again brings back the questions about the inverse problem: 

How do I relate the solution of an equation for  by finding the fixed-point of a 𝑓(𝑥) = 0
function ? Finding the fixed-point of which function will yield the solution of a given 𝑔(𝑥)
equation? 
 
I asked this question to Apoorv (visiting home, December 2023), but he too couldn’t 
convincingly say something.  
 
The exercise gives away the answer to that crucial question by simply stating that  
 

Solution of the equation, , is the fixed-point of the transformation 𝑥𝑥 = 1000
(function): . 𝑥 → 𝑙𝑜𝑔(1000)

𝑙𝑜𝑔(𝑥)
 
One way to think about it is to express the given equation (whose solutions we seek) in a way 
that, somewhat atypically, makes the indeterminate ( ) appear on both sides of the equation. 𝑥

The equation  is equivalent to (by taking logarithms on both sides – that should 𝑥𝑥 = 1000
be allowed since the log function is defined and monotonically increasing on positive real 
numbers and we know that  is a positive real number between 4 and 5 (𝑥

)): 11 = 1,  22 = 4,  33 = 27,  44 = 256,  55 = 3125

. Once we are able to express the given 𝑥𝑙𝑜𝑔(𝑥) = 𝑙𝑜𝑔(1000) → 𝑥 = 𝑙𝑜𝑔(1000)
𝑙𝑜𝑔(𝑥)

equation thus, maybe the fixed-point iteration takes care of finding the approximate solution 
iteratively. We then use average damping to improve the rate of convergence. 
 
Here is the code that adds some reporting to the fixed-point iteration: 
 
const tolerance = 0.0001; // some small value 
function fixed_point(f, guess, n_iter) { 
    function close_enough(a, b) { 
        return math_abs(a - b) < tolerance; 
    } 
    function try_with(guess, n_iter) { 
        const next = f(guess); 
        display(guess, ": current"); 
        display(next, ": next"); 
        display(n_iter, ": n_iter"); 

 



        return close_enough(guess, next) 
               ? next  // one may return guess 
               : try_with(next, n_iter + 1); 
    } 
    return try_with(guess, n_iter); 
} 
 
function average(x, y) { 
    return (x + y) / 2; 
} 
 
This application: 
fixed_point(x => math_log(1000)/math_log(x), 2, 1); 
converges to 4.555563237292884 in 29 iterations, whereas this one, with average damping, 
converges to 4.5555465521473675 in just 8 iterations: 
 
fixed_point(x => average(x, math_log(1000)/math_log(x)), 2, 1); 
 

Exercise 1.37 
An infinite continued fraction is an expression of the form 
 

 𝑓 =
𝑁

1

𝐷
1
+

𝑁
2

𝐷
2
+

𝑁3
𝐷3+···

As an example, one can show that the infinite continued fraction with produces  𝑁
𝑖

= 𝐷
𝑖

= 1∀𝑖 1
ϕ

where  is the golden ratio. ϕ
 

1.37.1 

Suppose that n and d are functions of one argument (the term index i) that return  of a 𝑁
𝑖
,  𝐷

𝑖

continued fraction respectively.  
 
Declare a function cont_frac such that evaluating cont_frac(n, d, k) computes the 

value of the  finite continued fraction. Check your function by approximating  using  𝑘𝑡ℎ 1
ϕ

 

 

https://sourceacademy.org/sicpjs/1.3.3#ex-1.37
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cont_frac(i => 1, i => 1, k) 
 
for successive values of . How large must you make  in order to get an approximation that is 𝑘 𝑘
accurate to 4 decimal places? 
 
Solution. 
 
Continued fractions are very interesting. Infinite continued fractions are even more so. I am 
going to study them in more detail. MAA has published two books, one by C. J. Olds and 
another by Andrew Simoson. But this problem seems fairly straightforward. 
 
// Implement the finite continued fraction using an iterative process. 
// n is a function that returns the numerator of the ith fraction 
// d is a function that returns the denominator of the ith fraction 
// k is the number of times to iterate 
function cont_frac(n, d, k) { 
    function sum(curr, acc) { 
        const partial = n(curr) / (acc + d(curr)); 
        return (curr === 1) 
             ? partial 
             : sum(curr - 1, partial); 
    } 
    return sum(k, 0); 
} 
display(cont_frac(i => 1, i => 1, 10)); // prints 0.6179775280898876 
 
const phi_mul_inv = 0.6180339887498948; //  1/ϕ
const diff = 0.00000001; 
 
// Find the number of iterations it takes for a given continued_fraction 
// function to reach a given limit. 
function find_conv_iters(cont_frac_calculator, nfun, dfun, k, limit) { 
    return math_abs(cont_frac_calculator(nfun, dfun, k) - limit) < diff 
         ? k 
         : find_conv_iters(cont_frac_calculator, nfun, dfun, k + 1, limit); 
} 
display(find_conv_iters(cont_frac, i => 1, i => 1, 1, phi_mul_inv)); // prints 
19 
 
It takes 19 invocations on my computer to converge to . I have extracted the common 1/ϕ
behavior and created the above function, find_conv_iters. It works with different functions 
parametrized by cont_frac_calculator that calculate the (finite) continued fraction.  
 

 



1.37.2 

If your cont_frac function generates a recursive process, write one that generates an iterative 
process. If it generates an iterative process, write one that generates a recursive process. 
 
Solution. 
 
Our procedure above is an iterative one since there are no outstanding operations after the 
recursive calls return. For that to happen we calculate the last fraction first. If we implement a 
more literal order, we end up having a recursive process because we have an addition operation 
after each recursive call returns: 
// Implement the finite continued fraction using a recursive process. 
// n is a function that returns the numerator of the ith fraction 
// d is a function that returns the denominator of the ith fraction 
// k is the number of times to iterate 
function cont_frac_rec(n, d, k) { 
    function sum(curr) { 
        return curr === k 
             ? n(k)/d(k) 
             : n(k)/(d(k) + sum(curr + 1)); 
    } 
    return sum(1); 
} 
 

13 October 2023 
I resumed reading/programming SICP JS because I wanted to better understand JavaScript 
promises. I have not yet gotten to them. But I’ll perhaps get there soon. 
 
For now, I am continuing with Fixed-point. The Babylonian method of finding square-root of a 
number by using the iterative fixed-point procedure seems to take time. I need to take some 
time to understand that better. See below. 

10 October 2023 
Many things have changed since I last visited here. I must continue the SICP trek albeit alone. 
Apoorv is now at Michigan. I miss our study sessions a lot. We were really good buddies. But I 
am very happy for him. I hope he does bigger and better things at UM. Back to work now. 
 

 



22 June 2023 

1.3.3. Functions as General Methods 
Consider a function like riemann_sum (simple integral) or simpson (Simpson’s rule). It is 
applied to several arguments, one of which is a function. These functions represent general, 
well-defined procedures that can be interpreted as methods involving other (mathematical) 
functions. Integration can be thought of as a function that operates at a higher level than a 
function that, for example, squares a number. We often say a definite integral represents the 
area under a curve. Thus, given any curve (continuous), it finds the area of the shape enclosed 
between it and the X-axis.  
 
Typically, functions we encounter in Algebra are like first-order functions, whereas many 
functions we encounter in Analysis are like higher-order functions. Some general procedures in 
Algebra can also be realized by the way of higher-order functions. Such higher-order functions 
are what are meant by “General Methods” here. 
 

The half-interval method 

Take, for example, the half-interval method of finding roots of an equation represented by a 
continuous (mathematical) function (the function can be algebraic, rational, exponential, 
trigonometric, or logarithmic). This method is general enough that it applies to any function as 
long as we know two numbers (however far apart) at which the function’s values have opposite 
signs. This method is a standard iterative technique of searching a value in a collection of 
values that utilizes an enabling property. That property has to do with the orderliness (or 
monotonicity) of values in the given collection. Here is an implementation: 
 
function search(f, neg_point, pos_point) { 
    const midpoint = average(neg_point, pos_point); 
    if (close_enough(neg_point, pos_point)) { 
        return midpoint; 
    } else { 
        const test_value = f(midpoint); 
        return positive(test_value) 

               ? search(f, neg_point, 
midpoint) 
               : negative(test_value) 
               ? search(f, midpoint, 
pos_point) 
               : midpoint; 
    } 
} 
 

 



Given two points however far apart where a continuous function has values of opposite signs, 
this iterative procedure is bound to reach the vicinity of the zero of that function because we 
maintain at every step an invariant that is preserved in the beginning. At every step, we solve a 
problem that has the same form (of a smaller size) as the original. 

Fixed points of functions 

A clear definition of “mathematical” function which is another name for “transformation”, requires 
some background, but, roughly speaking, a function returns the same value every time it is 
given the same value. In other words, a function does not output two or more values for the 
same input.  
 
We can imagine functions returning values that are the same as the values that they accept. If 
we think of functions as black-boxes, then we can imagine some input, say , that remains 𝑥

𝐹𝑃

sort of unfazed by the functional transformation. Notationally, . This  which just 𝑓(𝑥
𝐹𝑃

) = 𝑥
𝐹𝑃

 𝑥

falls through the function black-box (untransformed) is called its “fixed-point”.  
 
We can plot mathematical functions on a coordinate plane. Some reflection will show that a 
function’s fixed-point is the same as the point of its intersection with the straight line . 𝑦 = 𝑥
Clearly, not every function has a fixed point because not every function’s plot intersects . 𝑦 = 𝑥

For example, the function  has no fixed-point (see the diagram). 𝑦 = 𝑥2 + 2
 
How does one relate the idea of the fixed-point of a function with the idea of the square root 
of a positive real number? 
 
This question troubled me a lot. I struggled to understand the connection between these two 
ideas.  
 
First, finding the fixed point of a mathematical function, , mathematically means solving the 𝑓(𝑥)
equation  . If we know the theory of equations, this can be solved on paper. For the 𝑓(𝑥) = 𝑥

function  for instance, we can solve the equation: . These two are the 𝑥2, 𝑥2 = 𝑥 =>  𝑥 = {0,  1}
fixed-points of this function.  
 

How about the fixed-point of ? At the fixed-point of this function, , or 𝑥2 + 2 𝑥2 + 2 = 𝑥

, and we get: . Thus, fixed-points of this function exist, but 𝑥2 − 𝑥 + 2 = 0 𝑥 = 1± 1−8
2 = 1± 7𝑖

2

they are complex! (This is also an interesting observation – What is not possible in the real 
domain is possible in the imaginary domain! This is a sort of epiphany for me because now one 
can imagine that imaginary numbers can be roots of at least more polynomials – once we are 
willing to enhance our notion of a number to include square roots of -1, we can suddenly find 
roots of many, many (all?) polynomials.) 
 
How do we use a computer program to do the same? One way is to repeatedly apply the 
function to a value starting with some convenient (and useful) value, . If a value has not 𝑎

 



changed much from the previous value, we have reached the vicinity of a fixed-point. Thus, 
computers can do a very good approximation to a function’s fixed-point. The initial value is 
crucial, however. For example, for the function , had we started with : 𝑥2 𝑎 = 0. 5

 𝑓(𝑎) = (0. 5)2 = 0. 25

 𝑓(𝑓(𝑎)) = (0. 25)2 = 0. 0625

 𝑓(𝑓(𝑓(𝑎))) = (0. 0625)2 = 0. 00390625

 𝑓(𝑓(𝑓(𝑓(𝑎)))) = (0. 00390625)2 = 0. 00001525878
 

This value approaches 0, which is indeed a fixed-point of . We could find this fixed-point also if 𝑥2

we start with an initial guess, . 𝑎 =  0
 
We could find the other fixed-point ( ), only if we were lucky to start with an initial guess, 𝑎 = 1

. But if we started with any other number greater than 1, repeated application of our 𝑎 = 1
function will only take us farther and farther away from both the fixed-points of this function, 

. Also, if we start with the initial guess that is less than 1, we can only get to 0, but 𝑓(𝑥) = 𝑥2

never to 1. This is quite problematic, isn’t it? 
 
How do we know a priori if an initial guess is useful in finding a fixed-point of any f whose 
fixed-point exists? I am sure there is enough research done on this problem already. A quick 
glance at the fixed-point page on Wikipedia demonstrates that. 
 
Well, for periodic functions (like sine or cosine) that are defined for all real numbers, there’s 
hope. But it is far from clear if the procedure of repeatedly finding the value of a real function 
(when starting from some initial guess) will converge to its fixed-point. The iterative procedure 
above is called the Fixed-point Iteration. The Wikipedia page on it says  

More specifically, given a function  defined on the real numbers with real values 𝑓
and given a point  in the domain of , the fixed-point iteration is  𝑥

0
𝑓

 𝑥
𝑛+1

= 𝑓(𝑥
𝑛
),  𝑛 = 0, 1, 2, ···

which gives rise to the sequence  of iterated function applications 𝑥
0
, 𝑥

1
, 𝑥

2
, ···

 which is hoped to converge to a point . If  is 𝑥
0
, 𝑓(𝑥

0
), 𝑓(𝑓(𝑥

0
)), ··· 𝑥

𝐹𝐼𝑋
𝑓

continuous, then one can prove that the obtained  is a fixed point of , i.e., 𝑥
𝐹𝐼𝑋

𝑓

. 𝑓(𝑥
𝐹𝐼𝑋

) = 𝑥
𝐹𝐼𝑋

 
As you can see, we have to be lucky in choosing . If the sequence of repeated application of  𝑥

0
𝑓

of values starting with  does not converge, then we may never find the function’s fixed-point!  𝑥
0
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First, let’s take a stab at the fixed-point “method”. This is a method because it generally applies 
to other functions for which a fixed-point is known to exist (we’ll discuss later what to do with 
functions that do not have a fixed-point). Here is its specification: 

1)​ It applies to two formal parameters, f and guess.  
2)​ If f(guess) ~ guess, it returns guess. 
3)​ Otherwise it applies itself to f and f(guess) and goes back to step 2). 

 
const tolerance = 0.0001; // some small value 
function fixed_point(f, guess) { 
    function close_enough(a, b) { 
        return math_abs(a - b) < tolerance; 
    } 
    function try_with(guess) { 
        const next = f(guess); 
        return close_enough(guess, next) 
               ? next  // one may return guess 
               : try_with(next); 
    } 
    return try_with(guess); 
} 
 

 
 
Now, given what we do in the “method” of fixed points (that is given a function and a guess, we 
repeatedly apply the function to that guess till the values don’t change appreciably) which 
function yields the square-root of a number? 
 
I still don’t have a satisfactory answer to this “inverse problem”: 

1)​ We have a higher order function fixed_point(f, guess). 

2)​ We want to find a function f, such that fixed_point(f, guess) yields . 𝑎
 
SICP JS provides this: 

 
In fact, we can readily formulate the square-root computation as a fixed-point search. 

Computing the square root of some number  requires finding a  such that . 𝑥 𝑦 𝑦2 = 𝑥
Putting this equation into the equivalent form , we recognize that we are looking 𝑦 = 𝑥

𝑦

for a fixed point of the function  and we can therefore try to compute square roots 𝑦 → 𝑥
𝑦

as 

 

 

https://math.stackexchange.com/questions/4787737/fixed-point-of-a-function-and-an-inverse-problem


function sqrt(x) { 
    return fixed_point(y -> x/y, 1); 
} 

This does not pacify me, but that is okay. 
 
Consider finding the square-root of 89. How do I go about devising the f such that the 

application of fixed_point to that f and a guess, say, 1: fixed_point(f, 1) yields ?  89
 
Is it obvious that that f must be  (in lambda expression form) for 𝑥 → 89

𝑥

fixed_point(f, 1) to yield  ? 89
 
It seems believable, but it is not immediately obvious to me. One clear ray of hope is that if the 

function  is applied to , then it returns  which is close to . If f is 𝑓(𝑥) = 89
𝑥 𝑥 = 9. 4 9. 47 𝑥

applied to , it returns  and so on. At some point, the repeated application is 𝑥 = 9. 42 9. 45
expected to yield a value that is very close to the input. That value is . If applied to any other 89
value of , clearly, f will return a value that is considerably different from it. Thus, the 𝑥

transformation  of  seems to do the trick. Of course, if the function does the trick 𝑦 = 89
𝑥 𝑦 = 89

for , it will do it for any other positive real number. 89
 
In this sense, the function fixed_point acts like a loop of a special kind: It keeps on 
applying f as long as f’s input (whose initial value is an appropriate guess) and output 
are considerably different values; it terminates when they are close enough. 
 

Thus,  is the function to which (and to a guess) if we apply our fixed_point 𝑓(𝑥) = 89
𝑥

method, we get an approximate value of . 89
 
However, this function call: fixed_point(y => x/y, 1) never returns on many inputs; 
it’s stuck in an infinite loop. This happens because (when applied to the initial guess 1): f(1) 
= 89 and f(89) = 1! And since 89 and 1 are not close enough, this sequence of return 
values –  – continues ad infinitum. The fixed-point iteration or fixed-point 89, 1, 89, 1, ···
search (that is what the iteration represented by the repeated function calls of fixed_point is 
called) does not terminate. 
 
This is a big problem! What appears sound in theory fails miserably in the practice of numerical 
computation. One should refer to a good book or article on numerical analysis because now we 
need to find an algorithm that works on real numbers. The book says that since 

 



 fails to “converge” to some value, we need to find another function which 1) 𝑓(𝑥) = 𝑦 = 89
𝑥

finds the square root of 89, and 2) converges more quickly.  
 

A trick is suggested: . This is called the 𝑦 = 89
𝑥 → 2𝑦 = 𝑦 + 89

𝑥 → 𝑦 = 1
2 (𝑦 + 89

𝑥 )

“average-damping.” Plots of both these functions (  expectedly look 𝑦 = 89
𝑥 ,  𝑦 = 1

2 (𝑦 + 89
𝑥 ))

identical. The latter converges quickly, whereas the former does not converge at all. The sqrt 
function then becomes: 
 

function sqrt(x) { 
    return fixed_point(y => average(y, x/y), 1); 
} 

I am pretty sure that there are reasons for this (why a slightly modified version of the function 
“converges” quickly) that are studied in numerical analysis.  

21 June 2023 

1.3.2 Functions as Lambda Expressions (LE’s) 
We can use a lambda expression as a syntactic form for creating functions. 
 
In general, lambda expressions are used to create functions in the same way as function 
declarations, except that no name is specified for the function and the return keyword and 
braces are omitted (if there is only one parameter, the parentheses around the parameter list 
can also be omitted). LE’s can be extended to allow a block (rather than a mere expression) as 
the body: 
(parameters) => expression 
 
Whatever results is a function, except that there is no name to associate it with. Therefore, it 
can either be passed as a value wherever a function value is needed, or it can be applied in 
place to actual arguments. In such cases the construct is called a function expression: 
((x, y, z) => (x + y + z))(1, 2, 3); //=> 1 + 2 + 3 = 6 
 
To me, the main advantage of LE’s is to aid readability by reducing the scope of function’s 
definition: you don’t need to look elsewhere to find out what procedure a named function stands 
for. Of course, they are best suited in situations where expressions, rather than a full-fledged 
process, are needed. 

Using const to create local names 

There are some subtleties here, but basically, we can use the const keyword to create 
functions via LE’s. 

 



Conditional Statements 

Sometimes conditional statements are better than conditional expressions. We have been using 
conditional expressions forthwith. The general form of conditional statements is: 
if (predicate) { 
  consequent-statements 
} else { 
  alternative-statements 
} 

Exercise 1.34 
Suppose we declare 
function f(g) { 
   return g(2); 
} 
Then we have 
f(square); 
4 
f(z => z * (z + 1)); 
6 
What happens if we (perversely (in a manner contrary to what is expected or accepted)) ask 
the interpreter to evaluate the application f(f)? Explain. 
 
Solution. 
Initially, I thought that this would result in endless application of f. But on careful analysis, I 
realized that f is written to accept a function that accepts a single number. A function that 
accepts a single number – let’s call it g. Thus, f can be applied successfully to any g. Is square 
a g? Yes, it is. Is inc a g? Yes.  
 
Is f a g? No, f is f. So, applying f to f is going to result in something undesirable: 
f(f) => f(2) => 2(2). Clearly, 2 is not a function. The actual error that the Source-1 
interpreter emits is: Calling non-function value 2. 

20 June 2023 
(I had taken a short break from regular work on SICP.) 

Exercise 1.32 
1.32.1 
Show that sum and product (exercise 1.31) are both special cases of a still more general 
notion called accumulate that combines a collection of terms, using some general 
accumulation function:​
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accumulate(combiner, null_value, term, a, next, b);​
 
The function accumulate takes as arguments the same term and range specifications as sum 
and product, together with a combiner function (of two arguments) that specifies how the 
current term is to be combined with the accumulation of the preceding terms and a 
null_value that specifies what base value to use when the terms run out. Write accumulate 
and show how sum and product can both be declared as simple calls to accumulate. 
 
Solution. 
As you wander in the enchanted land of functional programming, you can’t escape the feeling 
that you can generalize as much as you want to. I guess the ulterior motif is to teach how to 
create more abstractions. It seems to me, however, that a balance should be achieved, 
otherwise you may have functions that are too general to be usable and readability of code may 
suffer. I wonder if there is an objective way to determine the limits on generalizing abstract ideas 
or is it a matter of subjective notions like beauty? Perhaps we can exploit the famous maxim to 
elucidate: Make everything as abstract as possible, but no more. It appears to be a matter of 
experience that enables seeing how everything fits together. 
 
Let’s take a look at the sum and product functions and find places where we can move from 
concrete to abstract. 
 

sum(a, term, next, b) product(a, term, next, b) 

function sum(a, term, next, b) { 
  return a > b 
         ? 0  
         : term(a) + sum(next(a), 
term, next, b); 
} 

function product(a, term, next, 
b) { 
  return a > b 
         ? 1  
         : term(a) * 
product(next(a), term, next, b); 
} 

 
We can see that the elements in boldface (sum, 0, + and product, 1, *) are concrete. This 
may become a hint in conceiving a higher-level of abstraction that covers both the finite sum 

and finite product notions (in mathematical notation, ) respectively. Such a higher-level of ∑,  ∏

abstraction may even cover some more operations that we can name (just like we have named 
here – one operation “sum” and another “product”). But can’t we abstract out (via the notion of 
parameters) the summingness or productness? Perhaps we can. This notion or idea can then 
be captured in the English verb, say, accumulate. 
 
Perhaps we can introduce the idea of combining a next term (realized by the term function) 
with the result we have up until now to produce a new result. So, a combiner function does just 

 



that. We can pass those two parameters to combiner which returns the result that we return 
from our function. 
 
What about the two values 0 and 1 which seem to make sense with sum and product 
respectively?  
 
Clearly, if we are asked to sum integers from, say, 10 to 8, we assume that it is 0. No other 
result makes sense:  
“What is the sum of all the integers from  to  where ?”  𝑎 𝑏 𝑎 > 𝑏
“Of course it is 0.” 
 
With the product operation (on numbers), what value makes sense when multiplying all the 
integers from  to  where ? This is taken to be 1 by convention. It’s called the empty 𝑎 𝑏 𝑎 > 𝑏
product: The product of all numbers when there are no numbers to multiply is 1. 
 
What we do here is abstract this difference out. We look at sum and product from a higher 
level of abstraction so that they look like different manifestations of the same thing to us! A 
definition then emerges: 
 
// accumulation as an abstraction  
function accumulate(combiner, null_value, term, a, next, b) { 
  return a > b 
       ? null_value 
       : combiner(term(a), accumulate(combiner, null_value, term, 
next(a), next, b); 
} 
 
To define sum in the form of accumulate we will need an adder: 
function add(a, b) { 
  return a + b; 
} 
function sum(term, a, next, b) { 
  return accumulate(add, 0, term, a, next, b); 
} 
Equivalently, for product, we need a function like multiply: 
function multiply(a, b) { 
  return a * b; 
} 
function product(term, a, next, b) { 
  return accumulate(multiply, 1, term, a, next, b); 
} 
Watch out for the “telescoping” function, however (a function that applies to several arguments). 
 
1.32.2 
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If your accumulate function generates a recursive process, write one that generates an 
iterative process. If it generates an iterative process, write one that generates a recursive 
process. 
 
Solution. 
Our accumulate function returns what combiner returns, but combiner applies to the return 
value of a recursive call to accumulate. Clearly, there are deferred operations that result in a 
recursive process. We want an iterative version of accumulate.  
 
Doing computations on the fly is key. For that, we can employ an accumulator or collector. In 
this case, we do not need the null_value argument because the accumulator serves the 
purpose. 
 
// accumulates results, creates an iterative process 
function accumulate_iter(combiner, term, a, next, b, acc) { 
  return a > b 
       ? acc 
       : accumulate_iter(combiner, term, next(a), next, b, 
combiner(acc, term(a))); 
} 
(This took some experimentation to get right). Here, we calculate the sum and product directly, 
without providing the so called wrapper functions that wrap the accumulate function:  
accumulate_iter(add, identity, 1, inc, 10, 0); // => 55 
accumulate_iter(multiply, identity, 1, inc, 5, 1); // => 120 

 
 
Is accumulate or accumulate_iter a better abstraction1 (than sum and product)?  
 
In a way, it’s a matter of perspective and language. When we think of a “summing operation”, do 
we want to define a specific sum function that we call (that is, apply to arguments)? If all we 
want to do is calculate sums, then it is perhaps okay. But what if we want to calculate products? 
Do we then conceive a separate  product function which is almost identical to the sum 
function? At a linguistic level, is the code easier to understand if we have those words, “sum” 
and “product”, in function definitions? If yes, like we have done above (in the accumulate 
case) , we provide wrapper functions. If not, we just apply the functions to appropriately chosen 
arguments (as in the accumulate_iter case above; we did not wrap accumulate_iter in 
a sum_iter or product_iter function, but simply applied it).  
 
It really depends. We should strive hard to make our code easier to read. This is why we choose 
appropriate names. A function application (function call) like: 
accumulate_iter(add, identity, 1, inc, 10, 0); // => 55 

1 accumulate and accumulate_iter are not different abstractions, just different 
implementations of the same idea. 

 



 
makes it clear that this returns 55 because of appropriately named function arguments like add, 
identity, inc, although it makes it less clear that 0 is the accumulator that stores the result. 
But what if we had named functions in a weird manner? What value does 
accumulate_iter(foo, bar, 1, f, 10, 0); return? 
 
Do feelings come into picture when faced with deciding if this is a “good” abstraction? Perhaps 
they do. Our current feeling is that accumulate is definitely a useful abstraction that is at a 
higher level than sum and product which are themselves good abstractions. 

Exercise 1.33 
You can obtain an even more general version of accumulate (exercise 1.32) by introducing 
the notion of a filter on the terms to be combined. That is, combine only those terms derived 
from values in the range that satisfy a specified condition. The resulting 
filtered_accumulate abstraction takes the same arguments as accumulate, together 
with an additional predicate of one argument that specifies the filter. Write 
filtered_accumulate as a function. Show how to express the following using 
filtered_accumulate: 

1)​ the sum of the squares of the prime numbers in the interval  (assuming that you [𝑎,  𝑏]
have an is_prime predicate already written). 

2)​ the product of all the positive integers less than  that are relatively prime to  (i.e., all 𝑛 𝑛
positive integers  such that ). 𝑖 < 𝑛 𝐺𝐶𝐷(𝑖,  𝑛) = 1

 
Solution. 
This is more like a convenience. The main idea is to generate the next item using the next 
function, but have flexibility of filtering it out. One may then ask whether next can do it. 
Perhaps it can. For example, if we want to only sum odd integers in the given range, , we [𝑎,  𝑏]
can always generate the next odd integer, rather than generating the next integer.  
 
Here it becomes a matter of taste. Filtering can be achieved indirectly by the implementation of 
the next function, but an explicit predicate (appropriately named filter) makes the idea 
clearer to the readers. 
 
function filtered_accumulate(combiner, null_value, term, a, next, b, 
filter_in) { 
  return a > b 
       ? null_value 
       : filter_in(a) 
       ? combiner(term(a), filtered_accumulate(combiner, null_value, 
term, next(a), next, b, filter_in)) 
       : filtered_accumulate(combiner, null_value, term, next(a), 
next, b, filter_in); 
} 
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function is_even(a) { 
    return a % 2 === 0; 
} 
 
function is_odd(a) { 
    return ! is_even(a); 
} 
 
filtered_accumulate(add, 0, identity, 1, inc, 5, is_even); // => 2 + 
4 = 6 
filtered_accumulate(add, 0, square, 1, inc, 5, is_odd); // => 1x1 + 
3x3 + 5x5 = 35 
 

1)​ The sum of the squares of the prime numbers in the interval  =  [𝑎,  𝑏]
filtered_accumulate(add, 0, square, a, inc, b, is_prime); 

2)​ the product of all the positive integers less than  that are relatively prime to  (i.e., all 𝑛 𝑛
positive integers  such that ): 𝑖 < 𝑛 𝐺𝐶𝐷(𝑖,  𝑛) = 1
function gcd(a, b) { 
    return b === 0 
         ? a 
         : gcd(b, a % b); 
} 
 
function rel_prime(a, b) { 
    return gcd(a, b) === 1; 
} 
 
function rel_prime_prod(n) { 
  function is_rel_prime(i) { 
    return rel_prime(n, i); 
  } 
  return filtered_accumulate(multiply, 1, identity, 1, inc, n, 
is_rel_prime); 
} 
 
display(rel_prime_prod(6)); // => 5 
display(rel_prime_prod(10)); // => 189 

 

08 June 2023 

Exercise 1.31 
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1.31.1  
The sum function is only the simplest of a vast number of similar abstractions that can be 
captured as higher-order functions.3 Write an analogous function called product that returns 
the product of the values of a function at points over a given range. Show how to define factorial 
in terms of product. Also use product to compute approximations to π using the formula 4: 
 

 (this is a misleading representation.) 
π
4 = 2·4·4·6·6·8·8···

3·3·5·5·7·7···
 
Solution. 
function product(a, term, next, b) { 
  return a > b 
         ? 1  
         : term(a) * product(next(a), term, next, b); 
} 
 
 
function factorial(n) { 
  return product(1, identity, inc, n); 
} 
 
factorial(12); // => 479001600 
 
One can observe that the Wallis formula can be rearranged to yield: 

 
π
4 = 2 · ( 4

3 )2 · ( 6
5 )2 · ( 8

7 )2 · ( 10
9 )2 ···  −−−−−−−−−−  (1. 31. 1. 1)

 
Thus, the denominator of each fraction can be put into a 1:1 correspondence with the natural 
numbers: 2n + 1. This is an infinite series that converges to , but never equals (and, hence, π/4
never exceeds) it. We accept a parameter that specifies the number of fractions to consider in 
this product: 
 
function wallis_pi(n) { 
  function term(i) { 
    return (2 * i + 2) / (2 * i + 1); 
  } 
  return 2 * product(1, term, inc, n); // should approach π/4 
} 
 
 
wallis_pi(10) ; // => 17.675817171612533 
 
Say what? How did we go wrong? 
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This reminds me of a famous quote: Every problem has a solution that is simple, elegant, and 
wrong! 
 
Without even realizing (until we ran the program that faithfully and correctly calculated what it 
was asked to) we have committed a huge blunder.  
 
Infinite series bite us subtly (that is why I need to study it more thoroughly). That’s what 
happened. We rather coolly wrote in equation 1.31.1.1 what John Wallis never intended. 
Wikipedia describes what Wallis wrote:  

 
π
2 =

1

∞

∏ 2𝑛
2𝑛−1 · 2𝑛

2𝑛+1 =
1

∞

∏ 4𝑛2

4𝑛2−1

(Notice how the rearrangement of  to  is allowed, but 1.31.1.1 is not. Exactly what prevents π
4

π
2

us from doing that is a question that I need to think about. TODO.) 
 
Once the confusion is cleared, we can easily code the Wallis product: 
 
function wallis_pi_corrected(n) { 
  function term(i) { 
    const numerator = 4 * square(i); 
    return numerator / (numerator - 1); 
  } 
  return 2 * product(1, term, inc, n); // should approach π 
} 
 
 

wallis_pi_corrected(10);   // => 3.0677038066434994 

wallis_pi_corrected(100);  // => 3.133787490628163 

wallis_pi_corrected(1000); // => 3.1408077460304042 
 
This appears more correct. One can just observe this formula with amazement and feel great 

about it! The series  diverges, but  converges to ! 
𝑛=1

∞

∏ ( 2𝑛+2
2𝑛+1 )2

𝑛=1

∞

∏ 4𝑛2

4𝑛2−1
π/2

 
1.31.2 
If your product function generates a recursive process, write one that generates an iterative 
process. If it generates an iterative process, write one that generates a recursive process. 
Solution. 
We use the standard accumulator trick that comes in handy when converting a recursive 
process into an iterative one. 
 
function product_iter(a, term, next, b, acc) { 
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  return a > b 
         ? acc  
         : product_iter(next(a), term, next, b, acc * term(a)); 
} 
 
 
function factorial_iter(n) { 
  return product_iter(1, identity, inc, n, 1); 
} 
 
factorial_iter(12); // => 479001600 

07 June 2023 

Exercise 1.30 
The sum function above generates a linear recursion. The function can be rewritten so that the 
sum is performed iteratively. Show how to do this by filling in the missing expressions in the 
following declaration: 
function sum(term, a, next, b) { 

    function iter(a, result) { 

        return ⟨⟨??⟩⟩ 

               ? ⟨⟨??⟩⟩ 

               : iter(⟨⟨??⟩⟩, ⟨⟨??⟩⟩); 

    } 

    return iter(⟨⟨??⟩⟩, ⟨⟨??⟩⟩); 

} 

Solution. 
function sum_iter(a, term, next, b) { 
    function iter(curr, result) { 
        return curr > b  
             ? result 
             : iter(next(curr), result + term(curr)); 
    } 
    return iter(a, 0); 
} 
The idea is to use the argument result as an accumulator. 
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05 June 2023 
Building abstractions that use functions as arguments is a fun exercise. Thinking of the right 
abstractions that are reusable in a variety of situations takes practice. In our present case, we 
have a summing abstraction that easily implements integral (Riemann sum).  

Exercise 1.29 
Simpson's Rule is a more accurate method of numerical integration than the method illustrated 
above. Using Simpson's Rule, the integral of a function  between  is approximated as 𝑓 𝑎,  𝑏

, where  for some even ℎ
3 (𝑦

0
+ 4𝑦

1
+ 2𝑦

2
+ 4𝑦

3
+ 2𝑦

4
+···+ 2𝑦

𝑛−2
+ 4𝑦

𝑛−1
+ 𝑦

𝑛
) ℎ = 𝑎−𝑏

𝑛

integer , and . (Increasing  increases the accuracy of the approximation.) 𝑛 𝑦
𝑘

= 𝑓(𝑎 + 𝑘ℎ) 𝑛

Declare a function that takes  as arguments and returns the value of the integral, 𝑓,  𝑎,  𝑏,  𝑛
computed using Simpson's Rule. Use your function to integrate cube between 0 and 1 (with  

), and compare the results to those of the integral function shown above. 𝑛 = 100,  1000
 
Solution. 
 
Simpson’s rule is an interesting approximation to find definite integrals of continuous functions. It 
approximates the area under the curve  from  to . Fitting the computation in the 𝑓(𝑥) 𝑥 = 𝑎 𝑥 = 𝑏
abstraction provided by the sum function is not that hard. Let’s first do that and then we’ll see if 
other, generally usable abstractions emerge. 
 
function simpson(f, a, b, n) { 
  const h = (b - a) / n; 
  function s_next(t) { 
    return t + h; 
  } 
  return sum(a, f, s_next, b) * h / 3; 
} 
 
This definition will simply calculate each term as f(a) which is not what we want. We have 
the sum as: . 𝑓(𝑎) + 4𝑓(𝑎 + ℎ) + 2𝑓(𝑎 + 2ℎ) +···+ 4𝑓(𝑎 + (𝑛 − 2)ℎ) + 𝑓(𝑎 + (𝑛 − 1)ℎ)
Thus, depending on the rank ( ) of the term, its value changes. Wikipedia reports 0, 1, 2, 3, ···, 𝑛
this succinctly: 
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We need to somehow introduce the notion of saving the context (which term is it that we are 
calculating in a given invocation of term?). Without much clarity, I coded the following. I went 
wrong once. But after a good night’s sleep (as the sleep was getting over), I told myself 
that I should have a notion of an index built into the summing operation: 
 
function sum_with_index(a, term, next, b, i) { 
  return a < b 
       ? 0 
       : term(a, i) + sum_with_index(next(a, i), term, next, b, i + 
1); 
} 
 
This is perhaps not enough because it may be a good idea to know the maximum value the 
index (it always starts at 0) can take. 
 
// sums up given terms and maintains an index 
function sum_with_index(a, term, next, b, i, maxi) { 
  return a < b 
       ? 0 
       : term(a, i, maxi) + sum_with_index(next(a, i, maxi), term, 
next, b, i + 1, maxi); 
} 
We can now attempt the Simpson ⅓ rule and the Riemann sum: 
// sums the terms returned by term(a) as long as a <= b 
function sum(a, term, next, b) { 
    return a > b 
         ? 0 
         : term(a) + sum(next(a), term, next, b); 
} 
 
// returns the riemann sum for a given function (continuous) 
function riemann_sum(f, a, b, dx) { 
    function add_dx(x) { 
        return x + dx; 
    } 
    function term(x) { 
        return f(x); 
    } 
    return dx * sum(a + dx / 2, term, add_dx, b); 
} 
// implements the Simpson 1/3 rule 
function simpson(f, a, b, n) { 
  const h = (b - a) / n; 
  function term(a, i, maxi) { 
    return i === 0 || i === maxi 

 



         ? f(a) 
         : i % 2 === 1  
         ? 4 * f(a) // odd 
         : 2 * f(a); // even 
  } 
  function next(t, i, maxi) { 
    return t + h; // i, maxi unused 
  } 
  return h / 3 * sum_with_index(a, term, next, b, 0, n); 
} 
 
function cube(x) { 
    return x * x * x; 
} 
 
function inc(x) { 
    return x + 1; 
} 
// sums the cubes of integers between a and b 
function sum_cubes(a, b) { 
    function cube_with_index(x, i, maxi) { 
        const c = x * x * x; 
        display(x, c, i, maxi); 
        return c; 
    } 
    function next(x, i, maxi) { 
        return x + 1; 
    } 
    return sum_with_index(1, cube_with_index, next, 5, 0, 5); 
} 
// sum_cubes(1, 5); 
display(riemann_sum(cube, 0, 1, 0.001)); //=> 0.249999875000001 
display(simpson(cube, 0, 1, 100)); // => 0.24666666666666687 
display(simpson(cube, 0, 1, 1000)); // => 0.24966666666666754 
 
 
It’s not immediately clear that Simpson’s ⅓ rule always gives a more accurate answer. I also 
suspect that there is something wrong with the implementation. TODO. 
 
Is sum_with_index a good abstraction? Does it add value above and beyond sum? I 
discussed this with Apoorv and he was able to come up with a much better idea of reusing the 
same abstraction and deriving the context in the implementation of the term function! I am now 
somewhat distraught that this did not occur to me. So, the sum function arranges for a counter 
to loop through and then the term function uses that counter as the index:  

 



 
function simpson(f, a, b, n) { 
  // some supporting code 
  return sum(0, term, inc, n); // this is clever, loops 0->n 
} 
 
We leave  in scope, but provide the counters 0 and n in the sum function invocation. This 𝑎,  𝑓
solves the problem of providing the context. 
 
function simpson_improved(f, a, b, n) { 
  //f, a, b, n are all in scope! 
  const h = (b - a) / n; 
  function y(k) { 
    return f(a + k * h); 
  } 
  function term(i) { 
    return i === 0 || i === n 
         ? y(i) 
         : i % 2 === 1 
         ? 4 * y(i) 
         : 2 * y(i); 
  } 
  return (h / 3) * sum(0, term, inc, n); 
} 
simpson_improved(cube, 0, 1, 1000); // => 0.2500000000000003 
 
This yields a much more accurate answer. Why would there be  
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1.3 Higher Order Functions 
One of the things we should demand from our programming language is the ability to build 
abstractions by assigning names to common patterns and then to work directly on those 
abstractions.  
 
Functions provide this ability. 
 
Functions that manipulate functions are called higher-order functions. Higher-order 
functions serve as powerful abstraction mechanisms, vastly increasing the expressive power of 
our programming language. 

 



1.3.1 Functions as Arguments 
Consider these three functions that do summing computations for each integer in a given range 

 (inclusive): 𝑎,  𝑏
 

//  
𝑖=𝑎

𝑏

∑ 𝑖

function sum_integers(a, b) { 
  return a > b 
       ? 0 
       : a + sum_integers(a + 1, b); 
} 

//  
𝑖=𝑎

𝑏

∑ 𝑖3

function sum_cubes(a, b) { 
  return a > b 
       ? 0 
       : a * a * a + sum_cubes(a + 1, b); 
} 

//  which slowly converges to . 
𝑖=𝑎

𝑏

∑ 1
(4𝑖−3)·(4𝑖−3)

π
8

function sum_pi8(a, b) { 
  return a > b 
       ? 0 
       : 1/((4 * a - 3) * (4 * a - 1)) + sum_pi8(a + 1, b); 
} 
 
Color-coding reveals interesting things about this “procedure”. One can observe a pattern with 
the code of these functions. The only thing that differs in these recursive functions is the values 
that we are actually summing up (shown in blue)! These values can easily be thought of as 
functions of the current value of the variable of summation. 
 
The last function can be rewritten as: 

//  which slowly converges to : alternate method. 
𝑖=𝑎

𝑏

∑ 1
(4𝑖−3)·(4𝑖−3)

π
8

function sum_pi8(a, b) { 
  return a > b 
       ? 0 
       : 1/(a * (a + 2)) + sum_pi8(a + 4, b); 
} 
 

 



This is the idea behind summation using the well-known Sigma notation: 

. 
𝑖=𝑎

𝑏

∑ 𝑓(𝑖) = 𝑓(𝑎) +  𝑓(𝑎 + 1) +···+  𝑓(𝑏)

 
We can identify two items of interest: 

1)​ The addend corresponding to the current value of the variable of summation, and 
2)​ The next value of the variable of summation. In classical sigma notation, this follows the 

natural numbers in that the next value is just the next integer. But conceptually it need 
not be so. 

 
We can then make these behaviors into functional parameters. These parameters are like 
numbers, except that since they are functions, they can, unlike numbers, be applied to other 
values. 
 
function sum(a, term, next, b) { 
  return a > b 
       ? 0 
       : term(a) + sum(next(a), term, next, b); 
} 
 
It just works out! 
 
We can now define some specific functions that work with this higher-order function, sum and 
together we redefine the sum_integers function and other functions. 
 
function inc(a) { 
  return a + 1; 
} 
 
function identity(a) { 
  return a; 
} 
 
function cube(a) { 
  return a * a * a; 
} 
 
Then, sum_integers becomes: 
 
function sum_integers(a, b) { 
  return sum(a, identity, inc, b); 
} 
 
function sum_cubes(a, b) { 

 



  return sum(a, cube, inc, b); 
} 
 
function sum_pi8(a, b) { 
  function pi_term(a) { 
    return (1 / (a * (a + 2)));  
  } 
  function pi_next(a) { 
    return a + 4; 
  } 
  return sum(a, pi_term, pi_next, b); 
} 
 
The sum function can be utilized to express integration which is the riemann sum for continuous 
functions: 
 

 
𝑎

𝑏

∫ 𝑓 = [𝑓(𝑎) +  𝑓(𝑎 + 𝑑𝑥
2 ) + 𝑓(𝑎 + 𝑑𝑥 + 𝑑𝑥

2 ) + 𝑓(𝑎 + 2𝑑𝑥 + 𝑑𝑥
2 ) +···+ 𝑓(𝑎 + (𝑛 − 1)𝑑𝑥 + 𝑑𝑥

2 )] · 𝑑𝑥

where  is small. 𝑑𝑥
 
function integral(f, a, b, dx) { 
  function add_dx(x) { 
    return x + dx / 2; 
  } 
  return sum(a + dx / 2, f, add_dx, b) * dx; 
} 
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Exercise 1.28 
One variant of the Fermat test that cannot be fooled is called the Miller–Rabin test (Miller 1976; 
Rabin 1980). This starts from an alternate form of Fermat's Little Theorem, which states that if  𝑛

is a prime number and  is any positive number less than , then . 𝑎 𝑛 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛)
 
To test the primality of a number  by the Miller–Rabin test, we pick a random integer  and 𝑛 𝑎 < 𝑛

we find that . (We prove this result below).  𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛)
 

We use the expmod function to calculate the result of the exponentiation .  𝑎𝑛−1
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However, whenever we perform the squaring step in expmod, we check to see if we have 
discovered a “nontrivial square root of 1 (modulo n)”, that is a number not equal to  or  1 𝑛 − 1
and whose square is equal to .  1 𝑚𝑜𝑑𝑢𝑙𝑜 𝑛
 
It is possible to prove that if such a nontrivial square root of  exists then  is 1 𝑚𝑜𝑑𝑢𝑙𝑜 𝑛 𝑛
not prime.  
 
It is also possible to prove that if  is an odd number that is not prime, then, for at least half the 𝑛

numbers , computing  in this way will reveal a nontrivial square root of .  𝑎 < 𝑛 𝑎𝑛−1 1 𝑚𝑜𝑑𝑢𝑙𝑜 𝑛
(This is why the Miller-Rabin test cannot be fooled.)  
 
Modify the expmod function to signal if it discovers a nontrivial square root of 1 and use it to 
implement the Miller-Rabin test with a function (analogous to the function fermat_test). 
Check your function with various known primes and nonprimes.  
 
Solution. 
 
In mathematics, as in life, we can discover truths only by building on top of other truths. Thus, if 
Fermat’s Little Theorem (FLT) is assumed, we should be able to prove the basis of the 
Miller-Rabin test (MRT). Thus, given 

1)​ a prime number , 𝑛

2)​ FLT (that is, ), and 𝑎𝑛 ≡ 𝑎 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛)
3)​ an integer  𝑎 < 𝑛

can we prove that ? 𝑎𝑛 ≡ 1 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛)
 
Proof. 
For an integer , the division algorithm tells us that  which means 𝑎 < 𝑛 𝑎 =  0 · 𝑛 + 𝑎

. 𝑎 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛) = 𝑎
 

From division algorithm and FLT it follows that . 𝑎𝑛 = 𝑛 · 𝑞 + 𝑎 −−−−−  (1. 28. 1)
 

Since  and , it follows that , but since , . 𝑎|𝑎𝑛 𝑎|𝑎 𝑎|(𝑛 · 𝑞) 𝑎 < 𝑛,  𝑎∤𝑛 𝑎|𝑞
  
Dividing both sides of 1.28.1 by  we get: 𝑎

, that is,  𝑎𝑛−1 = 𝑞
𝑎 · 𝑛 + 1 𝑎𝑛−1 = 𝑞

1
· 𝑛 + 1,  𝑞

1
∈ 𝑁

It then follows that . 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛)
∎ 
 
The next assertion is more complex. It defines something called a “nontrivial square root of 1 

(modulo n)” (NTSR1): It is an integer , such that . 𝑝 < 𝑛,  𝑝 ≠ 1,  𝑝 ≠ 𝑛 − 1 𝑝2 ≡ 1 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛)
 

 



Clearly, . Also, since , . 12 = 1 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛) (𝑛 − 1)2 = 𝑛2 − 2𝑛 + 1 (𝑛 − 1)2 ≡ 1 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛)
But excluding these two integers ( ), do we have any other integers less than  that are 1,  𝑛 − 1 𝑛
congruent to ?  And if we do, then  is non prime. 1 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛) 𝑛
 
I am going to leave that proof as a TODO and instead assume the result for now.  
 
Thus, we need to check in our implementation if we have found a number less than n that is an 
NTSR1. If we found such an integer, then n is not prime. 
 
// a is an ntsr1 if a != 1, a != (n-1) and a^2 % n = 1 
function is_ntsr1(a, n) { 
    return a !== 1 && a !== (n - 1) && square(a % n) === 1; 
} 
 
So, the procedure seems clear now. Let’s call our new primality test function mr_test which 
accepts an integer . 𝑛
 
We reproduce the expmod function here:  
 

// returns  (𝑏𝑎𝑠𝑒)𝑒𝑥𝑝 % 𝑑𝑖𝑣𝑖𝑠𝑜𝑟
function expmod(base, exp, divisor) { 
  return exp === 0 
      ? 1 
      : is_even(exp) 
      ? square(expmod(base, exp / 2, divisor)) % divisor 
      : ((b % divisor) * expmod(base, exp - 1, divisor)) % divisor; 
} 
This exercise asks us to signal (in the squaring step) if we have run into a nontrivial square root 
of 1 (modulo n).  
 
Shouldn’t this work? 
function expmod_w_ntsr1(base, exp, divisor) { 
  return exp === 0 
      ? 1 
      : ! is_even(exp) 
      ? ((b % divisor) * expmod(base, exp - 1, divisor)) % divisor    
      : is_ntsr1(expmod(base, exp / 2, divisor)) 
      ? 0  // returns 0 to signal that we have an ntsr1 
      : square(expmod(base, exp / 2, divisor)) % divisor; 
} 
 
And then 
 
// The Miller-Rabin test: returns true if n is prime, false otherwise 

 



function mr_test(n) { 
  function try_it(a) { 
    return expmod_w_ntsr1(a, n - 1, n) === 1; 
  } 
  return try_it(1 + math_floor(math_random() * (n - 1))); 
} 
 
TODO 
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Exercise 1.26 
Louis Reasoner is having great difficulty doing exercise 1.24. His fast_is_prime test seems 
to run more slowly than his is_prime test. Louis calls his friend Eva LuAtor over to help. When 
they examine Louis's code, they find that he has rewritten the expmod function to use an explicit 
multiplication, rather than calling square: 
 
function expmod(base, exp, m) { 
    return exp === 0 
           ? 1 
           : is_even(exp) 
           ? (expmod(base, exp / 2, m) 
              * expmod(base, exp / 2, m)) % m 
           : (base * expmod(base, exp - 1, m)) % m; 
} 
"I don't see what difference that could make," says Louis.  
"I do", says Eva. "By writing the function like that, you have transformed the  Θ( ) process log 𝑛
into a Θ( ) process."  𝑛
 
Explain. 
 
Solution. 
Clearly, Louis is calling the function twice (albeit with a halved argument) and multiplying the 
results. Thus, one problem that accepts an input of size n gets transformed into two problems of 
size n/2 each (and a multiplication operation) and the process continues till we arrive at a base 
case that simply returns 1. We arrive at a base case that returns immediately, but we arrive at 
the base case a whopping n times. The total number of steps then becomes .  Θ(𝑛)
 
Using the square function instead has an effect similar to that of saving a precomputed result 
for reuse. This transforms one problem of size n into a problem of size roughly n/2: a hallmark 
of a function that grows logarithmically. 
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Exercise 1.27 
Demonstrate that the Carmichael numbers listed in footnote (4) really do fool the Fermat test. 
That is, write a function that takes an integer  and tests whether every  is 𝑛 𝑎;  1 < 𝑎 < 𝑛

congruent to  and try your function on the given Carmichael numbers. 𝑎𝑛

Solution. 
 
// a non prime number n is a carmichael number if every integer 
// a; 1 < a < n is a fermat liar (that is, it defies FLT test) 
function is_carmichael(n) { 
    function is_probable_fermat_liar_for_all(i) { 
        return i >= n 
             ? true 
             : expmod(i, n, n) === i 
             ? is_probable_fermat_liar_for_all(i + 1) 
             : display_return(i, "", false); 
    } 
    return is_probable_fermat_liar_for_all(2); 
} 
is_carmichael(561) &&  
is_carmichael(1105) &&  
is_carmichael(1729) &&  
is_carmichael(2465) && 
is_carmichael(2821) && 
is_carmichael(6601); // => true 

18 May 2023 

Exercise 1.25 
Alyssa P. Hacker complains that we went to a lot of extra work in writing expmod. After all, she 
says, since we already know how to compute exponentials, we could have simply written 
function expmod(base, exp, m) { 
    return fast_expt(base, exp) % m; 
} 
Is she correct? Would this function serve as well for our fast prime tester? Explain. 
 
Solution. 
 
She is right in theory, but not in practice. We use a rather simple result in elementary number 

theory to make sure we can determine  without really having to calculate (𝑏𝑎𝑠𝑒)𝑒𝑥𝑝 % 𝑑𝑖𝑣𝑖𝑠𝑜𝑟

. I have written about it below. On a finite precision machine like a computer, overflow (𝑏𝑎𝑠𝑒)𝑒𝑥𝑝

is likely to occur much early when raising a number to a power. It is not immediately clear to 
me, however, that the remainder will be preserved in spite of the overflow. 
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Exercise 1.23 
The smallest_divisor function shown at the start of this section does lots of needless 
testing: After it checks to see if the number is divisible by 2 there is no point in checking to see if 
it is divisible by any larger even numbers. This suggests that the values used for 
test_divisor should not be 2, 3, 4, 5, 6, … but rather 2, 3, 5, 7, 9, ….  
 
To implement this change, declare a function next that returns 3 if its input is equal to 2 and 
otherwise returns its input plus 2. Modify the smallest_divisor function to use 
next(test_divisor) instead of test_divisor + 1. With timed_prime_test 
incorporating this modified version of smallest_divisor, run the test for each of the 12 
primes found in exercise 1.22. Since this modification halves the number of test steps, you 
should expect it to run about twice as fast. Is this expectation confirmed? If not, what is the 
observed ratio of the speeds of the two algorithms, and how do you explain the fact that it is 
different from 2? 
 
Solution. 
 
This is a boring exercise 😬.  
 
I changed my smallest_divisor function thus: 
function smallest_divisor(n) { 
    function next(d, slow) { 
        return slow 
             ? d + 1 
             : d === 2 
             ? 3 
             : d + 2; 
    } 
    function find_divisor(n, d) { 
      return square(d) > n  
           ? n 
           : divides(n, d) 
           ? d 
           : find_divisor(n, next(d, true)); 
    } 
    return find_divisor(n, 2); 
} 
 
This helps me go back and forth. I do find the resulting implementation (slow = false => do not 
examine divisibility for even numbers greater than 2) faster by a factor of almost 2; especially for 
larger numbers. Here is an output of two sample runs: 
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divisor += 1 
100000007 
25 
100000037 
27 
100000039 
24 
divisor += 1 at 2 and divisor += 2 afterword 
100000007 
12 
100000037 
11 
100000039 
12 

Exercise 1.24 
Modify the timed_prime_test function of exercise 1.22 to use fast_is_prime (the Fermat 
method), and test each of the 12 primes you found in that exercise. Since the Fermat test has  
Θ( ) growth, how would you expect the time to test primes near 1,000,000 to compare with log 𝑛
the time needed to test primes near 1000? Do your data bear this out? Can you explain any 
discrepancy you find? 
 
Solution.  
TODO. 
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Exercise 1.21 
Use the smallest_divisor function to find the smallest divisor of each of the following 
numbers: 199, 1999, 19999. 
Solution. 
199 
1999 
7 

Exercise 1.22 
Assume a primitive function get_time of no arguments that returns the number of milliseconds 
that have passed since 00:00:00 UTC on Thursday, 1 January, 1970. The following 
timed_prime_test function, when called with an integer n, prints n and checks to see if n is 
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prime. If n is prime, the function prints three asterisks followed by the amount of time used in 
performing the test. 
 
function timed_prime_test(n) { 
    display(n); 
    return start_prime_test(n, get_time()); 
} 
 
function start_prime_test(n, start_time) { 
    return is_prime(n) 
           ? report_prime(get_time() - start_time) 
           : true; 
} 
 
function report_prime(elapsed_time) { 
    display(" *** "); // return value ignored 
    display(elapsed_time); 
} 
 
Using this [timed_prime_test] function, write a function search_for_primes that checks 
the primality of consecutive odd integers in a specified range. Use your function to find the 
three smallest primes larger than 1000; larger than 10,000; larger than 100,000; larger than 
1,000,000. Note the time needed to test each prime. Since the testing algorithm has order of 
growth of , you should expect that testing for primes around 10,000 should take about ​  Θ( 𝑛) 10
times as long as testing for primes around 1000. Do your timing data bear this out? How well do 
the data for 100,000 and 1,000,000 support the  prediction? Is your result compatible with the 𝑛
notion that programs on your machine run in time proportional to the number of steps required 
for the computation? 
 
Solution. I don’t like the way this exercise is constructed. Instead of instructing readers about 
how to do something, they should have just asked what to do. 
 
The above function [timed_prime_test] is not a well-written one. It returns undefined 
when it detects a prime number! The value returned by the display function is ignored. 
Perhaps this is one problem with functional programming – in FP, we must write functions that 
represent useful abstractions. We should also strive to write functions that do one thing and do it 
well. It hasn’t happened that way in the above functions. It is also because writing such a 
function is not that easy. 
 
I am going to attempt to rewrite parts of the above code. 
 
In general, “while I am doing that, can I also do this? – while I am determining if n is prime, can I 
also determine how long the process took?” is the question we need to answer effectively.  
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We want to determine how long a primality test took. Thus, there are two main objectives and a 
reporting objective: 

-​ Surely determine if the given number is prime. 
-​ Surely calculate the time the process took.  
-​ Optionally report the time; report it only if the number is prime. 

 
Here is our first attempt: 
 
// displays d, returns ret 
function display_return(something, time, ret) { 
  display(something); // ignore display function’s return value 
  display(time); 
  return ret; 
} 
 
To write a general-purpose timer like this, at the least we need a capability to pass a variable 
number of arguments to a function because we do not want to be writing versions for each type 
of function (based on the number of arguments it takes). For example, here’s a version for the 
monadic (functions taking one argument): 
function report_time_and_return_monadic_bool(f, arg1) { 
  const start_time = get_time(); 
  return f(arg1) 
       ? display_return(arg1, get_time() - start_time, true) 
       : false; 
} 
 
We haven’t learned this magic yet (it may be covered in later sections of the text). We have also 
not yet learned how to pass and return functions to other functions. But that seems like the right 
thing to do.  
 
The time taken by an isPrime(n) function call can then be displayed and returned by: 
report_time_and_return_monadic_bool(is_prime, n);  
 
Now we are in a position to find the count smallest prime numbers greater than a lower bound 
and report the time each operation took only when a given number is prime: 
 
// searches for as many as count smallest prime numbers greater 
// than low (exclusive) , reporting the time spent in each case. 
function search_for_primes(low, count) { 
    return count <= 0 
         ? undefined 
         : report_time_and_return_monadic_bool(is_prime, low + 1) 
         ? search_for_primes(low + 1, count - 1) 
         : search_for_primes(low + 1, count); 

 



} 
 
On a typical call like 
search_for_primes(10000000, 3); 
 
it produces an output like: 
10000019 
6 
10000079 
4 
10000103 
5 
undefined 
 
(The ugly undefined line is what search_for_primes returns at the end of its iteration.) 
undefined 
I think the main problem is mixing the return value types. I guess we’ll learn about this later. 
 
It does appear that when the lower bound increases tenfold, the time required increases by a 
factor that is roughly . But the actual time determination is quite difficult as what happens in 10
silicon at runtime is quite unpredictable. This is the reason one needs to analyze programs and 
algorithms on paper. 
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1.2.6 Testing for Primality 
This is a rich research area: determining if a given number is prime. We know the sieve of 
Eratosthenes. It is conceivable that we keep running a few computers which generate a giant 
sieve of Eratosthenes and we can then easily look up in it if a number is prime. But what if we 
want to know the prime status of a number that has not yet figured in the current state of the 
computation? Clearly, we need more direct methods to determine if a given number is prime. 
 
One way to determine if an integer  is prime is to find its divisors: If an integer between 1 and  𝑛 𝑛
divides , then it is not prime, otherwise it is prime. 𝑛
 
If we don’t have access to a sieve of Eratosthenes, then there is a rather straightforward way to 
find the smallest divisor of a given number: 
 
function smallest_divisor(n) { 
  return find_divisor(n, 2); 
} 
 

 



function find_divisor(n, test_divisor) { 
    return square(test_divisor) > n 
         ? n 
         : divides(n, test_divisor) 
         ? test_divisor 
         : find_divisor(n, test_divisor + 1); 
} 
 
function divides(a, b) { // does b divide a? 
  return a % b === 0; 
} 
 
function is_prime(n) { 
    return n === smallest_divisor(n); 
} 
 

This algorithm takes  steps. It is also an iterative process, which means that a Θ( 𝑛)
tail-call-optimizing interpreter needs constant space to execute it. 
 

The Fermat Test 

The above -step algorithm works well, but it takes a lot of time for large numbers. It also Θ( 𝑛)
wastes time testing primality by dividing the given number by composite numbers. Can we do 
better?  
 
It turns out that we can give it a try! 
 
A -step primality test is based on a result from number theory known as Fermat's Little Θ(log 𝑛)
Theorem (FLT): 

If  is a prime number and  is any positive integer less than , then  𝑛 𝑎 𝑛 𝑎𝑛 ≡ 𝑎 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛)
 

 is read “  is congruent to  modulo ”. This means that the numbers 𝑎 ≡ 𝑏 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛) 𝑎 𝑏 𝑛
 and  leave the same remainder when divided by . In computer terms, . 𝑎 𝑏 𝑛 𝑎%𝑛 = 𝑏%𝑛

 
FLT is assumed in what ensues, but proving it is a good number theory exercise. 
 
Proof of the FLT. 
TODO. 
 

How does knowing “  is true for a prime number  and an integer 𝑎𝑛 ≡ 𝑎 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛) 𝑛
” help to test if  is prime?  𝑎;  1 < 𝑎 < 𝑛 𝑛

 
Suppose we are asked to determine if  is prime. 𝑛

 



We 

1)​ raise some random number  less than  to the  power ( ) 𝑎 𝑛 𝑛𝑡ℎ 𝑎𝑛

2)​ verify that  indeed equals . 𝑎𝑛 % 𝑛 𝑎
Does that make  prime? 𝑛
 

Example. Let . Then, . 𝑛 = 6,  𝑎 =  3 𝑎𝑛%𝑛 = 36%6 = 729%6 = 3 = 𝑎 =>  36 ≡ 3 (𝑚𝑜𝑑𝑢𝑙𝑜 6)
 
But that does not make  a prime number! This is because we are assuming that the converse 6
of the FLT is true. Since we found a counterexample, the converse is not true. The theorem only 

says that if  is prime, then . Thus, we need to know that a number  is prime 𝑛 𝑎𝑛 ≡ 𝑎 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛) 𝑛
for the FLT to hold for it. 
 
But we know that a conditional statement is equivalent to its contrapositive. The contrapositive 

of the FLT’s conditional statement is: If , then  is not prime. 𝑎𝑛≢𝑎 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛) 𝑛
 
Thus, our Fermat’s test tells us that for a given  and a random integer ,  𝑛 𝑎;  1 < 𝑎 < 𝑛

, then we know for sure that  is not prime. Otherwise (i.e. if 𝑎𝑛≢𝑎 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛) 𝑛 𝑎𝑛 ≡ 𝑎 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛)
), then  may be prime.  𝑛
We have a test that has no false negatives, but it may have false positives (it may wrongly 
identify a number as a prime number, but it will never wrongly identify a composite number).  
 
So, how does that test help determine if a given number  is prime? And that too in  𝑛 Θ(log 𝑛)
steps? 
 
The answer to the first question refers to a class of algorithms we call “Probabilistic Algorithms”. 

Consider a large . Consider a random integer . How likely is  𝑛 𝑎;  1 < 𝑎 < 𝑛 𝑎𝑛 ≡ 𝑎 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛)
when  is composite? For that composite , how likely is it that for another , 𝑛 𝑛 𝑎;  1 < 𝑎 < 𝑛

? We’ll need to go into number theory, but it turns out that there aren’t many 𝑎𝑛 ≡ 𝑎 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛)

such  for which  for a composite . Thus for a composite  with a few, 𝑎'𝑠 𝑎𝑛 ≡ 𝑎 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛) 𝑛 𝑛

fixed number (say 5) of tries for different , the likelihood of  is not very high. 𝑎'𝑠 𝑎𝑛 ≡ 𝑎 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛)
With every “passing test” with a different , our confidence that  is indeed a prime number 𝑎 𝑛
increases. Of course, we can’t be sure that it is prime just because all the tests we did passed. 
This is why one should treat a number adjudged prime by such a test a “probable prime”.  
 
Answer to the second question follows from the efficiency of the fast_expt function. But there 
is a subtlety that we need to be aware of. What we are looking for is a function that raises an 
integer (base) to the power of another integer (exp) and returns the remainder after dividing the 
result of exponentiation by another number (divisor). We also want to limit the number of 

steps this function takes to . One way to do that is to actually raise  and then Θ(log 𝑛) (𝑏𝑎𝑠𝑒)𝑒𝑥𝑝

do the remainder operation. Is there an alternative? 

 



 
Consider integers, . We can apply the division algorithm: 𝑎

1
,  𝑎

2
,  𝑛 >  0

 𝑎
1

= 𝑛𝑞
1

+ 𝑟
1
 −−−−−−−−−−−  (1. 2. 6. 1)

 𝑎
2

= 𝑛𝑞
2

+ 𝑟
2
 −−−−−−−−−−−  (1. 2. 6. 2)

 ∴ 𝑎
1
𝑎

2
= 𝑛(𝑛𝑞

1
𝑞

2
+ 𝑞

1
𝑟

2
+ 𝑞

2
𝑟

1
) + 𝑟

1
𝑟

2
−−−−−−−−−−−  (1. 2. 6. 3)

 
Since ,  and we get 𝑛|𝑛(𝑛𝑞

1
𝑞

2
+ 𝑞

1
𝑟

2
+ 𝑞

2
𝑟

1
) (𝑛(𝑛𝑞

1
𝑞

2
+ 𝑞

1
𝑟

2
+ 𝑞

2
𝑟

1
)) % 𝑛 =  0

 (𝑎
1
𝑎

2
) % 𝑛 = (𝑟

1
𝑟

2
) % 𝑛 −−−−−−−−−−  (1. 2. 6. 4)

 

Let  and  (the remainders equal). 𝑎
1

= 𝑎
2

= 𝑏𝑒 𝑟
1

= 𝑟
2

= 𝑟

Then, (1.2.6.4) simplifies to . (1.2.6.4) is the reason we can 𝑏2𝑒 % 𝑛 =  𝑟2% 𝑛 =  (𝑏𝑒 % 𝑛)2 % 𝑛

verify if  without having to first raise  to the  power. 𝑎𝑛 ≡ 𝑎 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛) 𝑎 𝑛𝑡ℎ

 
We can now convert this idea into code. Let’s call this function expmod: 
 

// returns  (𝑏𝑎𝑠𝑒)𝑒𝑥𝑝 % 𝑑𝑖𝑣𝑖𝑠𝑜𝑟
function expmod(base, exp, divisor) { 
  return exp === 0 
      ? 1 
      : is_even(exp) 
      ? square(expmod(base, exp / 2, divisor)) % divisor 
      : ((b % divisor) * expmod(base, exp - 1, divisor)) % divisor; 
} 
 
Since the number of steps reduce by half when exp is even, we need the number of steps 
logarithmic in . 𝑛
 
Now that we have this function, we can test a given number for primeness: 
function fermat_test(n) { 
    function try_it(a) { 
        return expmod(a, n, n) === a; 
    } 
    return try_it(1 + math_floor(math_random() * (n - 1))); 
} 
 
If we want to try it a few times and return true only if all our attempts pass the test, we can do 
the following: 
 
function is_probable_prime(n, times) { 
    return times === 0 

 



         ? true 
         : fermat_test(n) 
         ? is_probable_prime(n, times - 1) 
         : false; 
} 
 
It seems that there are some (fortunately pretty rare) numbers, called the Carmichael numbers, 
that defy the determination of primeness by Fermat’s test. These numbers  are not prime, but 𝑛
Fermat’s test passes on them for every . However, there are some variations on Fermat’s 𝑎 < 𝑛
test that can not be fooled. See exercises on this section for details. 
 
In contrast to the Fermat test, one can prove that, for any n, the condition does not hold for most 

of the integers a<n unless n is prime. Thus, if n passes the test for some random choice of  

a, the chances are better than even that n is prime. If n passes the test for two random choices 

of a, the chances are better than 3 out of 4 that n is prime. By running the test with more and 

more randomly chosen values of a we can make the probability of error as small as we like. 
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1.2.5 Euclid’s GCD Algorithm 
This is, according to Knuth, the oldest known non trivial algorithm to find the Greatest Common 
Divisor of two integers. It follows from the division algorithm which is stated as: 

For any two integers, , there exist two other integers  such that  𝑎,  𝑏,  𝑏 ≠ 0 𝑞,  𝑟
, where . 𝑎 = 𝑏𝑞 + 𝑟 0 ≤ 𝑟 < 𝑏

 
Now, let’s consider a number  that divides both , then  and  where 𝑔 𝑎,  𝑏 𝑎 = 𝑘

1
𝑔 𝑏 = 𝑘

2
𝑔

. Then, it follows from the division algorithm that  which means that 𝑘
1
,  𝑘

2
∈ ℕ 𝑘

1
𝑔 = 𝑘

2
𝑔𝑞 + 𝑟

 which means  (that is  divides ). Thus, if  is a common divisor of , it 𝑟 = (𝑘
1

− 𝑘
2
𝑞)𝑔 𝑔|𝑟 𝑔 𝑟 𝑔 𝑎,  𝑏

is a divisor also of . Of course, there could be many such common divisors. The greatest of all 𝑟
such common divisors of  is called the . Thus, . 𝑎, 𝑏,  𝑟 𝐺𝐶𝐷(𝑎,  𝑏) 𝐺𝐶𝐷(𝑎,  𝑏) = 𝐺𝐶𝐷(𝑏,  𝑟)
 
If we arrange such that , then  will result in calculating GCD of two 𝑎 ≥ 𝑏 𝐺𝐶𝐷(𝑎, 𝑏) = 𝐺𝐶𝐷(𝑏,  𝑟)
numbers  that are smaller than . This process can repeat and since  is at least one less 𝑏,  𝑟 𝑎,  𝑏 𝑟
than  every time, the remainder gets smaller. The iterative process can only end when  𝑏 𝑟 = 0
because for the next iteration, when , the division algorithm can not apply. Since every 𝑏 = 0
number  divides both  and , it follows that .  𝑎 > 0 𝑎 0 𝐺𝐶𝐷(𝑎,  0) = 𝑎
 
It is easy to express Euclid's Algorithm as a function: 
 
function gcd(a, b) { 

 



    return b === 0 ? a : gcd(b, a % b); 
} 
 
Lamé's Theorem: If Euclid's Algorithm requires  steps to compute the GCD of some pair, then 𝑘

the smaller number in the pair must be greater than or equal to the  Fibonacci number. 𝑘𝑡ℎ

 
Proof. 
 
TODO. 

Exercise 1.20 
The process that a function generates is of course dependent on the rules used by the 
interpreter. As an example, consider the iterative gcd function given above. Suppose we were 
to interpret this function using normal-order evaluation, as discussed in section 1.1.5. (The 
normal-order-evaluation rule for conditional expressions is described in exercise 1.5.)  
 
Using the substitution method (for normal order), illustrate the process generated in evaluating 
gcd(206, 40) and indicate the remainder operations that are actually performed. How 
many remainder operations are actually performed in the normal-order evaluation of 
gcd(206, 40)? In the applicative-order evaluation? 
 
Solution. 
In normal-order evaluation, the interpreter, while using the substitution model, does not evaluate 
the function arguments before applying it to them; it simply replaces them verbatim until it is time 
to evaluate them. Here is the gcd function: 
function gcd(a, b) { 
    return b === 0  
         ? a  
         : gcd(b, a % b); 
} 
Here is how a normal-order interpreter might apply gcd to 206 and 40. # denotes the number 
of times the remainder operation is called in the current function application (the process is 
iterative): 
gcd(206, 40) 
 40 === 0 is false (#: 0) 
 - gcd(40, 206 % 40)  
    6 === 0 is false (#: 1) 
    - gcd(206 % 40, 40 % (206 % 40)) 
       4 === 0 is false (#: 2) 
       - gcd(40 % (206 % 40), (206 % 40) % (40 % (206 % 40))) 
          2 === 0 is false (#: 4) 
          - gcd((206 % 40) % (40 % (206 % 40)), (40 % (206 % 40))% 
((206 % 40) % (40 % (206 % 40))) 

 

https://sourceacademy.org/sicpjs/1.2.5#ex-1.20
https://sourceacademy.org/sicpjs/1.1.5
https://sourceacademy.org/sicpjs/1.1.6#ex-1.5


             0 === 0 is true  
             evaluate (206 % 40) % (40 % (206 % 40)) (#: 7 + 4 = 11) 
             // => 2 
 
The remainder operation is called a total of 11 + 4 + 2 + 1 = 18 times. 
 
An applicative-order interpreter evaluates the arguments and then applies the functions to them: 
gcd(206, 40) 
 40 === 0 is false (#: 0) 
 - gcd(40, (206 % 40) = 6) (#: 1)  
    6 === 0 is false 
    - gcd(6, (40 % 6) = 4) (#: 1) 
       4 === 0 is false  
       - gcd(4, (6 % 4) = 2) (#: 1) 
          2 === 0 is false 
          - gcd(2, (4 % 2) = 0) (#: 1) 
          // => 2 
The remainder operation is called a total of 1 + 1 + 1 + 1 = 4 times. 
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Exercise 1.19 
There is a clever algorithm for computing the Fibonacci numbers in a logarithmic number 

of steps. Recall the transformation of the state variables  in the fib_iter process of 𝑎,  𝑏
section 1.2.2: , and .  𝑎 ← 𝑎 + 𝑏 𝑏 ← 𝑎
 

Call this transformation , and observe that applying  over and over again  times, starting 𝑇 𝑇 𝑛
with  and , produces the pair  and .  1 0 𝐹𝑖𝑏(𝑛 + 1) 𝐹𝑖𝑏(𝑛)
 

In other words, the Fibonacci numbers are produced by applying , the  power of 𝑇𝑛 𝑛𝑡ℎ

the transformation , starting with the pair .  𝑇 (1,  0)
 

Now consider  to be the special case of  in a family of transformations 𝑇 𝑝 = 0,  𝑞 = 1 𝑇
𝑝𝑞

, where  transforms the pair , according to  and 𝑇
𝑝𝑞

(𝑎,  𝑏) 𝑎 ← 𝑏𝑞 + 𝑎𝑞 + 𝑎𝑝

. 𝑏 ← 𝑎𝑞 + 𝑏𝑝
 

 

https://sourceacademy.org/sicpjs/1.2.4#ex-1.19
https://sourceacademy.org/sicpjs/1.2.2


Show that if we apply such transformation, , twice, the effect is the same as using a single 𝑇
𝑝𝑞

transformation  of the same form where  are computed in terms of .  𝑇
𝑝′𝑞′

𝑝′, 𝑞′ 𝑝, 𝑞
 

This gives us an explicit way to square these transformations, and thus we can compute  𝑇𝑛

(logarithmically) using successive squaring, as in the fast_expt function. 
 
Put all this together to complete the following function, which runs in a logarithmic number of 
steps. (This exercise was suggested by Joe Stoy, based on an example in Kaldewaij 1990.) 
 
function fib(n) { 
    return fib_iter(1, 0, 0, 1, n); 
} 
function fib_iter(a, b, p, q, count) { 
    return count === 0 
           ? b 
           : is_even(count) 
           ? fib_iter(a, 
                      b, 

                     ⟨⟨??⟩⟩,           // compute p'​
                     ⟨⟨??⟩⟩,           // compute q'​
                     count / 2) ​
              : fib_iter(b * q + a * q + a * p,​
                      b * p + a * q,​
                      p,​
                      q,​
                      count - 1); 

} 

Solution. 
 
This was challenging in a rather different manner. I took a lot of time to solve this one. A great 
difficulty was conceptual.  
 
How does one even begin to think of something like this?  
 
Consider a step-by-step evolution of the implementation of : Given an integer , find 𝐹𝑖𝑏(𝑛) 𝑛 ≥ 0

the  Fibonacci number: 𝑛𝑡ℎ

1)​ A rudimentary recursive formulation comes to mind almost immediately: 
 with an appropriate base case. Time complexity: 𝐹𝑖𝑏(𝑛) = 𝐹𝑖𝑏(𝑛 − 1) + 𝐹𝑖𝑏(𝑛 − 2)

 and space complexity: . 𝑂(ϕ𝑛) 𝑂(1)

 



2)​ That implementation is a straightforward translation of the function definition into a 
working program in any programming language that supports recursion. Application of 
this function to an integer argument  causes recursive applications of the same 𝑛 > 1
function to smaller arguments and as we saw in tree recursion above, without 
remembering the results of computations, a lot of redundancy ensues. We calculate 

 many times without realizing it. If we think of  or  as one 𝐹𝑖𝑏(𝑚);  𝑚 < 𝑛 𝐹𝑖𝑏(0) 𝐹𝑖𝑏(1)
atomic step (because only when the argument is either 0 or 1 does the base case 
occur), then we need to find out how many times we end up calling the function  with 𝐹𝑖𝑏
argument 0 or 1. As it turns out, this number is exponential in , the golden ratio whose ϕ
value is about 1.618. If  takes  steps, then  takes  steps! ​𝐹𝑖𝑏(𝑛) 𝑘 𝐹𝑖𝑏(𝑛 + 1) 1. 618𝑘
​
So, we think of memoization, that is, remembering the previous results. This cuts the 
number of steps because we never recalculate the result that we have (previously) 
calculated and stored. Clearly, we need some memory to store the results so that we can 
recall and reuse them over and over. We trade space for the number of steps required to 
complete the task. Time complexity =  since we need to calculate every Fibonacci 𝑂(𝑛)

number (less than the ) once. Space complexity = . 𝑛𝑡ℎ 𝑂(𝑛)
3)​ A variant that utilizes the transformation this problem refers to in that it uses two more 

arguments, , and applies the transformation   times to get 𝑎,  𝑏 [𝑎 ← 𝑎 + 𝑏,  𝑏 ← 𝑎] 𝑛 𝐹𝑖𝑏(𝑛)
.  This is a beautiful transformation and since the tail calls can be optimized, stack space 

can be reused. Since each transformation finds a new Fibonacci number in , the  𝑏 𝑛𝑡ℎ

Fibonacci number is found in applying the transformation  times. Time complexity: . 𝑛 𝑂(𝑛)
Space complexity: . ​𝑂(1)
​
What makes this implementation (function fib(a, b, n)) beautiful? Perhaps the 
mysteriousness. There is a mystery involved in thinking of providing additional 
arguments. It is not immediately clear if such an implementation can be arrived at just by 
thinking. Perhaps intuition is needed. If we are told that someone arrived at this 
implementation as their first attempt after looking at the recursive Fib function definition 
(by cases) what would have gone in their mind? Perhaps a lot of guesswork was 
involved (like George Polya would have said). 

 
Is this the best? As a student of computer science, this question constantly haunts us.  
 
How does one now suspect that a better algorithm exists? From our understanding of orders of 
growth and functions governing commonly found natural processes, we know that the  log
function grows much less rapidly than the identity function. But that doesn’t mean that this 
problem can be solved in the number of steps that is logarithmic in .  𝑛
 
There is one observation that gives one some hint that perhaps an  algorithm for 𝑂(log 𝑛) 𝐹𝑖𝑏(𝑛)
exists.  
 

 



See Exercise 1.13 where we proved that . Since we learned that “raising a 𝐹𝑖𝑏(𝑛) = 𝑛𝑖𝑛𝑡(ϕ𝑛)
real number to an integral power” is a problem that can be solved in  steps (Exercise 𝑂(log 𝑛)
1.16 and constant space, because tail calls can be optimized), it follows that, at least in math, 
finding  is as difficult as raising  to , for which a logarithmic algorithm (with constant 𝐹𝑖𝑏(𝑛) ϕ 𝑛
space) is known to exist. 
 
But this problem (conceived by Joe Stoy, a professor of Computer Science, after referring to a 
book, Programming: The Derivation of Algorithms, by Anne Kaldewaij) takes us on a higher 
level of abstraction. How does one think of the transformation   to be a [𝑎 ← 𝑎 + 𝑏,  𝑏 ← 𝑎]
special case of a more general transformation    with  𝑇:  [𝑎 ← 𝑎𝑞 + 𝑏𝑞 + 𝑎𝑝,  𝑏 ← 𝑎𝑞 + 𝑏𝑝]

? Is such thinking rooted in the training of mathematicians in “generalizing [𝑝 = 0,  𝑞 = 1]
results”? Perhaps it is so. 
 
After quite some contemplation, I was able to use the transformation  twice in succession on 𝑇
the two variables . I don’t remember how this thought came into my mind, but somehow I 𝑎,  𝑏

thought that applying  twice is same as applying  once and some scribbling with paper and 𝑇 𝑇2

pencil helped. What follows is a fair version of a lot of rough scratchwork: 
 
 

Inputs of T 
[(  are constant] 𝑝,  𝑞)

Outputs of T 

 𝑎
 𝑏

 𝑎 ← (𝑎 + 𝑏)𝑞 +  𝑎𝑝
 𝑏 ← 𝑎𝑞 +  𝑏𝑝

 (𝑎 + 𝑏)𝑞 +  𝑎𝑝
 𝑎𝑞 +  𝑏𝑝

 𝑎 ← ((𝑎 + 𝑏)𝑞 +  𝑎𝑝 + 𝑎𝑞 + 𝑏𝑝)𝑞 + ((𝑎 + 𝑏)𝑞 +  𝑎𝑝)𝑝
 𝑏 ← ((𝑎 + 𝑏)𝑞 +  𝑎𝑝)𝑞 + (𝑎𝑞 + 𝑏𝑝)𝑝

 
On simplification, 

 𝑎 ← 𝑎(2𝑞2 + 2𝑝𝑞 + 𝑝2) + 𝑏(𝑞2 + 2𝑝𝑞)
 𝑏 ← 𝑎(𝑞2 + 2𝑝𝑞) + 𝑏(𝑞2 + 𝑝2)

 

Now, if  and , then the above is analogous 𝑝′ = 𝑝2 + 𝑞2 𝑞′ = 𝑞2 + 2𝑝𝑞
to: 

 𝑎 ← 𝑎(𝑝′ + 𝑞′) + 𝑏𝑞′
 𝑏 ← 𝑎𝑞′ + 𝑏𝑝′

 
We call this transformation  since its form is the same as that of . 𝑇

𝑝′𝑞′
𝑇

𝑝𝑞

 

 



Thus, the effect of applying  twice is equivalent to a single application of . This also 𝑇
𝑝𝑞

𝑇
𝑝′𝑞′

means that applying  times  is equivalent to applying  times . 𝑛 𝑇
𝑝𝑞

𝑛
2 𝑇

𝑝′𝑞′

So, the idea seems to emerge: We apply  to cut the number of steps in half (when  is 𝑇
𝑝′𝑞′

𝑛

even) and  to reduce it by 1 (when  is odd). This results in a logarithmic time algorithm! 𝑇
𝑝𝑞

𝑛
 
The code now becomes: 

                     square(p) + square(q),      // compute p'​
                     square(q) + double(p * q),  // compute q' 

 
function fib_log(n) { 
  function fib_iter(a, b, p, q, count) { 
      return count === 0 
           ? b 
           : is_even(count) 
           ? fib_iter(a, 
                      b, 
                     square(p) + square(q),      // compute p' 
                     square(q) + double(p * q),  // compute q' 
                     count / 2)  
              : fib_iter(b * q + a * q + a * p, 
                      b * p + a * q, 
                      p, 
                      q, 
                      count - 1); 
  } 
  return fib_iter(1, 0, 0, 1, n); 
 
} 
fib_log(100); // => 354224848179261900000 
 
However, there is one more observation: The smallest value of n for which fib_log and fib1 
differ on my machine is 80. This is mostly due to the integer overflow. I should implement a 
BigInteger solution in Java and see exactly what the 80th Fibonacci number is. TODO. 
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1.2.4 Fast Exponentiation 
A straightforward recursive implementation for the (recursive) process that raises a number b 
to an integral power n follows: 
 
function expt(b, n) { 
    return n === 0 
           ? 1 
           : b * expt(b, n - 1); 
} 
 
An equivalent  iterative process can be quickly realized. But since the tail call can be optimized, 
it saves space: 
 
function expt(b, n) { 
    function expt_iter(b, counter, product) { 
       return counter === 0 
           ? product 
           : expt_iter(b, counter - 1, b * product); 
    } 
    return expt_iter(b, n, 1); 
} 
 
A faster algorithm that uses a recursive process is also pretty well-known. The book provides 
the following version: 
function square(x) { 
    return x * x; 
} 
 
function is_even(n) { 
    return n % 2 === 0; 
} 
 
// faster exponentiation — uses recursive process (deferred ops) 
function fast_expt(b, n) { 
    return n === 0 
           ? 1 
           : is_even(n) 
           ? square(fast_expt(b, n / 2)) 
           : b * fast_expt(b, n - 1); 
} 
 
I have a slightly improved version (that uses less memory) of this: 

 



// improved exponentiation v2 — uses recursive process (deferred ops) 
function fast_expt2(b, n) { 
    return n === 0 
           ? 1 
           : is_even(n) 
           ? square(fast_expt(b, n / 2)) 
           : b * square(fast_expt(b, (n - 1) / 2); 
} 
 
Whereas the expt function is O(n), fast_expt is O(log n) in terms of number of steps. 
 
The next exercise (1.16) is a continuation of the above discussion. In general, SICP (this 
chapter in particular) is teaching us to think in terms of the computational processes functions 
generate. Remember, we have no other device, but functions, to implement those processes. 
The two computational processes of interest are: 

1)​ Recursive 
2)​ Iterative 

Once we conceive and implement a recursive process by recursive functions, we start thinking 
of how to implement its iterative equivalent. As of now, I guess that the type of functions 
dictates whether we can convert a recursive process into its iterative equivalent. Perhaps this 
goes into the theory of recursive functions. 

Exercise 1.16 
Design a function that evolves an iterative exponentiation process that uses successive 
squaring and uses a logarithmic number of steps, as does fast_expt. 

(Hint: Using the observation that , keep, along with the exponent n and the base (𝑏𝑛/2)2 = (𝑏2)𝑛/2

b, an additional state variable a, and define the state transformation in such a way that the 

product  is unchanged from state to state. At the beginning of the process a is taken to be 1, 𝑎𝑏𝑛

and the answer is given by the value of a at the end of the process. In general, the technique 
of defining an invariant quantity that remains unchanged from state to state is a powerful 
way to think about the design of iterative algorithms.) 
 
Solution. 
This is surprisingly difficult. At least for me. I have spent quite some time on this one. I guess I 

understand using , but I don’t yet get how to actually do it and I don’t want to (𝑏𝑛/2)2 = (𝑏2)𝑛/2

see their solution. But I do think this is related to the idea of function composition. 
 
I want to exploit the idea of the accumulator (the argument acc) that holds the result of an 
“ongoing calculation”, but the boundary conditions are tricky. I tried an experiment shown in the 
table below with an exponent that is a power of 2: 
 

base exponent acc notes 
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 𝑏  8 1 It seems clear that acc is returned when exponent 
becomes 0. What if we have: ? 𝑎𝑐𝑐 =  𝑎𝑐𝑐 · 𝑏𝑜𝑙𝑑𝑒𝑥𝑝/𝑛𝑒𝑤𝑒𝑥𝑝

 𝑏  4  1 · 𝑏8/4 = 𝑏2  

 𝑏  2  𝑏2 · 𝑏4/2 = 𝑏4  

 𝑏  1  𝑏4 · 𝑏2/1 = 𝑏6 Fails here. We want this to be . 𝑏8

 

We want to retain the  running time and yet have an iterative process. How should Θ(log  𝑛)
acc be manipulated? 

-​ Its initial value should be 1 because that takes care of the case that exponent is 0. 
-​ When exponent is even, we want the function call square(fast_expt(b, n / 

2)) (with the introduction of an additional argument like acc) to result in a call to 
something like fast_expt(b, n/2, square(...)). This is because our halving of 

exponent takes us toward  number of steps, and the third argument, acc, Θ(log  𝑛)
helps preserve a partial result. What should acc  be? If we simply did fast_expt(b, 

n/2, square(acc)), we can achieve  runtime complexity, but we can’t Θ(log  𝑛)
increase acc from its initial value of 1 (repeatedly squaring 1 results in 1). 

-​ Should we preserve the powers of the base and accumulator separately? In keeping 

with , every time the exponent is halved, we can square the base:​(𝑏𝑛/2)2 = (𝑏2)𝑛/2

function fast_expt(base, exponent, powers, acc) {​
  return exponent === 0​
       ? acc​
       : is_even(exponent)​
       ? fast_expt(base, exponent / 2, square(powers), acc * 
square(powers)​
       : fast_expt(base, (exponent - 1) / 2, square(powers), 
acc * base * square(powers);​
} 

-​ The above does not work. 
 
I need to revisit. TODO. 
 

Exercise 1.17 
The exponentiation algorithms in this section are based on performing exponentiation by means 
of repeated multiplication. In a similar way, one can perform integer multiplication by means of 
repeated addition. The following multiplication function (in which it is assumed that our 
language can only add, not multiply) is analogous to the expt function: 
 

 

https://sourceacademy.org/sicpjs/1.2.4#ex-1.17


function times(a, b) { 
  return b === 0 
       ? 0 
       : a + times(a, b - 1); 
} 
 
This algorithm takes a number of steps that is linear in b.  
 
Now suppose we include, together with addition, the functions double, which doubles an 
integer, and halve, which divides an (even) integer by 2. Using these, design a 
multiplication function analogous to fast_expt that uses a logarithmic number of steps. 
 
Solution. 
 
Before we make progress on the solution, let’s follow a good convention that is used in 

arithmetic: In ,  is the multiplier (the first operator), and  is the 𝑐 =  𝑎 × 𝑏 𝑎 𝑏
multiplicand (the second operator). Although  (that is, they are the same 𝑎 × 𝑏 = 𝑏 × 𝑎
as far as the result is concerned), we should have a convention about what is what. In what 
follows, we say multiplier times multiplicand. 
 

The given function, times, is  and also it represents a recursive process since there are Θ(𝑛)
deferred operations (addition) after the recursive function call returns. We are asked to improve 

the running time to . Let’s tackle that requirement first.  Θ(log  𝑛)
 
function double(a) { 
  return a * 2; 
} 
 
function halve(a) { // performs int div; call on an even number 
  return a / 2;  
} 
 
function fast_times(b, a) { 
  return b === 0 
       ? 0 
       : is_even(b) 
       ? double(fast_times(halve(b), a)) 
       : a + double(fast_times(halve(b - 1), a)); 
} 
 
fast_times(99, 9); // => 891 
 

 



At every step, we halve the second argument. Therefore, the number of steps is . Θ(log  𝑛)
But this version is not tail-recursive, since there are outstanding operations after the previous 
call returns. 
 

Exercise 1.18 
Using the results of exercises 1.16 and 1.17, devise a function that generates an iterative 
process for multiplying two integers in terms of adding, doubling, and halving and uses a 
logarithmic number of steps. (See the footnote.) 
 
Solution. 
This remains a difficult problem as of now (04/19/2023 6.42 pm). I have spent a lot of time on 
this one. Is it the time to peek at the solution in the book? 
 
I am tempted to see. But no, I will hang on. 
 

The fast_times function above needs  steps. But it also needs  Θ(log  𝑛) Θ(log  𝑛)
space because there are deferred operations: function calls or arithmetic operations. I 
reproduce that function here: 
function fast_times(b, a) { 
 return b === 0 
       ? 0 
       : is_even(b) 
       ? double(fast_times(halve(b), a)) 
       : a + double(fast_times(halve(b - 1), a)); 
} 
// the initial call 
fast_times(99, 9); // => 891 
 
I clearly see (intuit) that there should be some accumulator that captures the result of in-flight 
calls. Here is an attempt: 
 
// b x a: b is the multiplier which we repeatedly halve 
function fast_times_iter_attempt_1(b, a, acc) { //acc=0 to begin with 
  return b === 0 
       ? acc 
       : is_even(b) 
       ? fast_times_iter_attempt_1(halve(b), a, acc + double(a)) 
       : fast_times_iter_attempt_1(halve(b - 1), a, acc + a + 
double(a)); 
} 
 
fast_times_iter_attempt_1(1, 4, 0); // => ? 
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Call tree: 
fast_times_iter_attempt_1(1, 4, 0) 
- fast_times_iter_attempt_1(0, 4, 12) // 0 + 4 + double(4) = 12 
 
// => 12 
 
This is clearly wrong. We are doing more than necessary. What is the invariant in this case? 
 

 2𝑛 × 𝑎 = 2𝑛
2 × 𝑎 +  𝑛 × 𝑎

 (2𝑛 + 1) × 𝑎 = 2𝑛
2 × 𝑎 +  ( 2𝑛

2 + 1) × 𝑎

 
How to weave this in terms of acc? How about 

 2𝑛 × 𝑎 + 𝑎𝑐𝑐 = 2𝑛
2 × 𝑎 +  𝑛 × 𝑎 + 𝑎𝑐𝑐

 (2𝑛 + 1) × 𝑎 +  𝑎𝑐𝑐 = 2𝑛
2 × 𝑎 +  ( 2𝑛

2 + 1) × 𝑎 +  𝑎𝑐𝑐

 
This is tricky. It’s also because we are trying to optimize too much. What if when the multiplier is 
odd, we just decrease it by 1 (so that on the next call the multiplier is even and we can halve it)? 
 
// b x a: b is the multiplier which we repeatedly halve 
function fast_times_iter_attempt_2(b, a, acc) { //acc=0 to begin with 
  return b === 0 
       ? acc 
       : is_even(b) 
       ? fast_times_iter_attempt_2(halve(b), a, acc + double(a)) 
       : fast_times_iter_attempt_2(b - 1, a, acc + a); 
} 
// fast_times_iter_attempt_2(4, 7, 0) // => 
 
I think time has come for me to consult Apoorv who has solved this problem (apparently he got 
really angry one day and he was able to use his energy to solve it). Update on 03 May 2023. 
TODO. 

28 March 2023 

1.2.3 Orders of Growth 

We say that the resources, , used by a computational process are  when, for some 𝑅(𝑛) Θ(𝑛)
positive constants  and some function , we have 𝑘

1
,  𝑘

2
,  𝑛

0
𝑓(𝑛)

 𝑘
1
𝑓(𝑛) ≤ 𝑅(𝑛) ≤ 𝑘

2
𝑓(𝑛) ∀𝑛 > 𝑛

0

 



Exercise 1.14 
Draw the tree illustrating the process generated by the count_change function of section 1.2.2 
in making change for 11 cents. What are the orders of growth of the space and number of steps 
used by this process as the amount to be changed increases? 
 
Solution. 
 
change(11) 
 - change_using(11, 1) <- [1] 
   - change_using(-39, 1) <- 0 
   - change_using(11, 2) <- [1] 
     - change_using(-14, 2) <- 0 
     - change_using(11, 3) <- [1] 
       - change_using(1, 3) <-1 [1] 
         - change_using(-9, 3) <- 0 
         - change_using(1, 4) <- [1] 
           - change_using(-4, 4) <- 0 
           - change_using(1, 5) <- [1] 
             - change_using(0, 5) <- 1 
             - change_using(1, 6) <- 0 
       - change_using(11, 4) 
         - change_using(6, 4)  
           - change_using(1, 4) <- [1] 
             - change_using(-4, 4) <- 0 
             - change_using(1, 5)  <- [1] 
               - change_using(0, 5) <- 1 
               - change_using(1, 6) <- 0 
           - change_using(6, 5) 
             - change_using(5, 5) 
               - change_using(4, 5) 
                 - change_using(3, 5) 
                 - change_using(4, 6) <- 0 
               - change_using(5, 6) <- 0 
             - change_using(6, 6) <- 0 
         - change_using(11, 5) 
                   
. . . 
Instead of completing this task by hand, I modified the code to count the number of calls to the 
function change_using made by the original call: change(11). That number is 55. For 
change(100), change_using is called 15499 times. It appears exponential. We’ve got to 
prove it though. An accurate analysis is challenging. 
 
The space requirements vary as the depth of the function call tree and the time requirements as 
the number of nodes in it. Let’s first take up the number of steps – that number relates to the 
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time requirements. Let T(a, 5) denote the number of steps required to change the amount a 
using the 5 coin denominations of our choice. The coins are arranged in order – from the 
numerically highest denomination, d1 through the lowest, d5. Let’s also define five more 
integers – m1 through m5 – such that:  

 𝑚1𝑑1 ≤ 𝑎 < (𝑚1 + 1)𝑑1
 𝑚2𝑑1 ≤ 𝑎 < (𝑚2 + 1)𝑑2
 𝑚3𝑑1 ≤ 𝑎 < (𝑚3 + 1)𝑑3
 𝑚4𝑑1 ≤ 𝑎 < (𝑚4 + 1)𝑑4
 𝑚5𝑑1 ≤ 𝑎 < (𝑚5 + 1)𝑑5

 
First call to change_using(a, 1) will result in  

1)​ one call to change_using(a-d1, 1), and 
2)​ one call to change_using(a, 2). 

 
How many additional function calls are made with the second argument equal to 1? Either m1+1 
calls or m1+2 calls: every subsequent call to change_using will reduce the amount by d1. 
This goes on m1+1 times if m1%d1 === 0, and m1+2 times otherwise. 
 
This is becoming rather too complicated.  

Exercise 1.15 
The sine of an angle (specified in radians) can be computed by making use of the following 
function:  

 
It can be incorporated in the following functions: 
function cube(x) { 
    return x * x * x; 
} 
function p(x) { 
    return 3 * x - 4 * cube(x); 
} 
function sine(angle) { 
    return ! (abs(angle) > 0.1) 
           ? angle 
           : p(sine(angle / 3)); 
} 

1.​ How many times is the function p applied when sine(12.15) is evaluated? 
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2.​ What is the order of growth in space and number of steps (as a function of ) used by 𝑎
the process generated by the sine function when sine(a) is evaluated? 

Solution. 
1) How many times is the function p applied when sine(12.15) is evaluated? 
 
These functions are defined in Source-1 in a very peculiar (or should we say functional) style!  
 
My first reaction was to define the sine function thus:  
function my_sine(angle) { 
    return abs(angle) <= 0.1 
         ? angle 
         : 3 * my_sine(angle / 3) - 4 * my_sine(angle / 3) * 
my_sine(angle / 3) * my_sine(angle / 3)); 
} 
This definition just came naturally to me.  
 
Here is another variant of the same: 
function my_sine2(angle) { 
    return abs(angle) <= 0.1 
         ? angle 
         : 3 * my_sine2(angle / 3) - 4 * cube(my_sine2(angle / 3)); 
} 
 
 
The definition of my_sine represents a recursive process. Clearly, there are deferred 
operations after the recursive calls return. As you can see, my definition does not require the 
function p at all!  
 
On the other hand, their definition uses the function composition. Consider the following 

functions along with the  function as defined by cases above: sin(𝑥)

 𝑝(𝑥) = 3𝑥 − 4𝑥3

 𝑐𝑢𝑏𝑒(𝑥) = 𝑥3

Therefore, 

 𝑝(sin(𝑥/3)) = 3 sin(𝑥/3) − 4 𝑐𝑢𝑏𝑒(sin(𝑥/3))
 

This gives the following redefinition of : sin(𝑥)

 



 
 
Is this simpler (or more elegant) than my_sine? And what about efficiency? 
 
The new definition of  translates rather simply to the following set of functions: sin(𝑥)
 
function cube(x) { 
  return x * x * x; 
} 
 
function p(x) { 
  return 3 * x - 4 * cube(x); 
} 
 
function sine(x) { 
  return abs(x) <= 0.1 
       ? x 
       : p(sine(x/3)); 
}  

 
The substitution model tells us what the function, sine(x), call tree looks like when x = 
12.15: 
sine(12.15) 
 - p(sine(4.05)) 
   - p(sine(1.35)) 
     - p(sine(0.45)) 
       - p(sine(0.15)) 
         - p(sine(0.05)) 
 
There are 5 calls to p in this case.  
 
There is another way to look at it. Each call to sine(x) results in one call to sine(x/3) 
unless x is too small, in which case it simply returns x.  Consider that one function application, 
sine(x), results in applying n times the function p: 

 𝑠𝑖𝑛𝑒(𝑥)
 -  𝑝(𝑠𝑖𝑛𝑒(𝑥/3))

  -  𝑝(𝑝(𝑠𝑖𝑛𝑒(𝑥/32)))

   -  (this is the nth application of p) 𝑝(𝑝(𝑝 ··· 𝑝(𝑠𝑖𝑛𝑒(𝑥/3𝑛)))

 



 

The last argument must return itself: . For this equality,   must be less 𝑠𝑖𝑛𝑒(𝑥/3𝑛) = 𝑥/3𝑛 𝑥/3𝑛

than or equal to 0.1. 
 

Thus,  𝑥

3𝑛 ≤ 0. 1 →  10𝑥 ≤ 3𝑛 → 3𝑛 ≥ 10𝑥

. → 𝑛 ≥ log
3
(10𝑥)

Thus, the number of times p is called for an argument x is roughly 2

 log
3
(10𝑥) = 𝑂(log

3
 𝑥) = 𝑂(log

2
𝑥)

2) What is the order of growth in space and number of steps (as a function of ) used by the 𝑎
process generated by the sine function when sine(a) is evaluated? 
Solution. 

The number of steps in the evaluation of  is equal to the number of times the function p sin(𝑎)
is called. This number, as shown above, is .  𝑂(log

2
𝑎) = 𝑘 · log

2
𝑎

As the function call tree shows, it is a recursive process of recursive function calls because 
there are deferred operations. After a previous recursive function call returns, there is still some 
work to do (application of function p) on the returned value before the current function call can 
return. Thus, every step will be in flight until the last function call application returns for a 

sufficiently small value of its argument. Therefore the space requirements are also .  𝑂(log
2
𝑎)

 
How about the my_sine implementation? 
As coded above (that is without any memoization or because of redundant computations), 

my_sine is rather inefficient: one  call results in 4 calls to . Although the sin(𝑎) sin(𝑎/3)
number of steps it takes is still , its constant factors are worse. This results in a slower 𝑂(log  𝑛)
execution. Memoization can of course speed up its execution (e.g. we can cache the results of a 
previous call in a local variable or we can employ a function like cube(x)). 
 
Is it possible to use in this case the accumulator trick (using additional arguments) like what we 
used in the case of the factorial function or the fibonacci function? It appears difficult.  
 

Are the two recursive functions  (as defined originally) and  somehow sin(𝑥) 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙(𝑥)
different? If yes, how? 
 

2 f and g are two different functions and when f = O(g), the meaning of the = sign is subtly different from 
its usual meaning. 
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A Note on Memoization or Tabulation 
To avoid redundant calculations, memoization (caching) of the computations helps. This 
assumes that the lookup is much faster than the recalculation. Thus, if a lookup can fetch in 
O(1) the value of fib(5) that we have already calculated, we save a lot of time and do not 
perform any redundant computations. In Source-1 so far though, we don’t know how to 
implement a table lookup. In an imperative language, we use a data structure called a hash 
table. 
 

Exercise 1.11 

A function  is defined by the rules 𝑓

 

Write a JavaScript function that computes f by means of a recursive process. Write a function 

that computes f by means of an iterative process. 
Solution. 
Quite a rapidly growing function! 
The recursive function that represents a recursive process:  
 
function f111_recursive(n) { 
    return n < 3 
         ? n  
         : f111_recursive(n - 1) + 2 * f111_recursive(n - 2) + 3 * 
f111_recursive(n - 3); 
} 
 

The recursive function that represents a iterative process:  
function f111(n) { 
    function f111_iter(a, b, c, ctr) { 
        return ctr === 2 
             ? c 
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             : ctr === 1 
             ? b 
             : ctr === 0 
             ? a 
             : f111_iter(b, c, c + 2 * b + 3 * a, ctr - 1); 
    } 
    return f111_iter(0, 1, 2, n); 
} 
 

Exercice 1.12 
The following pattern of numbers is called Pascal's triangle. 

 
The numbers at the edge of the triangle are all 1, and each number inside the triangle is the 
sum of the two numbers above it. Write a function that computes elements of Pascal's triangle 
by means of a recursive process. 
Solution. 
Knowing a bit of algebra helps. The rows of Pascal’s triangle represent the coefficients of the 

terms in the expansion of the binomial . (𝑥 + 𝑦)𝑛,  𝑛 ≥ 0
 
// n is the row (>= 0), and c column (0 <= c <= n) 
function pascal(n, c) { 
    return n === 0 || c === 0 || c === n 
         ? 1 
         : pascal(n - 1, c - 1) + pascal(n - 1, c); 
} 
 
Can this be realized using an iterative process? (Of course, there are other ways of doing this 

iteratively because . And we can easily compute 𝑝𝑎𝑠𝑐𝑎𝑙(𝑛, 𝑐) = 𝑃(𝑛,  𝑐) = 𝑛!
(𝑛−𝑐)!
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the ratio of two factorials in O(n) time (and constant space), but we want to use this given 
recursive function that represents an iterative process.) 
 
Perhaps memoization will help? 
 
TODO. 

Exercise 1.13 

Prove that Fib(n) is the closest integer ( ) to  where . 𝑛𝑖𝑛𝑡 φ𝑛/ 5 φ = 1+ 5
2

Hint: Use mathematical induction and the definition of the Fibonacci numbers to prove that 

. 𝐹𝑖𝑏(𝑛) = φ𝑛−ψ𝑛

5
,  𝑤ℎ𝑒𝑟𝑒 ψ = 1− 5

2
Solution. 
 
Proof-1. We use mathematical induction as suggested. 
 

Base case: Consider . . This is true. 𝑛 = 0 𝐹𝑖𝑏(0) = φ𝑛−ψ𝑛

5
= 1−1

5
= 0

Inductive Hypothesis: We assume Fib(r) to be true for some integer r and prove Fib(r+1). 

 ∴ 𝐹𝑖𝑏(𝑟) = φ𝑟−ψ𝑟

5
−−−−−−−−−−  (1. 13. 1)

Similarly,  

 𝐹𝑖𝑏(𝑟 − 1) = φ𝑟−1−ψ𝑟−1

5
−−−−−−  (1. 13. 2)

Then, adding the LHS’s of 1.13.1 and 1.13.2, and applying the definition of Fibonacci numbers, 
we get Fib(r+1). 
 

 ∴ 𝐹𝑖𝑏(𝑟 + 1) = 𝐹𝑖𝑏(𝑟) + 𝐹𝑖𝑏(𝑟 − 1) = φ𝑟−ψ𝑟

5
+ φ𝑟−1−ψ𝑟−1

5

 = 1
5

((φ𝑟 + φ𝑟−1) − (ψ𝑟 + ψ𝑟−1)) = 1
5

(φ𝑟+1( 1
φ + 1

φ2 ) − ψ𝑟+1( 1
ψ + 1

ψ2 )

   = 1
5

(φ𝑟+1 − ψ𝑟+1)

(Since  and  are peculiar numbers and satisfy the equations  and , φ ψ φ2 = φ + 1 ψ2 = ψ + 1

both  and  equal 1). 
1
φ + 1

φ2
1
ψ + 1

ψ2

∎ 
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So, we proved . But that does not mean that . 𝐹𝑖𝑏(𝑛) = φ𝑛−ψ𝑛

5
𝐹𝑖𝑏(𝑛) = 𝑛𝑖𝑛𝑡( φ𝑛

5
)

(The  function is the function that returns the integer nearest to .) 𝑛𝑖𝑛𝑡(𝑥),  𝑥 ∈ ℝ 𝑥
 
We can say from above that  

 𝐹𝑖𝑏(𝑛) = 𝑛𝑖𝑛𝑡( φ𝑛

5
) ↔ 𝑛𝑖𝑛𝑡( φ𝑛

5
) = φ𝑛−ψ𝑛

5
 

Thus, we want to prove that  is the integer nearest to . Let’s observe how  (and 
φ𝑛−ψ𝑛

5
φ𝑛

5
ψ𝑛

5

) changes with : ψ ≈− 0. 618034 𝑛
 

n 0 1 2 3 4 5 6 

 
ψ𝑛

5

0.4472 -0.2764 0.1708 -0.1055 0.065 -0.0404 0.025 

 

Since  is the exact value of Fib(n) (which is an integer by definition) and that  
φ𝑛−ψ𝑛

5
| ψ𝑛

5
|

rapidly approaches 0, it seems that  and . 
φ𝑛−ψ𝑛

5
≈ φ𝑛

5
𝐹𝑖𝑏(𝑛) = 𝑛𝑖𝑛𝑡( φ𝑛

5
)

(The proof is rather incomplete.) 
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1.2.2 Tree Recursion 
Another pattern of recursion is when a call to a function with an argument (input size) results in 
multiple calls to the same function albeit all with reduced argument values. This is akin to saying 
that we break a problem into multiple problems of smaller arguments. This makes linear 
recursion a special case of tree recursion. In linear recursion, for instance, a call to a function f 
with argument n, f(n), may result in a recursive call f(n-1), which in turn results in another 
call, f(n-2), and so on, until [as we say] the recursion bottoms out when the function call 
simply returns (something). In such linear recursion, a function call f(n) results roughly into n 
calls to f and that’s “linear” recursion. 
 
Now consider that [a call to] f(n) results in two calls to f(n-1) unless n is 0 in which case it 
simply returns 1. The shape of the function calls is similar to a tree (upside down, with root at 

 



the top and leaves at the bottom). This is why it is called tree recursion. This function models 

any process that terminates in  steps. 2𝑛

 
A similar construct is the familiar Fibonacci sequence. It is defined as the sequence of natural 
numbers generated by the following function upon applying the argument that denotes the 
ordinality: 

 
 
The Fibonacci sequence is: . 0,  1,  1,  2,  3,  5,  8, ···
A straightforward implementation of the above function (named, say, fib) accepts an integer.  
 
function fib(n) { 
    return n === 0 
           ? 0 
           : n === 1 
           ? 1 
           : fib(n - 1) + fib(n - 2); 
} 
 
 
An invocation like fib(5) results in the following calls: 

 
 

 



That resembles a tree. 
 
A function call like fib(5) results in a lot of redundant computation. We can work on optimizing 
the work, but the canonical function clearly illustrates a common pattern. 
 
How many leaf nodes (each corresponding to either fib(1) or fib(0)) are there in a tree of 
fib(5)? Note that 1 and 0 are the only two arguments when the application of the function 
fib returns a value immediately: fib(1) = 1, fib(0) = 0. 
 
This is a great question. I had never realized this before. We can use mathematical induction to 
attempt to find this. But before that, we can work on finding a pattern. 
 

n Fib(n) Leaf(n) = Number of leaf 
nodes in the tree of fib(n) 

Nonleaf(n) = Number of non leaf nodes 
in the tree of fib(n) 

0 0 1 (counting the root as leaf) 0 (counting the root as leaf) 

1 1 1 (counting the root as leaf) 0 (counting the root as leaf) 

2 1 2 (1 fib(0), 1 fib(1)) 1 

3 2 3 2 

4 3 5 4 

5 5 8 7 

6 8 13 12 

…  …  

n Fib(n) Leaf(n-1) + Leaf(n-2) 
?? 

Leaf(n) - 1 or 
NonLeaf(n-1) + NonLeaf(n-2) + 1  

?? 
 
Is this the pattern, giving the following (probable) definition of the function, Leaf(n)? 

 

 



 

This is right because for any integer argument , in the function call tree of fib(n), we 𝑛 ≥ 2
have a left subtree rooted at fib(n-1), and the right subtree rooted at fib(n-2). Clearly, the 
number of leaf nodes in the left subtree is  and the number of leaf nodes in the right 𝐿𝑒𝑎𝑓(𝑛 − 1)
subtree is . Any path from the root of the tree of  to a leaf passes 𝐿𝑒𝑎𝑓(𝑛 − 2) 𝐿𝑒𝑎𝑓(𝑛);  𝑛 ≥ 2
through either the node representing fib(n-1) or the node representing fib(n-2).  
 

And how do we relate the two mathematical functions: ? 𝐿𝑒𝑎𝑓,  𝐹𝑖𝑏
 
Let’s start with the obvious replacement: 

 and 𝐿𝑒𝑎𝑓(𝑛) = 1 = 𝐹𝑖𝑏(𝑛),  𝑤ℎ𝑒𝑛 𝑛 =  1
. 𝐿𝑒𝑎𝑓(𝑛) = 1 = 1 + 𝐹𝑖𝑏(𝑛),  𝑤ℎ𝑒𝑛 𝑛 =  0

 
 
If we observe the two sequences: 
Fib(n):  0, 1, 1, 2, 3, 5,  8, 13, 21, … 
Leaf(n): 1, 1, 2, 3, 5, 8, 13, 21, 34, …  
we can conjecture that Leaf(n) = Fib(n+1). 
And we can use mathematical induction to prove that. 
<TBD> 
 
This function (fib) is instructive as a prototypical tree recursion, but it is a terrible way to 
compute Fibonacci numbers because it does so much redundant computation. As the Leaf 
function shows above, the number of times fib(1) or fib(0) will be called on a call to 
fib(n) is exponential in n. As above, this number of Fib(n+1). A detailed analysis of this 

shows that Fibonacci numbers are intricately related to golden ratio,  and that ϕ ≈ 1. 618
 and this means an additive increase in n increases Fib(n) by a multiplicative factor 𝐹𝑖𝑏(𝑛) = ϕ𝑛

– such growth is tremendous! 
 
There are two fundamental aspects of this tree recursion (let’s consider the straightforward fib 
implementation above): 

 



1)​ Number of times the naive function gets called – this is the same as the total number of 
is clearly exponential in n. 

2)​ The memory requirements of the implementation – is this exponential in n? No. It is not. 
At any point in time, the biggest number of function calls that have not returned yet is 
proportional to the “depth of the Fibonacci tree”. The depth of the tree is logarithmic in n.  

 
Can the above implementation that describes a recursive process be morphed to describe an 
iterative process to find Fib(n) for a given n? 
 
Fortunately we can do that! 
 
function fib(n) { 

function fib_iter(a, b, c) { 
return c === 0 
     ? b 
     : fib_iter(a + b, a, c - 1); 

} 
return fib_iter(1, 0, n); 

} 
 
This trick results in the following calls for fib(5): 
– fib(5) 
  – fib_iter(1, 0, 5) 
   – fib_iter(1, 1, 4) 
     – fib_iter(2, 1, 3) 
       – fib_iter(3, 2, 2) 
        – fib_iter(5, 3, 1) 
          – fib_iter(8, 5, 0) 
 
This returns the value 5. And since there are no deferred operations, the space needed is 
O(1): A tail-recursive compiler implementation should3 reuse a stack frame. In other words, the 
call fib_iter(5, 3, 1) is identical to the call fib_iter(3, 2, 2). The compiler should 
ideally have no knowledge that one of these function calls resulted in the other function call (an 
evidence that tail-calls are optimized).  
 
We were lucky to find an implementation trick that converted a tree recursion into a linear 
recursion (iteration). Are we always going to be so lucky? 

1.2.2.1 The Coin-change Problem 

Consider that we have an infinite supply of coins of denomination ‘a’. We are given an amount 
‘n’. Will we always be able to change the amount using those coins? 
 

3 Here’s what the computer actually does with an executable generated by an optimizing C compiler 

 

https://stackoverflow.com/questions/75835003/is-there-a-gcc-flag-that-just-optimizes-the-tail-calls


One might say – perhaps influenced by the division algorithm we all learn in grade school – that 
if ‘a’ is a multiple of ‘n’, we can, not otherwise.  
 
That’s a fine answer, but we want to do it more slowly. We want to actually experience various 
cases rather obviously. We imagine running a “coin-change service” and a customer comes to 
our doorstep with an integer amount ‘n’ and asks for a change in coins of denomination ‘a’.  
 
Here is my first attempt: 
 
// returns 1 if n can be changed using coins of denomination a 
function f1(n, a) { 
    return n < a 
         ? 0 
         : n === a 
         ? 1 
         : f1(n - a, a); 
} 
 
The code seems straightforward. 
 
Apoorv found a bug in this implementation! It revolves around this question: How many 
ways are there to change 0 cents using the coins of denomination ‘a’? 
 
I argued that it is 0. But he insisted that it is 1. And he is right! Is this just an unimportant detail? 
No, boundary conditions are extremely important in computing. There is exactly one way of 
changing 0 cents using the coins of denomination ‘a’: You give 0 coins – . This is not 0 =  0 · 𝑎
true for any other integer amount that is less than ‘a’. 
On the other hand, if you have no coins of any denomination (e.g. you went bankrupt) then 
there is no way for you to change any amount (other than 0). 
 
function f1(n, a) { 
    return n === 0 
         ? 1 
         : n < a 
         ? 0 
         : f1(n-a, a); 
} 
 
This can be extended to doing the job with coins of two different denominations, ‘a’, and ‘b’: 
 
function f2(n, b, a) { 
    return n > b 
         ? f2(n - b, b, a) + f1(n, a) 
         : n === b 

 



         ? 1 + f1(n, a) 
         : n > a 
         ? f1(n - a, a) 
         : n === a 
         ? 1 
         : 0; 
} 
 
A generalization of the above is what we seek. We have a given number of denominations (e.g. 
half dollars, quarters, dimes, nickels, and pennies). How do we go about doing that? 
 
To hold the coins of the given denominations, in an imperative programming language, one 
would use a list or an array that provides indexed access. There is no such provision in our 
programming environment yet and we need to satisfy that need by the way of a function. 
 
The basic idea is simple and elegant. It reminded me of the kind of thinking we do when we are 
trying to find the [number of] subsets of a given set. Imagine that the coins are arranged in piles 
in some order (any order will do) according to their denominations: a pile of 50¢ coins, a pile of 
pennies, a pile of dimes, and so on.  

 
 
We are handed an amount ‘a’ and asked to find the number of ways to change that amount 
using these coin piles that are arranged in some order. Start with maintaining a count of the 
number of ways in which we can change the amount. We will have to take one of the two 
choices: 

1)​ Either take a coin from the first pile of denomination, say d1, and see if the reduced 
amount, a-d1 can be changed using all the piles, or 

2)​ Reject the denomination d1 and do 1) with the next pile in order. 
 
If and when the amount remaining to be changed runs down to zero, we have found a way to 
change and we increment the count. 
 
Note that we are looking for sets of coins, not their sequences. Thus, in order to change 6¢ it 

does not matter if you first give a penny and 
then a nickel or a nickel first and then a penny 
– both those ways are the same. 
 
Perhaps it is not apparent that this inductive 
way solves the problem completely in that we 

 



do not overcount or undercount the number of ways. 
 
An analogy may help. Consider a staircase shown here. You can either take a step (one stair at 
once), a hop (two stairs at once), or a jump (three stairs at once). In how many ways can you 
climb the staircase with ‘n’ stairs (once you hope you can’t step and once you jump you can only 
jump)? 
 
It seems more natural to think that if we decide to not take a step, we only have hops and jumps 
to scale the entire staircase. 
 
Perhaps it is clear that once we reject a coin of a particular denomination from our piles of coins 
arranged according to their denomination, we never choose it again.  
 
A little reflection will let us implement the algorithm thus: 
 
function change(amt) { 
    function value(denom_id) { 
        return denom_id === 1 
             ? 50 
             : denom_id === 2 
             ? 25 
             : denom_id === 3 
             ? 10 
             : denom_id === 4 
             ? 5 
             : 1; 
    } 
     
    function change_using(a, denom_id) { 
        return a === 0 
             ? 1 
             : a < 0 
             ? 0 
             : denom_id === 6 
             ? 0 
             : change_using(a - value(denom_id), denom_id) + 
change_using (a, denom_id + 1); 
    } 
     
    return change_using(amt, 1); 
} 
 
The change_using function describes a tree recursive process. With amount = $1, and 
values: 

 



 

denom_id 1 2 3 4 5 

value 50 25 10 5 1 

 
here is the function call tree: 
 
change(100) 

-​ change_using(100, 1) 
        - change_using(50, 1) 
             - change_using(0, 1) 
             - change_using(50, 2) 
                  - change_using(0, 2) 
                  - change_using(50, 3) 
                       - change_using(0, 3) 
                       - change_using(50, 4) 
                            - change_using(0, 4) 
                            - change_using(50, 5) 
                                 - change_using(0, 5) 
                                 - change_using(50, 6) 
        - change_using(100, 2) 
… 
 
Can we convert this into an iterative process? Can we find some trick in this case (like we found 
one for fib_iter above)? The book leaves it as a challenge to readers. 
This is quite a challenge. For starters, I tried to find a pattern. Here is a table of the amount to 
change (using 50¢, 25¢, 10¢, 5¢, and 1¢ coins) and number of ways to do so: 
 

Amt  0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 

# 1 2 4 6 9 13 18 24 31 39 50 62 77 93 

  
The number of ways exhibit a “jump” at every multiple of 5. This seems to be because of the 
peculiar coin denominations that we have, for if we had coins of denominations 45¢, 17¢, 7¢, 
2¢, and 1¢, we will get the following table: 
  

Amt  0-1 2-3 4-5 6 7 8 9 10 11 12 13 14 15 16 

# 1 2 3 4 5 6 7 8 9 10 11 13 14 16 

 
This appears pretty “random”.  
 

 



The function “number of ways to change(n)” seems to grow more slowly compared to 
the fib(n) function. 
 
[TODO] Thus, as of now, I am not able to solve this problem! 

 

 

21 February 2023 
1.2 Functions and Processes They Generate 

-​ Functions generate computational processes. This is a nuanced way of looking at what 
running a function on a real hardware machine entails. 

1.2.1  
-​ Two implementations of the canonical factorial implementations. 

-​ Observe the code and the “shape” of the processes that these two 
implementations generate. 

-​ Linear Recursion and Iteration: This is just beautifully described. I love how they 
differentiate between a recursive process and iterative process. A recursive process 
has a chain of deferred operations (in that after a function call is made, there is an 
“aftermath” of that call). An iterative process, on the other hand, does not have any 
deferred operations. 

-​ The idea of an iterative “process” can be realized without the construct of a loop that is 
found in a traditional imperative language. This gives a different perspective about the 
processes that functions entail. 

-​ The example considered in the text is the canonical example of recursion as it is taught 
elsewhere: the factorial function. 

-​ Example of an iterative process realized by function calls: Although factorial function is 
a canonical example, I thought of my own example. Consider this implementation of 
finding the sum of the first n natural numbers (without using the great Gauss closed-form 
formula): 
function sum(n) { 
    function sum_iter(s, counter) { 
        return counter > n 
        ? s 
        : sum_iter(s + counter, counter + 1); 
    } 
    return sum_iter(0, 0); 
} 
sum(5); // => 15 
 

 



-​ Another example of an iterative process realized by function calls: Finding the  𝑛𝑡ℎ

Fibonacci number. 
function fib(n) { 
    function fib_iter(f1, f2, counter) { 
        return counter === n  
        ? f1 
        : fib_iter(f2, f1 + f2, counter + 1); 
    } 
    return fib_iter(1, 1, 1); 
} 
fib(7); // => 13 

-​ Example of a recursive process realized by function calls:​ (again, I am avoiding the 
canonical factorial function. Here is a recursive “process” for the sum function 
above: 
function sumr(n) { 
    return n === 0 
    ? 0 
    : n + sumr(n-1); // there are “deferred” operations! 
} 
sumrec(10); // => 55 

-​ Carrying out this recursive process requires that the interpreter keep track of the 
operations to be performed later on. In the computation of  the length of the 𝑛!
chain of deferred multiplications, and hence the amount of information needed to 
keep track of it, grows linearly with  (is proportional to ), just like the number of 𝑛 𝑛
steps. Such a process is called a linear recursive process. 

-​ (This entire section is so fabulous and it reminds me of my own essay: Recursion 
and Iteration.) I am going to reproduce it verbatim:  

-​ One reason that the distinction between process and function may be 
confusing is that most implementations of common languages (including 
C, Java, and Python) are designed in such a way that the interpretation of 
any recursive function consumes an amount of memory that grows with 
the number of function calls, even when the process described is, in 
principle, iterative. As a consequence, these languages can describe 
iterative processes only by resorting to special-purpose "looping 
constructs" such as do, repeat, until, for, and while. The 
implementation of JavaScript we shall consider in chapter 5 does 
not share this defect. It will execute an iterative process in constant 
space, even if the iterative process is described by a recursive 
function. An implementation with this property is called tail-recursive.3 
With a tail-recursive implementation, iteration can be expressed 
using the ordinary function call mechanism, so that special iteration 
constructs are useful only as syntactic sugar.4 (Perlisism: “Syntactic 
sugar causes the cancer of the semicolon.”) 

 

https://bit.ly/recurse-iterate
https://bit.ly/recurse-iterate
https://sourceacademy.org/sicpjs/5
https://sourceacademy.org/sicpjs/1.2.1#footnote-3
https://sourceacademy.org/sicpjs/1.2.1#footnote-4


-​ We can easily see the stress that functions bear in this paradigm (more 
commonly known as the functional programming paradigm). Such programming 
languages even consider loops unnecessary since function calls can achieve the 
same rather painlessly. 

-​ An implementation that provides the support for calling “recursive functions 
that represent iterative processes” is called tail-recursive implementation. 

 
[Home work] Exercise 1.9 and 1.10. Also, reread this section (1.2.1). 
 

Exercise 1.9 
Each of the following two functions defines a method for adding two positive integers in terms of 
the functions inc, which increments its argument by 1, and dec, which decrements its 
argument by 1. 
// SICP JS 1.2.1 
 
function inc(x) { 
    return x + 1; 
} 
function dec(x) { 
    return x - 1; 
} 
 
function plus(a, b) { 
    return a === 0 ? b : inc(plus(dec(a), b));  
} 
 
function plus(a, b) { 
    return a === 0 ? b : plus(dec(a), inc(b)); 
} 
 
plus(4, 5); 
 
Using the substitution model, illustrate the process generated by each function in evaluating 
plus(4, 5);. Are these processes iterative or recursive? 
 
Solution. 
We depict the shape of the function: 
function plus(a, b) { 
    return a === 0 ? b : inc(plus(dec(a), b));  
} 
using the substitution model: 
plus(4, 5) 
inc(plus(dec(4), 5)) 

 

https://sourceacademy.org/sicpjs/1.2.1#ex-1.9


inc(plus(3, 5)) 
inc(inc(plus(dec(3), 5))) 
inc(inc(plus(2, 5))) 
inc(inc(inc(plus(dec(2), 5)))) 
inc(inc(inc(plus(1, 5)))) 
inc(inc(inc(inc(plus(dec(1), 5))))) 
inc(inc(inc(inc(plus(0, 5))))) 
inc(inc(inc(inc(5)))) 
inc(inc(inc(6))) 
inc(inc(7)) 
inc(8) 
9 
 
Since there are “deferred operations” in that the inc function needs to do its work after the last 
application of plus returns. This is a recursive process. 
 
And now we depict the shape of the function: 
function plus(a, b) { 
    return a === 0 ? b : plus(dec(a), inc(b));  
} 
using the substitution model: 
plus(4, 5) 
plus(dec(4), inc(5)) 
plus(3, 6) 
plus(dec(3), inc(6)) 
plus(2, 7) 
plus(dec(2), inc(7)) 
plus(1, 8) 
plus(dec(1), inc(8)) 
plus(0, 9) 
9 
 
Clearly, the shape of the second function suggests an iterative process implemented by 
recursive function. It can be optimized to be a tail-recursive process. 

Exercise 1.10 
The following function computes a mathematical function called Ackermann's function. 
 
function A(x, y) { 
    return y === 0 
           ? 0 
           : x === 0 
           ? 2 * y 
           : y === 1 

 

https://sourceacademy.org/sicpjs/1.2.1#ex-1.10


           ? 2 
           : A(x - 1, A(x, y - 1)); 
} 
What are the values of the following statements? 
A(1, 10); 
A(2, 4); 
A(3, 3); 
 
Consider the following functions, where A is the function declared above: 
 
function f(n) { 
    return A(0, n); 
} 
function g(n) { 
    return A(1, n); 
} 
function h(n) { 
    return A(2, n); 
} 
function k(n) { 
   return 5 * n * n; 
} 
Give concise mathematical definitions for the functions computed by the functions f, g, and h 

for positive integer values of n. For example, k(n) computes . 5𝑛2

 
Solution. 
Quite a function, this Ackerman function. Applying the substitution model will help finding the 
value in which an invocation of this function results; but it is clearly tedious. Is there a better 
way? Let me first try with A(1, 1): 
 
A(1, 1) 
2 
 
A(1, 2) 
A(0, A(1, 1)) // from above 
A(0, 2) 
4 
 
A(1, 3) 
A(0, A(1, 2)) 
A(0, 4) // from above 
8 
 
A(1, 4) 

 



A(0, A(1, 3)) 
A(0, 8) // from above 
16 
 
A(1, 5) 
A(0, A(1, 4)) 
A(0, 16) // from above 
32 
 
A(1, 6) 
A(0, A(1, 5)) 
A(0, 32) // from above 
64 
 
A(1, 7) 
A(0, A(1, 6)) 
A(0, 64) // from above 
128 
 
A(1, 8) 
A(0, A(1, 7)) 
A(0, 128) // from above 
256 
 
A(1, 9) 
A(0, A(1, 8)) 
A(0, 256) // from above 
512 
 
A(1, 10) 
A(0, A(1, 9)) 
A(0, 512) // from above 
1024 
 
// I admit, however, that doing it without substituting previous 
// results was much more tedious 
 
// This suggests that even though computers do repetitive tasks well, 
// one should “cache” the results 
 
// To get A(2, 4), let’s start as below: 
 
A(2, 1) 
2 
 

 



A(2, 2) 
A(1, A(2, 1)) 
A(1, 2) // from above 
4 // from more above 
 
A(2, 3) 
A(1, A(2, 2)) 
A(1, 4) // from above 
16 // from above 
 
A(2, 4) 
A(1, A(2, 3)) 
A(1, 16) // from above 
65536 // extrapolating from A(1, n) above 
 
A(2, 5) 
A(1, A(2, 4)) 
A(1, 65536) // from above 

 // extrapolating from A(1, n) above 2216

= 265536

 
// Quite a function! I won’t even be able to imagine A(2, 6) 
 
// Let’s start with A(3, 1) in the hope of making sense of A(3, 3) 
 
A(3, 1) 
2 
 
A(3, 2) 
A(2, A(3, 1)) 
A(2, 2) // from above 
4 // from above 
 
A(3, 3) 
A(2, A(3, 2)) 
A(2, 4) // from above 
65536 // from above 
 
A(3, 4) 
A(2, A(3, 3)) 
A(2, 65536) // from above 

//  // huge! 2𝐴(2, 65535)

 
The [bi]function is several functions in one! 
 

 



f(n) = A(0, n) 

This function clearly doubles the argument passed. Thus, . 𝑓(𝑛) = 2𝑛
 
g(n) = A(1, n) 
∴ g(n) = A(0, A(1, n-1)) = A(0, g(n-1)). 
 

Since  , we get  𝐴(0,  𝑛) = 𝑓(𝑛) = 2𝑛
 𝑔(𝑛) = 𝐴(0,  𝑔(𝑛 − 1)) = 2𝑔(𝑛 − 1)

 We also know that . 𝑔(1) = 2
 
This is a recurrence relation. We can solve it by repeatedly substituting and we’ll get: 

  𝑔(𝑛) = 2𝑔(𝑛 − 1) = 22𝑔(𝑛 − 2) =···= 2𝑛−1𝑔(𝑛 − (𝑛 − 1)) = 2𝑛−1𝑔(1)

 . =  2𝑛

 

 ℎ(𝑛) = 𝐴(2,  𝑛) = 𝐴(1,  𝐴(2,  𝑛 − 1)) = 𝐴(1,  ℎ(𝑛 − 1)) = 𝑔(ℎ(𝑛 − 1))
 

and we have   ℎ(1) = 2
 

Since , we have   and finally there 𝑔(𝑛) = 2𝑛 ℎ(𝑛) = 2ℎ(𝑛−1) = 22ℎ(𝑛−2)

= 222ℎ(𝑛−3)

 
will be  2’s in the exponent.  𝑛
 
The Ackermann function is really complex. In Knuth’s up-arrow notation, 

 𝐴(2,  𝑛) = ℎ(𝑛) = 2 ↑↑↑ 𝑛
 
Mathematician R. L. Goodstein has called repeated exponentiation tetration. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

https://en.wikipedia.org/wiki/Ackermann_function
https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation
https://archive.org/details/fundamentalconce0000good/page/40/mode/2up?view=theater&q=tetration


 

09 February 2023 
Exercises 1.6, 1.7, and 1.8 are important (they also take time). Let’s finish those by 12 February 
2023. 
1.1.8 Functions as Black-box Abstractions 

-​ It’s crucial that each function accomplishes an identifiable task that can be used as a 
module while defining other tasks. By assuming the existence of the other functions that 
a function we are defining uses we achieve functional abstraction. 

-​ This idea is also known as API. Purely functional abstraction is less stringent than an 
API, but the concept of “hiding the implementation details” is common to both. It does not 
matter how the square of an argument is calculated as long as we know that it is. 

Local Names 
-​ The formal parameters of a function are local to its definition. They do not muddy the 

“global namespace”. 
-​ Clearly, lambda calculus is intended here because lambda calculus formalizes function 

application to actual arguments. 
-​ Bound names and Free names (paraphrasing): A [formal] parameter of a function has a 

very special role in the function declaration, in that it doesn't matter what name the 
parameter has. Such a name is called bound, and we say that the function 
declaration binds its parameters. The meaning of a function declaration is unchanged 
if a bound name is consistently renamed throughout the declaration. If a name is not 
bound, we say that it is free.  

-​ Scope: The set of statements for which a binding declares a name is called 
the scope of that name. 

-​ The meaning of a function is independent of its choice of bound names (one can 
carefully replace a bound name by something else and it will not change the 
meaning of the function), but not independent of its free names. 

[Home Work] Complete 1.1.8 (reading) and discuss next time. 

06 February 2023 
1.1.7 Square-roots by Newton’s method 

-​ Difference between declarative knowledge – what is  (that’s how mathematical functions 
are expressed) and imperative knowledge – how (that’s how functions are implemented 
in computers). 

-​ There has been some progress on “automatically” generating computer functions from 
their “specification” or declaration, but, in general, this is not easy. 

-​ Newton’s method of successive approximations. I have implemented it here (P1.1). 
-​ I really like how they have created this computer function that feels declarative:  

 
function sqrt_iter(guess, x) { 
    return is_good_enough(guess, x) 

 



           ? guess 
           : sqrt_iter(improve(guess, x), x); 
} 
It simply “declares” at a high-level what we want to do, not so much of how we want to do it. The 
“details” are hidden away or, more precisely, abstracted out of this strategy. This is really good 
code: 
// SICP JS 1.1.7 
 
function abs(x) { 
    return x >= 0 ? x : - x; 
} 
 
function square(x) { 
    return x * x; 
} 
 
function is_good_enough(guess, x) { 
    return abs(square(guess) - x) < 0.001; 
} 
 
function average(x, y) { 
    return (x + y) / 2; 
} 
 
function improve(guess, x) { 
    return average(guess, x / guess); 
} 
 
function sqrt_iter(guess, x) { 
    return is_good_enough(guess, x) 
           ? guess 
           : sqrt_iter(improve(guess, x), x); 
} 
 
sqrt_iter(1, 0.5); 
 

Exercise 1.6 
Alyssa P. Hacker doesn't like the syntax of conditional expressions, involving the characters ? 
and :. "Why can't I just declare an ordinary conditional function whose application works just 
like conditional expressions?" she asks. Alyssa's friend Eva Lu Ator claims this can indeed be 
done, and she declares a conditional function as follows: 
 
function conditional(predicate, then_clause, else_clause) {​ ​      
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    return predicate ? then_clause : else_clause; 
} 
 
Eva demonstrates the program for Alyssa: 
 
conditional(2 === 3, 0, 5); 
=> 5 
conditional(1 === 1, 0, 5); 
=> 0 
 
Delighted, Alyssa uses conditional to rewrite the square-root program: 
 
function sqrt_iter(guess, x) { 
    return conditional(is_good_enough(guess, x), 
                       guess, 
                       sqrt_iter(improve(guess, x), 
                                 x)); 
} 
 
What happens when Alyssa attempts to use this to compute square roots? Explain. 
 
Solution. 
This is such a good question! The real exercise is to predict the behavior of this program (which 
means one should not run the program and then explain its behavior). 
 
Introduction of a function call combined with the applicative-order evaluation of the interpreter 
would result in an infinite recursion. The program will not terminate for any input.  
 
A function call interpretation is key here. Consider an applicative-order interpreter. Such an 
interpreter evaluates all the expressions provided for actual arguments and then applies the 
called function (sqrt_iter) to those arguments. Before calling conditional, the interpreter 
must  

1)​ evaluate the actual value of predicate which is the value returned by the 
is_good_enough function with arguments guess and x (this will be either true or 
false). 

2)​ assign the current value of guess to the parameter then_clause. 
3)​ evaluate the actual value of else_clause which is the value returned by sqrt_iter 

again with an improved value of guess – this results in another call to the same function 
without any base case ⇒ an endless recursion. 

 
With an applicative-order interpreter endless recursion should happen for every input. With a 
normal-order interpreter, however, if the predicate is true, then the else_clause need not 
be evaluated, causing the recursion to end at some point. 
 

 



Program execution result. It seems my answer is right. The interpreter says: Line 34: The 
function sqrt_iter has encountered an infinite loop. It has the 

infinite cycle: (guess: 5), (x: 25) -> (guess: 5), (x: 25). 
 

Exercise 1.7 
The is_good_enough test used in computing square roots will not be very effective for finding 
the square roots of very small numbers. Also, in real computers, arithmetic operations are 
almost always performed with limited precision. This makes our test inadequate for very large 
numbers.  
 
Explain these statements, with examples showing how the test fails for small and large 
numbers. An alternative strategy for implementing is_good_enough is to watch how guess 
changes from one iteration to the next and to stop when the change is a very small fraction of 
guess. Design a square-root function that uses this kind of end test. Does this work better for 
small and large numbers? 
 
Solution. 
Consider our test which is in the function is_good_enough: 
 
function is_good_enough(guess, x) { 
    return abs(square(guess) - x) < 0.001; 
} 
 
This means that if the absolute difference between the target number (x) and the square of our 
guess is less than 0.001, we consider the guess to be good enough.  
 
Now consider a small number x = 35e-16 (i.e. 0.0000000000000035) whose 
square-root we wish to know. In our iterative process, if our guess is such that its square is 
close to our tolerance or margin of 0.001, then square(guess) - x will also remain close 
enough to 0.001 because square(guess)>> x. In other words, however small x is, the 
iteration will end around the square-root of 0.001 returning an erroneous result (≅0.0316). 
The correct square-root of x = 35e-16 is 5.916079783099616e-8. 
 
What if we made the margin or tolerance smaller? Say 0.0000001 or 1e-7 instead of 0.001 
or 1e-3? That will make the problem less severe and we may be able to find square-roots of 
more (smaller) numbers. But the issue will resurface soon. Therefore, a redefinition of our test 
like below only goes a little father: 
 
function is_good_enough(guess, x) { 
    return abs(square(guess) - x) < 1e-7; 
} 
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This will run into the same issue in that we’ll erroneously stop the iteration around the values of 
square-roots that are about 3.16e-3.  
 
What is the basic issue with our test function? It defines a tolerance in absolute terms. 
Because of an infinitude of numbers, there will always be a number that beats an absolute 
margin or tolerance no matter how small. The problem is exacerbated because of an inherent 
limitation of the finite machine that is our silicon computer that is tasked with representing infinity 
of numbers! As we know, the infinity of real numbers is such that there is no successor of a 
given real number. Or, in other words, one can always find a number that lies between any two 
numbers however close. For a machine that only has a few “bits” to represent infinitely 
many numbers, there is no choice but to define a successor of a real number, losing 
precision in the process! This is what happens for numbers like 35e-16 that are smaller than 
1.   
 
For numbers much larger than 1, a different kind of problem surfaces. To demonstrate that 
problem, I tried the following numbers in succession: 1e10, 1e20, 1e30, 1e40, 1e50.  
For the last number, the interpreter shows the following message: The function sqrt_iter 
has encountered an infinite loop. It has an infinite cycle: (guess: 

1e+25), (x: 1e+50) -> (guess: 1e+25), (x: 1e+50). 
 
This demonstrates the inability of our code to fail to progress toward its goal. The algorithm 
starts with a guess and hopes to make a gradual, but definite progression toward the goal. This 
is called “optimization.” And since the implementation is recursive, the physical implementation 
of it on a stack-based Von-Neumann computer is, again, limited by the capacity of a 
finite-resource machine. We don’t have the resources to apply a function an infinite number of 
times!  
 
The reason we run out of the stack space (i.e. the resource required for any function 
application) is that we fail to detect that we are making progress toward a goal. That is, at some 
point, a function application is exactly identical to the previous function application: their 
arguments are the same and they return a value that is more than the preset margin: 0.001. 
When we get into such a hole, we are stuck. The reason is related (again) to the finiteness of 
the machine on which we run the program: the average of two numbers, x and y, fails to get in 
between them, it gets “rounded” to either extreme. 
 
A closer examination of why we get stuck suggests a way out – we see a silver lining to a dark 
cloud. What if we abandon an absolute comparison in favor of a relative comparison across 
successive calls? Since our hope and effort are that we make “progress” on every function call, 
we should abandon the effort when the relative progress is too small to notice: 
 
function is_close_enough(x, y) { 
    return abs(x - y) < 0.001 * x; 
} 

 



And apply the function thus: 
 
function sqrt_iter(guess, x) { 
    return is_close_enough(guess, improve(guess, x)) 
           ? guess 
           : sqrt_iter(improve(guess, x), x); 
} 
 
This tells us if we are making any noticeable improvement by measuring a relative change 
rather than an absolute one. This makes our code much more robust! 
square(sqrt(42e100)); 
=> 4.2016359946024356e+101 
 
The original code, on the other hand, fails with the infinite loop message: 
 
function sqrt_iter(guess, x) { 
     return is_good_enough(guess, x) 
           ? guess 
           : sqrt_iter(improve(guess, x), x); 
} 
 
A subtle change indeed! 
 
Upon a closer examination, I realized something about the improved version of sqrt_iter. In 
all the recursive calls except when the current guess is close enough to the square-root, we will 
end up making two identical calls to improve(guess, x). Both these calls apply the same 
function to the same actual arguments and return the same value! Why should we incur 
that cost? First off, is there any value in thinking about it this way? Or is it thinking too 
prematurely about “efficiency”? Either way, I think at least mentioning this point is worth the 
effort. Therefore, consider this reincarnation of sqrt_iter: 
 
function sqrt_iter(guess, x) { 
    const improved_guess = improve(guess, x); 
    return is_close_enough(guess, improved_guess) 
           ? guess 
           : sqrt_iter(improved_guess, x); 
} 

Exercise 1.8 
Newton's method for cube-roots is based on the fact that if y is an approximation to the 
cube-root of x, then a better approximation is given by the value 

 

𝑥

𝑦2  + 2𝑦

3
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Use this formula to implement a cube-root function analogous to the square-root function. (In 
section 1.3.4 we will see how to implement Newton's method in general as an abstraction of 
these square-root and cube-root functions.) 
 
Solution.  
Newton’s method uses calculus to come with the formula for better approximation. That is a 
separate exploration that I will write about a little later.  
 
For the exercise alone, we can find a good way to implement the approximation. But before that, 
let me ask a question to myself: As this exercise asserts, in the case of the cube-root of x, if y is 

a guess, then a better guess is  . What is the equation for a better guess in the case of 

𝑥

𝑦2  + 2𝑦

3
square-root of x? 
 
This is “reverse-mathematizing”. We have already coded the method to find the square-root. We 
can observe that a mathematical expression for a better guess (in the code we wrote) for 

. It turns out that that expression is . 𝑦 = 𝑥
𝑥
𝑦  + 𝑦

2
Several questions arise, one of which is: Can the same thinking apply to finding a better 

approximation of cube-root of ? In a preceding section we said that to get a better 𝑥
approximation of the square-root of , we simply take the average of  (current approximation) 𝑥 𝑦
and . The sicpjs text does not explain why one should take the average of the two (other than 

𝑥
𝑦

it being “intuitive”). The reason that (when  is an approximation)   is a better 𝑦
𝑥
𝑦  + 𝑦

2
approximation lies in Newton’s method of finding roots. Newton’s method is the reason that in 

the case of cube-root  is a better approximation.  

𝑥

𝑦2  + 2𝑦

3
 
Perhaps we could simply improve the improve function to accommodate a better 
approximation while finding the cube-root of x, the rest of the code remains the same. One 
rather straightforward way to code that is: 
 
function improve3(guess, x) { 
    return (x / square(guess) + 2 * guess)/3; 
} 
 
Of course, this function is not “abstract” enough. 
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01 February 2023 
1.1.6 Conditional Expressions and Predicates: 

-​ Case analysis. 
-​ <predicate> ? <consequent-expression> : <alternate-expression> 
-​ Predicate here is used in the sense of a mathematical proposition: either true or 

false. 
-​ These can be chained. 
-​ Primitive predicates for numbers: >, <, ===, >=, <=, !== 
-​ Logical predicate operators for combining predicates themselves:  

-​ Conjunction: <predicate-1> && <predicate-2> 
-​ Disjunction: <predicate-1> && <predicate-2> 
-​ Negation: ! <predicate> 

 
Exercises 

Exercise 1.3 
Declare a function that takes three numbers as arguments and returns the sum of the squares 
of the two larger numbers. 
 
function sum_of_squares_2(a, b, c) { 
    return a > b 
         ?  
        (b > c ? sum_of_squares(a, b) : sum_of_squares(a, c)) 
         :  
        (a > c ? sum_of_squares(a, b) : sum_of_squares(b, c)); 
} 
The prescribed solution incurs also two comparisons, but uses a somewhat complicated identity 
to reach the correct solution. I like my solution better! 

Exercise 1.5 
Ben Bitdiddle has invented a test to determine whether the interpreter he is faced with is using 
applicative-order evaluation or normal-order evaluation. He declares the following two functions: 
 
function p() {  
    return p();  
} 
 
function test(x, y) { 
    return x === 0 ? 0 : y; //  
} 
Then he evaluates the statement: 
test(0, p()); 
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I discussed this with Apoorv and he made a comment while studying the code of test(x, y): 
If all Ben wanted to test was whether the interpreter evaluation is applicative-order or 
normal-order, the following definition should suffice: 
function test(x, y) { 
    return true || y; 
} 
while the function application (function call) remains: test(0, p(0)); 

-​ if it results in infinite loop, the interpreter is applicative-order,  
-​ otherwise it is normal-order. 

 
 
Question: What behavior will Ben observe with an interpreter that uses applicative-order 
evaluation?  
Answer: Applicative-order evaluates actual arguments eagerly, rather than when they are 
actually needed. Thus, even though the conditional in the test function evaluates to true and 
there is no need to evaluate the actual argument that substitutes y, an interpreter employing the 
applicative-order will end up doing just that. Since calling p() results in an infinite loop, the 
program will not terminate. 
 
Question: What behavior will he observe with an interpreter that uses normal-order evaluation? 
Answer: This would actually continue normally and return 0. This is because the predicate of 
the conditional evaluates to true when the formal parameter x is substituted with the actual 
argument zero. 
 
Explain your answer. (Assume that the evaluation rule for conditional expressions is the same 
whether the interpreter is using normal or applicative order: The predicate expression is 
evaluated first, and the result determines whether to evaluate the consequent or the alternative 
expression.) 

01 February 2023 
1.1.5 The Substitution Model of Function Application 

-​ It is all about replacing the formal parameters by actual arguments at the time of function 
application (or at the time of the function call).  

-​ Think of it as a token replacement. Wherever the interpreter sees the parameter a, it 
replaces it with the actual argument, e.g. 2. 

-​ Normal-order evaluation and Applicative-order evaluation 
-​ I tend to call Normal-order evaluation Lazy evaluation and Applicative-order 

evaluation Eager evaluation. 
 
Consider the three function declarations (or definitions) followed by a function call (or function 
application): 
function square(x) { 

 



    return x * x; 
} 
 
function sum_of_squares(x, y) { 
    return square(x) + square(y); 
} 
 
function f(a) { 
    return sum_of_squares(a + 1, a * 2); 
} 
f(5); 
 
Here, when the function call is interpreted by an interpreter that uses substitution model, it 
substitutes values in a straightforward manner (leaving aside the issues of duplicate names): 
return sum_of_squares(5 + 1, 5 * 2) 
-> 
((square(5 + 1) + square(5 * 2))) 
-> 
((5 + 1) * (5 + 1) + (5 * 2) * (5 * 2)) 
-> 
(6 * 6 + 10 * 10) 
-> 
136 
 

An important statement in this section: Over the course of this book, we will 
present a sequence of increasingly elaborate models of how 
interpreters work, culminating with in a complete implementation 
of an interpreter and compiler in chapter 5. 

-​ Is it possible to have normal-order evaluation result in a value different from the 
applicative-order evaluation? There is an exercise for that. 

31 January 2023 
1.1.4 Compound Functions 
 
Function declaration statement: 
 
function name(parameters) { return expression;} 
 
Function application expression: function-expression(arguments) 
(Note that it is a function-expression, not necessarily a function-name.) 
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26 January 2023 
1.1.3 Evaluating Operator Combinations 
 
[Homework] While discussing this section, we thought of two assignments that Apoorv may 
enjoy: 

1)​ Study the familiar infix notation. You already know it, but we need you to codify your 
understanding. One way to codify a grammar (what distinguishes a valid expression from 
an invalid one) is railroad diagrams. Referring to a good railroad diagram reference, 
define a railroad diagram for infix notation. 

2)​ Write a program to convert infix notation to postfix notation. After you have done it, run it 
on several inputs and then evaluate the postfix expression (write a program to do that as 
well) to make sure that your conversion is correct. Can you make only little tweaks to 
your program of conversion to convert a given infix expression to prefix notation? 
Compare your “translation algorithm” with the so-called Shunting Yard algorithm. 

 
 

23 January 2023 
1.1.1 Expressions 

-​ Expression statements – they have “values” 
-​ REPL 

1.1.2 Naming and Environment 
-​ Names allow us to abstract computational objects away 
-​ Environment helps “memorize” name-object pairs 

1.1.2 Evaluating the Operator Combinations 
-​ Inherently recursive way of combining and evaluating expressions associated via 

operators 

19 January 2023 
1.1 Elements of Programming 

-​ This echoes John Locke’s paraphrased statements. Every programming language 
provides  

-​ primitive constructs, 
-​ means to combine primitives, and 
-​ means of abstraction 

 

17 January 2023 
 
Chapter 1 Building Abstractions with Functions 

-​ Computational process, data, programs. 
-​ What we should teach students: 

 



-​ Not algorithms/data structures; not even mathematical underpinnings 
-​ But two key aspects of software’s nature: 

-​ Understanding that programming languages are much more than mere 
tools to solve a given problem. 

-​ Controlling complexity of software projects. 
-​ JavaScript 

-​ Webpage anatomy: markup (structure), CSS (appearance/style, look), JavaScript 
(behavior, feel) 

-​ Inherited from programming languages: Scheme and Self 
-​ Lexical scoping 
-​ Dynamic typing 
-​ First-class functions 

-​ Interpretation vs. Compilation 
-​ Please see this 3-minute documentary from the gobbledegook planet! 

-​ John Locke: 
-​ Combining (simple ideas to form complex ideas) 
-​ Relations (among ideas simple and complex) 
-​ Abstraction (remove the idea from its practical/real existence) 

11 January 2023 
We read the preface. Kedar felt the need to introduce Apoorv to the basic structure of a 
computer. We are going to take a brief look at Programming from Ground Up by Jonathan 
Bartlett. Kedar also thought that reading the introductory articles about 𝛌-calculus may stand in 
good stead. Find time to read: 

1)​ Stanford Encyclopedia of Philosophy on 𝛌-calculus. 
2)​ Raul Rojas’s tutorial introduction to 𝛌-calculus. 

7 January 2023 
Guy Steele (an influential programmer and programming language designer), in his own 
foreword, asks a question about Alan Perlis’s foreword to SICP: 
 

Is it better to have 100 functions operate on a sort of “Universal data 
structure” than to have 10 functions operate on 10 different, specialized 
data structures? 

 
He says we tend to prefer 10 different functions operating on 10 data structures for “human 
reasons”; we tend to organize ourselves better by giving names to things. Otherwise, he says, it 
is not too difficult (only somewhat tricky) to write a sort of universal function, say uf, that 
accepts a “description of any other function f” and a variable list of arguments and does the job 
of that function f. We are going to see an example of this later. 
 
JavaScript arrow function. Read about it and discuss it here. 
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Apoorv’s Understanding of Arrow Functions 
Arrow functions are unnamed, concise ways to write functions. They are useful when a function 
needs to be passed in to a method because they can be written inline. They are written as a set 
of parameters, followed by =>, and followed by a function expression or set of statements. 
 
For example, here is an arrow function: 
x => 5 * (x / 4) 
 
This function takes in one parameter, x, and returns 5x/4. The initial way to write this arrow 
function would be: 
 
function someName(x) { 
  return 5 * (x / 4); 
} 
 
Arrow functions with multiple or no parameters must surround the parameters with parentheses. 
Additionally, arrow functions may have multiple statements as opposed to an expression. 
However, the statements must be enclosed in braces, be multiline, and contain a return 
statement - just like a standard function. 
 
(x, y) => { 
  if (x < 1) { 
    x += 1; 
  } 
  return x + y; 
} 
 
You might see “double arrow functions” written like this: 
 
x => y => x * y 
 
This is just an example of currying. Instead of taking two parameters x and y, this arrow function 
is taking a parameter x, calling a function which takes a parameter y, and from inside this 
second function, returning x · y. The standard function for this would be: 
 
function curryOuter(x) { 
  return function curryInner(y) { 
    return x * y; 
  } 
} 
 

 

https://en.wikipedia.org/wiki/Currying


The advantage of currying is not apparent with this function. Currying allows you to compose 
functions and ensure that operations are carried out in a specific order. Arrow functions just 
allow you to do that more concisely. 
 

Investigate this statement: And it is only slightly tricky to design a data 
structure capable of describing any computation whatsoever. 
 
Kedar to read and comment on Steele’s paper: Growing a language. 
 
Let’s list action items! 

A-I 
1)​ Apoorv, take a look at: https://www.macs.hw.ac.uk/~greg/publications/gjm.idc15.pdf  

5 January 2023 
Please read the foreword 2: https://sourceacademy.org/sicpjs/foreword02 and discuss. 
 

Required Readings 

A Classic Paper – Lisp: A Language for Stratified Design (Kedar 
Annotates) 

P1.0 Introduction 
The paper is available on the Web at: https://dspace.mit.edu/handle/1721.1/6064. Below is a 
(short) annotated version of the paper. 
 
We annotate the paper by first copying verbatim a part of the paragraph of interest and then 
annotating it. 
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“Stratified” means arranged in strata – layers or levels. A CS term for layer is abstraction. Lisp 
promotes abstractions. It is claimed that choosing abstractions carefully improves the quality of 
software. A programming language should promote building abstractions. 
 
Any programming language provides at least three things: 

-​ primitives 
-​ means to combine those primitives to create sort of “higher level primitives” 
-​ means to name such combinations so that they can be used or manipulated as 

primitives themselves 
 
This is akin to mathematics or (in a somewhat less stringent manner) even spoken languages. 
In mathematics, we have axioms which are given, operations to deductively combine those 
axioms, and theorems and corollaries which are just another form of what we are given. Proven 
theorems can then be used to prove other theorems. At this point, proven theorems become 
indistinguishable from given axioms. 
 
Abstractions of components separate their specification from their implementation. This ought to 
provide greater flexibility in design. An implementation of a clearly specified component can be 
replaced by another implementation that is qualitatively or quantitatively better. 
 
The paper says that some programming languages (it was 1987, so the mainstream languages 
were Fortran and C) limit our ability to make abstractions by imposing some restrictions on 
procedural abstractions. These restrictions seem artificial or arbitrary: 

-​ Having to provide the name of a procedure at the “callsite” in lieu of its definition. 
(Exactly why is naming a procedure so that it can be “called” a restriction?) 

-​ Not letting procedures to be returned as values from other procedures. This makes 
“data” different from “procedures” – this is unnecessary. Nowadays (in 2022) when such 
a limitation is not there in a programming language, people say that in that language 
“procedures or functions are first-class citizens”. 

-​ Not letting procedures be elements of collections. 
 

 
… 
 
In layered or stratified design, the layer 0 is made of primitives. Each subsequent layer is 
designed as a standalone abstraction; it creates additional primitives. Those primitives are 
available to all the subsequent layers. At a layer, it is impossible and unnecessary to know 
which layer above it a primitive comes from. 

 



 
Each level of a stratified design may be thought of as a 
specialized language with a variety of primitives and 
means of [their] combination appropriate to that level 
of detail. …  

 
On the other hand, the structured approach looks at a system as a tree (or is it a graph?) of 
components. The components have dependencies and they are usually like carefully designed, 
well-specified black boxes. Every blackbox is expected to satisfy its contract, its “interface”. 
Good, clean implementations of such interfaces provide flexibility in that implementations can be 
replaced without breaking the system. These are all good things. 
 
Thus, the structured approach does have some favorable things. Then why does the paper 
claim that it is a flawed methodology? And why is layered design better than structured design? 
Here is one reason: 
 

If a system is to be robust, it must have generality 
more than is needed for the particular application. 

 
Structured design promotes ad-hoc (made for a specific purpose) code. Layered design 
promotes generalizable, composable components that are loosely coupled. By combining them 
conveniently, a new application can be conceived relatively easily and changes can be 
addressed relatively quickly. 
 

The real power of Lisp is that its unrestricted 
abstractions support the construction of new languages, 
greatly facilitating the strategy of stratified design. 

 
The above statement (creating newer languages from Lisp) needs some explanation that we’ll 
come back to. Lisp provides abstraction support deeply. The paper discusses it at various 
levels. We start with a support to abstract out procedures or functions. 

P1.1 Abstractions as Procedures 
Consider a rudimentary square-root finding procedure in JavaScript: 
 
//find the square root of a given number 
function sqRoot(x) { 
   let epsilon = 1e-6; 
   let low = 1.0; 
   let high = x; 
   if (x < 1.0) { 
       low = 0.0; 
       high = 1.0; 

 



   } 
   let guess = (low + high) / 2; 
   let d = guess * guess - x; // line #10 
   do { 
       // console.log("guess:", guess, "delta: ", d); 
       if (Math.abs(d) < epsilon) { 
           break; 
       } 
       if (d < 0) { // guess is too small 
           low = guess; 
       } else { 
           high = guess; 
       } 
       guess = (low + high) / 2; 
       d = guess * guess - x; // line #22 
   } while (Math.abs(d) > epsilon); 
   return guess; 
} 

 
Running this program for some input produces the following output: 
let x = 64; 
console.log("non-parameterized: square-root(", x, ") = ", sqRoot(x)); 
//non-parameterized: square-root( 64 ) = 8.000000052154064 

 
Although this is a straightforward iterative procedure that converges for most of the positive 
inputs, it has limitations. There are no reusable, composable parts in it. For a cube-root finding 
procedure, we will have to repeat most of the code.  
 
How can the procedure be made reusable? By thinking about this procedure a little differently.  
What is the procedure really doing? Looking at lines 10 and 22 may provide some cue. 
It is making some computation converge iteratively. In the square-root finding process the 
computation we are trying to converge is the squaring. But squaring is not the only function that 
can utilize this “converging service”. How about a function finding cube-root? Wouldn’t that 
procedure need an identical converging service for a cubing function? Of course, yes. And 
functional languages encourage such thinking by allowing functions (computations) to be 
passed to other functions. Here is a “refactoring” of code that implements that idea: 
 
//help “converge” a function f that accepts an initial value x 
function converge(f, x) { 
   let epsilon = 1e-6; 
   let low = 1.0; 
   let high = x; 
   if (x < 1.0) { 
       low = 0.0; 
       high = 1.0; 
   } 
   let guess = (low + high) / 2; 
   let d = f(guess) - x; 

 



   do { 
       // console.log("guess:", guess, "delta: ", d); 
       if (Math.abs(d) < epsilon) { // we found the fixed point of f 
           break; 
       } 
       if (d < 0) { // guess is too small 
           low = guess; 
       } else { 
           high = guess; 
       } 
       guess = (low + high) / 2; 
       d = f(guess) - x; 
   } while (Math.abs(d) > epsilon); 
   return guess; 
} 
//passes the squaring function literal to the converge function to find 
square-root 
function paramSqRoot(x) { 
   return converge(function (p) { 
       return p * p; 
   }, x); 
} 
 
//passes the cubing function literal to the converge function to find 
cube-root 
function paramCubeRoot(x) { 
   return converge(function (p) { 
       return p * p * p; 
   }, x); 
} 

 
This produces the following output: 
let x = 64; 
console.log("parameterized: square-root(", x, ") = ", paramSqRoot(x)); 
console.log("parameterized: cube-root(", x, ") = ", paramCubeRoot(x)); 
parameterized: square-root( 64 ) = 8.000000052154064 
parameterized: cube-root( 64 ) = 3.9999999972060323 
 
Thus, we could utilize the same code by what is called “behavior parameterization”. This is how 
we abstract procedures out. As the paper says, we decompose methods into essential, useful 
pieces. 
 
Can we extend this to any function that behaves like the square-root function? 

P1.2 Stratified Design 
This is about Peter Henderson’s paper named functional geometry. Authors claim that 
Henderson used stratified design to describe M. C. Escher’s woodcut: Square Limit. That paper 
teaches me something new. This is the strength of functional declarative programming: 

 

http://pmh-systems.co.uk/phAcademic/papers/funcgeo2.pdf


 
The idea that one could write an algebraic description, embed 

it in a functional program, and execute it directly was not 

new [even back then in 1982, when version 1 of the paper was 

written]. But it was not considered a practical programming 

technique. Now we know better and many examples exist of how 

practical it can be to simply write denotations of what is to be 

constructed, rather than to write algorithmic descriptions of 

how to perform the construction. [What, rather than How]. 

 
Algebraic denotations suggest a language! In algebra, we make up rules that deal with abstract 
things and we use these rules consistently to manipulate those things. The language is made of 
symbols. A similar, denotational description can be applied to complex pictures: 
 

A picture is an example of a complex object that can be 

described in terms of its parts. Yet, a picture needs to be 

rendered on a printer or screen by a device that expects [to 

be given] a concrete sequence of commands. Programming 

that sequence of commands directly is much harder than 

having an application generate the commands 

automatically from the simpler, denotational description. 

 
< I am going to come back to the remainder of this section> 
 

P1.3 Metalinguistic Abstraction 
 
Wikipedia defines it thus: In computer science, metalinguistic abstraction is the process of 
solving complex problems by creating a new language or vocabulary to better 
understand the problem space.  
 
IMO, the first part of this section is rather confusing. Whereas I understand that a large system 
may combine object-oriented, functional, and procedural programming elements in a (hopefully) 
coherent whole, it is unclear why it suddenly starts referring to compilation/interpretation. The 
transition is not smooth. 
 
The paper then talks about compilers/interpreters.  
 

 



 
An application program has a specific meaning and it solves a specific problem in the 
application domain. For a programmer, their program is not just a string of characters. But for an 
interpreter or compiler it is just so, mere data.  
 
I believe this will become clearer during the actual SICP course. 
 
The paper, however, does not lucidly bring out what metalinguistic abstraction really means. It 
uses the term “application language” as well as “programming languages”. Are these the same? 
Wikipedia says that metalinguistic abstraction is about creating new languages.  
 
_ _ _ _ _ _ _ _ start: sort of sidebar _ _ _ _ _ _ _ _ _ _ _ _  
I am going to write some thoughts in this sidebar about “metaprogramming”. Some of this is 
inspired by the metaprogramming article on Wikipedia. 
 
Consider a shell script (there is nothing specific about using a “shell” script – it is applicable to a 
program written in any general programming language that is Turing-complete – we don’t yet 
know what “Turing completeness” means, but we’ll press on. For now, a Turing-complete 
programming language is a general programming language like C or Lisp or Java). It is a 
toy-program: 
 
#! /bin/sh 
echo 1 
echo 2 
echo 3 
echo 4 
echo 5 
 
When this program P1 is interpreted (or run, or executed), the following output is produced: 
1 
2 
3 
4 
5 

 

https://en.wikipedia.org/wiki/Metaprogramming


 
Pictorially, it looks like this: 

 
Now, rather than writing it by hand, can one generate the program? 
 
Pictorially, it looks like this: 

 
 
P2 -> interpreter -> P1 -> interpreter -> O 
 
A few moments’ reflection shows that we can take a stab at writing the text of the program P2: 
We save that program as a text-file named p2.sh: 
#! /bin/sh 
echo "#! /bin/sh" > p1g.sh # p1 generated 
echo "echo 1" >> p1g.sh 
echo "echo 2" >> p1g.sh 
echo "echo 3" >> p1g.sh 
echo "echo 4" >> p1g.sh 
echo "echo 5" >> p1g.sh 

 



chmod +x p1g.sh 
 
Running p2.sh generates a “program” p1g.sh, which is identical to p1.sh. Clearly, when 
interpreted, both p1.sh and p1g.sh produce the same output. Generating the same program 
was our goal. 
 
We can always write an improved version of P2, p2i.sh: 
#! /bin/sh 
echo "#! /bin/sh" > p1g.sh # p1 generated 
for i in `seq 5`  
do 
    echo "echo $i" 
done 
chmod +x p1g.sh 
 
The same interpreter interprets both the programs: P1, P2. Although they have different 
“meanings” for the programmer in the program domain, for the interpreter, they are just data that 
it interprets just the same way. 
Does this discussion help realizing a special program called quine which produces itself as its 
output when interpreted? Pictorially it looks like: 

 
Not yet! 
 
I am not getting any insight about how to “go about” writing a quine. 
 

 



Then, it dawned on me that I can “circumvent” the definition of Quine. I wrote a Java program 
that, when run, prints its source code: 
 
package practice; 
 
import java.io.BufferedReader; 
import java.io.IOException; 
import java.io.InputStreamReader; 
 
public class Quine { 
   public static void main(String[] args) throws IOException { 
       BufferedReader r = new BufferedReader(new 
InputStreamReader(System.in)); 
       String s; 
       while ((s = r.readLine()) != null) { 
           System.out.println(s); 
       } 
       r.close(); 
   } 
} 

 
Chat GPT was not impressed and told me: 
 

I apologize for the misunderstanding. It is possible to use 
this program to create a quine, but it is not a quine 
itself. To use this program to create a quine, you would 
need to provide the source code of the program as input 
when you run it. For example, you could run the program 
like this: 
java Quine < Quine.java 
 

This would read the source code of the Quine program from 
the file Quine.java and pass it as input to the Quine 
program. The Quine program would then read the input from 
stdin and print it back out, resulting in the source code of 
the Quine program being printed to the console. 

However, this is not the same thing as the Quine program 
being a quine itself. A quine is a self-contained program 
that can output its own source code without requiring any 
external input. In the case of this program, it requires 
external input (the source code of the Quine program) in 
order to output its own source code. 

 



 
A Quine is a type of computer program named after the 
philosopher Willard Van Orman Quine. It is a program that 
outputs its own source code when run. The concept of a Quine is 
often used as a thought experiment or as a test of a programming 
language's metaprogramming capabilities. 
 
Quines are interesting because they demonstrate that it is 
possible to create a self-contained program that can output its 
own source code without requiring any external input or 
information. This is possible because the source code of a 
program is essentially a representation of the instructions that 
the program follows when it is run. By including the source code 
of the program itself as part of the instructions that the 
program follows, it is possible to create a program that can 
output its own source code. 
 
Quines are often used as a way to test the limits of a 
programming language or to explore the concept of 
self-reference in computer programs. They are also sometimes 
used as a form of computer art or as a recreational programming 
challenge. 

 
 
_ _ _ _ _ _ _ _ end: sort of sidebar _ _ _ _ _ _ _ _ _ _ _ _  
 
 
 

Lisp Paper Annotated by Apoorv (His Own Work) 
 
 

Brian Harvey – Why SICP Matters 
 

Appendix on LC (λc) 
I decided to give a few pages of Greg Michaelson’s book a try. It’s a 2011 Dover-reprint of 
Michaelson’s classic 1988 book. 
 
I think this is a distraction, but it may be a required one. For a few days beginning 02/26/2024, 
whenever SICPJS shows up on my calendar, I will spend time on λc. Let me reassess how far I 

 

http://people.eecs.berkeley.edu/~bh/sicp.html
https://archive.org/details/introductiontofu0000mich/page/n3/mode/2up?view=theater


have come with the basics by 03/30/2024. I hope I complete at least chapters 2, 3, and 4 from 
the book. 
 
26 February 2024 
 

Apoorv’s Exercises 

Chapter 1 

Exercise 1.1 

10​
12​
8​
3​
6​
3​
4​
19​
false​
4​
16​
6​
16 

Exercise 1.2 

 (5 + 4 + (2 − (3 − (6 + 4 / 5))))/(3 * (6 − 2) * (2 − 7))

Exercise 1.3 

function largerTwoSquares(a, b, c) {​
  return (a > b)​
  ?​
  (b > c ? sum_of_squares(a, b) : sum_of_squares(a, c))​
  :​
  (a > c ? sum_of_squares(a, b) : sum_of_squares(b, c))​
} 

 

https://sourceacademy.org/sicpjs/1.1.6#ex-1.1
https://sourceacademy.org/sicpjs/1.1.6#ex-1.2
https://sourceacademy.org/sicpjs/1.1.6#ex-1.3


Exercise 1.4 

The function adds a and |b|. It first checks whether or not b is nonnegative. If b is nonnegative, it 
calls the function plus(a, b), and if b is negative, it calls the function minus(a, b). 

Exercise 1.5 

If the interpreter uses applicative-order evaluation, evaluating test(0, p()) would first try to 
evaluate p(), which would lead to an infinite loop and cause the interpreter to exceed the 
maximum stack depth. If it uses normal-order evaluation, evaluating ​
test(0, p()) would first check whether x === 0, and since x is 0, it would immediately 
return 0 without evaluating p(). 

Exercise 1.6 
Since the interpreter uses applicative-order evaluation, the interpreter will try to evaluate 
sqrt_iter(improve(guess, x), x) before passing it into the conditional function. This 
will result in infinite recursion. 
 
Let us proceed with this problem in a step-by-step fashion. First, let us describe the result of the 
evaluation with a conditional expression.​
​
function sqrt_iter(guess, x) {​
    return is_good_enough(guess, x)​
           ? guess​
           : sqrt_iter(improve(guess, x), x);​
}​
​
In this case, when sqrt_iter is called, the interpreter will first evaluate the conditional 
expression. While evaluating the conditional, the interpreter will first try to evaluate 
is_good_enough(guess, x). If it evaluates to true, the function sqrt_iter will return 
guess. Otherwise, the function will do a recursive call. The function works as designed.​
​
Now let us describe what happens with the conditional function.​
 
function conditional(predicate, then_clause, else_clause) {​​      
    return predicate ? then_clause : else_clause; 
} 
 
function sqrt_iter(guess, x) { 
    return conditional(is_good_enough(guess, x), 
                       guess, 
                       sqrt_iter(improve(guess, x), 

 

https://sourceacademy.org/sicpjs/1.1.6#ex-1.4
https://sourceacademy.org/sicpjs/1.1.6#ex-1.5
https://sourceacademy.org/sicpjs/1.1.7#ex-1.6


                                 x)); 
} 
 
When sqrt_iter is called, it will call the function conditional. But because the interpreter 
uses applicative-order evaluation and conditional is a function, the interpreter will attempt 
to evaluate is_good_enough(guess, x) and sqrt_iter(improve(guess, x), x) 
before calling the conditional function. So before the conditional can be evaluated, a (non 
terminating) recursive call is made. This will result in infinite recursion. 

Exercise 1.7 

If you input a very small number into the sqrt_iter function, the difference between the 
square of the guess and the given number can still be less than 0.001 even if the square of the 
guess is double of the given number. For example, running sqrt(5e-5) returns 
0.031781009679092864. The square of this number is 1.01x10-3, which is around twenty times 
of 5x10-5. However, the difference between 1.01x10-3 and 5x10-5 is less than 0.001. 
Furthermore, if you choose an even smaller number, the function returns a very similar number. 
Essentially, the function returns before guess is improved to be close enough.​
​
A problem also occurs with very large numbers. The square of the guess might be within 0.1% 
of the actual number but the absolute difference could be greater than 0.001. This would cause 
the program to try to improve the guess. Since numbers are represented with limited precision, 
the program will end up improving the guess so little that the improvement is rounded to the 
guess. Essentially, the difference between the improved guess and the original guess is less 
than the minimum precision of the computer, so the guess and the improvement will be 
represented exactly the same by the computer. Hence, the function will encounter an infinite 
loop.​
​
To fix these problems, we must check the relative precision of the guess, that is, we must check 
whether the square of the guess is within, say, 1% of the number given.​
​
This improvement to the is_good_enough function checks whether the square of the guess is 
within error% of the given number.​
​
function is_good_enough(guess, x, error) {​
    return abs(square(guess) - x) < (x/(error*100));​
} 

Exercise 1.8 

Some small modifications can be made to the square root function to make a cube root function:​
​
function abs(x) {​

 

https://sourceacademy.org/sicpjs/1.1.7#ex-1.7
https://sourceacademy.org/sicpjs/1.1.7#ex-1.8


    return x >= 0 ? x : - x;​
}​
​

function square(x) {​
    return x * x;​
}​
​

function cube(x) {​
    return square(x) * x;​
}​
​

function is_good_enough(guess, x) {​
    return abs(cube(guess) - x) < (x * 0.001);​
}​
​

function improve(guess, x) {​
    return ((x/square(guess)) + (2 * guess))/3;​
}​
​

function cbrt_iter(guess, x) {​
    return is_good_enough(guess, x)​
           ? guess​
           : cbrt_iter(improve(guess, x), x);​
}​
​

function cbrt(x) {​
    return cbrt_iter(1, x);​
}​
​
The improvement to the function suggested in #7 is also implemented here. The function cbrt(x) 
will correctly print the cube root of x, in a way similar to the square root function but with a 
different improved guess formula.​
​
This formula is derived with calculus. Suppose g is our guess for the cube root of n. Since we 

are trying to find the cube root, our function . Then, .​𝑓(𝑥) = 3 𝑥 𝑓'(𝑥) = 1

3
3

𝑥2

​
To get a new g closer to the value of f(n), we use linear approximations. Since g is the guess of 
the cube root, it will be on the y-axis, and we introduce a such that . Consequently, 𝑓(𝑎) = 𝑔

. Our current approximation is therefore . To improve this approximation, 𝑎 = 𝑓−1(𝑔) = 𝑔3 (𝑎, 𝑔)
we use , where f(x) is the improved approximation and f(a) is the 𝑓(𝑥) ≈ 𝑓'(𝑎)(𝑥 − 𝑎) + 𝑓(𝑎)

 



current approximation. Hence:​

​𝑓(𝑥) = 𝑓'(𝑔3)(𝑥 − 𝑎) + 𝑔

​     = 1

3
3

(𝑔3)2
(𝑥 − 𝑔3) + 𝑔

​     = 𝑥−𝑔3

3𝑔2 + 𝑔

​     = 𝑥−𝑔3+3𝑔3

3𝑔2 = 𝑥+2𝑔3

3𝑔2

      = 𝑥/𝑔2+2𝑔
3

Exercise 1.9 
Suppose we are trying plus(4, 5) with the first function. The operations will look like this:​
​
plus(4, 5)​
inc(plus(3, 5))​
inc(inc(plus(2, 5)))​
inc(inc(inc(plus(1, 5))))​
inc(inc(inc(inc(plus(0, 5)))))​
inc(inc(inc(inc(5))))​
inc(inc(inc(6)))​
inc(inc(7))​
inc(8)​
9​
​
Since there is a chain of deferred incrementations, this process is recursive.​
​
Now the second function may seem recursive because it calls itself. But in reality, it is just an 
iterative function with a seemingly recursive form. If we carry out plus(4, 5) with the second 
function, the operations will look like this:​
​
plus(4, 5)​
plus(3, 6)​
plus(2, 7)​
plus(1, 8)​
plus(0, 9)​
9​
​
The second function is iterative because there are no deferred operations - a and b are updated 

 

https://sourceacademy.org/sicpjs/1.2.1#ex-1.9


one after another. The last operation that the function does is a recursive call, so there are no 
deferred operations, and the function is just iterative. 

Exercise 1.10 
A(1, 10)​
A(0, A(1, 9))​
A(0, A(0, A(1, 8)))​
A(0, A(0, A(0, A(1, 7))))​
…​
A(0, A(0, A(0, A(0, A(0, A(0, A(0, A(0, A(0, A(1, 1))))))))))​
A(0, A(0, A(0, A(0, A(0, A(0, A(0, A(0, A(0, 2)))))))))​
A(0, A(0, A(0, A(0, A(0, A(0, A(0, A(0, 4))))))))​
A(0, A(0, A(0, A(0, A(0, A(0, A(0, 8)))))))​
…​
1024​
​
A(2, 4)​
A(1, A(2, 3))​
A(1, A(1, A(2, 2)))​
A(1, A(1, A(1, A(2, 1))))​
A(1, A(1, A(1, 2)))​
A(1, A(1, A(0, A(1, 1))))​
A(1, A(1, A(0, 2)))​
A(1, A(1, 4))​
A(1, A(0, A(1, 3)))​
…​
A(1, A(0, 8))​
A(1, 16)​
…​
65536​
​
A(3, 3)​
A(2, A(3, 2))​
A(2, A(2, A(3, 1)))a​
A(2, A(2, 2))​
A(2, A(1, A(2, 1)))​
A(2, A(1, 2))​
A(2, 4)​
65536​
​

 

https://sourceacademy.org/sicpjs/1.2.1#ex-1.10


It seems like the Ackermann function grows very rapidly. When the first parameter is 0, it seems 
to multiply the second parameter by 2. When the first parameter is 1, it raises the 2 to the 
second parameter - it performs repeated multiplication. When the first parameter is 2, it returns 

 with the number of 2’s equal to the second parameter. That is, it seems to perform 222...

repeated exponentiation (also called tetration). Essentially, it seems that A(a, b) is repeated 
A(a-1, 2) b times.​
​

​𝑓(𝑛) = 𝐴(0, 𝑛)
​𝑔(𝑛) = 𝐴(1, 𝑛)
​ℎ(𝑛) = 𝐴(2, 𝑛)

​
 → multiplication​𝑓(𝑛) = 2𝑛

 → exponentiation​𝑔(𝑛) = 2𝑛

 → tetration ℎ(𝑛) = 2⇈𝑛

Exercise 1.11 
GitHub link​
​
Recursive implementation of f(n):​
​
function f(n) { 
    return n < 3 
    ? n 
    : f(n - 1) + (2 * f(n - 2)) + (3 * f(n - 3)); 
} 
 
Iterative implementation of f(n): 
 
function f_iter(n) { 
    function f_int(r1, r2, r3, c) { 
        return c === n 
        ? r1 
        : f_int(r1 + 2 * r2 + 3 * r3, r1, r2, c + 1); 
    } 
    return n < 3 
    ? n 
    : f_int(2, 1, 0, 2); 
} 

 

https://sourceacademy.org/sicpjs/1.2.2#ex-1.11
https://github.com/vapporwashmade/javascript-projects/blob/master/sicp/e1-11.js


Exercise 1.12 
GitHub link​
​
This function embodies a recursive process that calculates the number at row r and column c of 
Pascal’s triangle. Both r and c are zero-indexed, so the first row or first column of a row would 
be r = 0 and c = 0 respectively.​
​
function pascal(r, c) { 
    return c < 0 
    ? 0 
    : c > r 
    ? 0 
    : r < 0 
    ? 0 
    : c === 0 
    ? 1 
    : c === r 
    ? 1 
    : pascal(r - 1, c - 1) + pascal(r - 1, c); 
} 

Exercise 1.13 

First, let us prove that .​𝐹𝑖𝑏(𝑛) = ϕ𝑛−ψ𝑛

5

We construct a proof by induction. Assume . Then:​𝐹𝑖𝑏(𝑟) = ϕ𝑟−ψ𝑟

5

​𝐹𝑖𝑏(𝑟 + 1) = 𝐹𝑖𝑏(𝑟) + 𝐹𝑖𝑏(𝑟 − 1)

​                      = ϕ𝑟−ψ𝑟

5
+ ϕ𝑟−1−ψ𝑟−1

5

​                      = ϕ𝑟+ϕ𝑟−1−(ψ𝑟+ψ𝑟−1)
5

​                      = ϕ𝑟−1(1+ϕ)−ψ𝑟−1(1+ψ)
5

​                      =
ϕ𝑟−1×ϕ2( 1+ϕ

ϕ2 )−ψ𝑟−1×ψ2( 1+ψ

ψ2 )

5

Recalling that φ and ψ are the solutions to the equation , we get  𝑥2 − 𝑥 − 1 = 0 ϕ2 = ϕ + 1

 

https://sourceacademy.org/sicpjs/1.2.2#ex-1.12
https://github.com/vapporwashmade/javascript-projects/blob/master/sicp/pascal.js
https://sourceacademy.org/sicpjs/1.2.2#ex-1.13


and . Hence:​ψ2 = ψ + 1

​𝐹𝑖𝑏(𝑟 + 1) = ϕ𝑟+1(1)−ψ𝑟+1(1)
5

= ϕ𝑟+1−ψ𝑟+1

5

​
Additionally, we must provide base cases:​

​𝐹𝑖𝑏(0) = 0

​ϕ0−ψ0

5
= 1−1

5
= 0

​𝐹𝑖𝑏(1) = 1

 ​ϕ1−ψ1

5
=

1+ 5
2 − 1− 5

2

5
= 5

5
= 1

We can now confidently say that  for all  We still need to prove that 𝐹𝑖𝑏(𝑛) = ϕ𝑛−ψ𝑛

5
𝑛 ≥ 0.

 is the closest integer to . In other words, we need to prove that .​𝐹𝑖𝑏(𝑛) ϕ𝑛

5
𝐹𝑖𝑏(𝑛) − ϕ𝑛

5
|||

||| < 0. 5

​𝐹𝑖𝑏(𝑛) − ϕ𝑛

5
|||

||| = ϕ𝑛−ψ𝑛

5
− ϕ𝑛

5
|||

|||

​                            = −ψ𝑛

5
|||

|||

​                            =
− (1− 5)𝑛

2𝑛

5

|
|
|
|

|
|
|
|

​                            = −(1− 5)𝑛

2𝑛 5

|||
|||

​                            = (1− 5)𝑛| |
2𝑛 5

                             = (1− 5)𝑛| |
2𝑛 5

Need to complete. 

 



Exercise 1.14 
Illustration of count_change(11) recursive call tree:

​
​
The time taken by the program increases with the total number of constant time operations 
performed. Each function call, except the base cases, recursively calls two functions, the results 
of which it sums. Hence, the number of additions (which are constant time operations) will be 
equal to the number of parent nodes in the tree. In the worst-case scenario, each parent node 
will have two child nodes. That is, the function call tree will be a complete binary tree.​
​
The space taken by the program increases with the maximum depth of the stack memory. Since 
it is a recursive process, each in-flight (unreturned) function call must have a stack frame, and 
the maximum number of in-flight function calls will be equal to the maximum depth of the 
function call tree.​
​
The longest path to a leaf in the tree will be the case where only the smallest denomination (call 
it s) is used. The total number of calls in that path will be the number of times you reduce n by s 
plus the number of times you reduced the number of denominations by one. In other words, 

, where C is the total number of calls and k is the number of 𝐶(𝑛, 𝑘, 𝑠) = 𝑛 ÷ 𝑠 + 𝑘
denominations.​

 

https://sourceacademy.org/sicpjs/1.2.3#ex-1.14


​
Now we are looking for the order of growth of space as n increases, which means k and s act as 
constants. Hence, . 𝑆(𝑛) = Θ(𝑛 ÷ 𝑠 + 𝑘) = Θ(𝑛)

Exercise 1.15 
Here is the process generated by sine(12.15):​
​
sine(12.15)​
p(sine(4.05))​
p(p(sine(1.35)))​
p(p(p(sine(0.45))))​
p(p(p(p(sine(0.15)))))​
p(p(p(p(p(sine(0.05))))))​
p(p(p(p(p(0.05)))))​
p(p(p(p(0.1505))))​
p(p(p(0.46513545)))​
… and so on.​
​
In this process - sine(12.15) - the function p is applied five times.​
​
Suppose T(a) is the number of steps required by sine(a). Each call to p has five constant time 
operations (five steps). The number of steps will be five times the number of calls to p, which is 
equal to the number of function calls. Let us find the number of function calls, which we will call 
n:​

 and ​𝑎

3𝑛 ≤ 0. 1 𝑎

3𝑛−1 ≥ 0. 1

 and ​3𝑛 ≥ 10𝑎 3𝑛−1 ≤ 10𝑎
 and ​𝑛 ≥ log

3
(10𝑎) 𝑛 ≤ log

3
(10𝑎) + 1

Regardless of the exact value of n, it will be either the closest or second-closest integer to 
. So for our purposes, we can just say .​log

3
(10𝑎) 𝑛 = log

3
(10𝑎)

​log
3
(10𝑎) = log

3
(10) + log

3
(𝑎) = log

3
(10) + 1

log
10

(3) · log
10

𝑎

Since  and  are constants, . Therefore, log
3
10 1/log

10
3 𝑛 = Θ(log 𝑎)

.​𝑇(𝑎) = 5 * Θ(log 𝑎) = Θ(log 𝑎)
​
Suppose S(a) is the space required by sine(a). Since there are deferred operations, each 
function call must be kept in the stack. Hence, the space required by sine(a) will be equal to 
the number of function calls. Using our result above, . 𝑆(𝑎) = Θ(log 𝑎)

 

https://sourceacademy.org/sicpjs/1.2.3#ex-1.15


Exercise 1.16 
GitHub link​
 
function fast_expt_iter(b, n) { 
    function fast_expt_int(x, y, z) { 
        return x === 0 
        ? y 
        : is_even(x) 
        ? fast_expt_int(x / 2, y, square(z)) 
        : fast_expt_int(x - 1, y * z, z); 
    } 
    return fast_expt_int(n, 1, b); 
} 
 
function is_even(n) { 
    return n % 2 === 0; 
} 
 
function square(n) { 
    return n * n; 
} 

Exercise 1.17 
GitHub link 
 
function fast_times(a, b) { 
    return b === 0 
    ? 0 
    : is_even(b) 
    ? double(fast_times(a, halve(b))) 
    : a + fast_times(a, b - 1); 
} 
 
function is_even(n) { 
    return n % 2 === 0; 
} 
 
function halve(n) { 
    return n / 2; 
} 

 

https://sourceacademy.org/sicpjs/1.2.4#ex-1.16
https://github.com/vapporwashmade/javascript-projects/blob/master/sicp/fast_expt_iterative.js
https://sourceacademy.org/sicpjs/1.2.4#ex-1.17
https://github.com/vapporwashmade/javascript-projects/blob/master/sicp/fast_times.js


 
function double(n) { 
    return n + n; 
} 

Exercise 1.18 
GitHub link 
 
function fast_times_iter(a, b) { 
    function fast_times_int(x, y, z) { 
        return z === 0 
        ? y 
        : is_even(z) 
        ? fast_times_int(double(x), y, halve(z)) 
        : fast_times_int(x, x + y, z - 1); 
    } 
    return fast_times_int(a, 0, b); 
} 
 
function is_even(n) { 
    return n % 2 === 0; 
} 
 
function halve(n) { 
    return n / 2; 
} 
 
function double(n) { 
    return n + n; 
} 

Exercise 1.19 
We should define Tpq somewhat mathematically. We can define it as a function which accepts a 
pair of arguments and returns a pair of arguments:​

​𝑇
𝑝𝑞

(𝑎, 𝑏) = (𝑏𝑞 + 𝑎𝑞 + 𝑎𝑝, 𝑏𝑝 + 𝑎𝑞)

​
Now, applying the transformation twice is equivalent to calling Tpq on Tpq, i.e.,  or 𝑇

𝑝𝑞
(𝑇

𝑝𝑞
(𝑎, 𝑏))

. This is essentially function composition. 𝑇
𝑝𝑞
◦ 𝑇

𝑝𝑞
(𝑎, 𝑏)

 

 

https://sourceacademy.org/sicpjs/1.2.4#ex-1.18
https://github.com/vapporwashmade/javascript-projects/blob/master/sicp/fast_times_iterative.js
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​𝑇
𝑝𝑞

(𝑇
𝑝𝑞

(𝑎, 𝑏)) = 𝑇
𝑝𝑞

(𝑏𝑞 + 𝑎𝑞 + 𝑎𝑝, 𝑏𝑝 + 𝑎𝑞)

                            = (𝑞[𝑏𝑝 + 𝑎𝑞] + 𝑞[𝑏𝑞 + 𝑎𝑞 + 𝑎𝑝] + 𝑝[𝑏𝑞 + 𝑎𝑞 + 𝑎𝑝], 𝑝[𝑏𝑝 + 𝑎𝑞] + 𝑞[𝑏𝑞 + 𝑎𝑞 + 𝑎𝑝])

                            = (𝑞𝑏𝑝 + 𝑎𝑞2 + 𝑏𝑞2 + 𝑎𝑞2 + 𝑎𝑝𝑞 + 𝑝𝑏𝑞 + 𝑎𝑝𝑞 + 𝑎𝑝2, 𝑏𝑝2 + 𝑎𝑝𝑞 + 𝑏𝑞2 + 𝑎𝑞2 + 𝑎𝑝𝑞)

                            = (2𝑝𝑏𝑞 + 2𝑎𝑞2 + 𝑏𝑞2 + 2𝑎𝑝𝑞 + 𝑎𝑝2, 𝑏𝑝2 + 2𝑎𝑝𝑞 + 𝑏𝑞2 + 𝑎𝑞2)

 - Eq. 1                            = (𝑎(2𝑞2 + 2𝑝𝑞 + 𝑝2) + 𝑏(𝑞2 + 2𝑝𝑞), 𝑎(2𝑝𝑞 + 𝑞2) + 𝑏(𝑞2 + 𝑝2))
 
We define  and  - Eq. 2. 𝑇

𝑝'𝑞'
(𝑎, 𝑏) = 𝑇

𝑝𝑞
(𝑇

𝑝𝑞
(𝑎, 𝑏)) 𝑇

𝑝'𝑞'
(𝑎, 𝑏) = (𝑏𝑞' + 𝑎𝑞' + 𝑎𝑝', 𝑏𝑝' + 𝑎𝑞')

From the similarities between Eq. 1 and Eq. 2, we can find p’ and q’: 
 

 𝑝' = 𝑝2 + 𝑞2

 𝑞' = 2𝑝𝑞 + 𝑞2

 
If we plug p’ and q’ into Eq. 2, we should get Eq. 1. 
 

Using the convention that , we can now complete this function:​𝑇
𝑝'𝑞'

= 𝑇
𝑝𝑞

2

function fib(n) { 
    return fib_iter(1, 0, 0, 1, n); 
} 
 
function fib_iter(a, b, p, q, count) { 
    return count === 0 
           ? b 
           : is_even(count) 
           ? fib_iter(a, 
                      b, 
                      square(p) + square(q), 
                      square(q) + (2 * p * q), 
                      count / 2) 
           : fib_iter(b * q + a * q + a * p, 
                      b * p + a * q, 
                      p, 
                      q, 
                      count - 1); 
} 
 
function square(n) {​
    return n * n; 
} 

 



Exercise 1.20 
gcd(206, 40) 
gcd( 

Exercise 1.21 

Exercise 1.22 
This is the function search_for_primes (GitHub link):​
​
function search_for_primes(start, end) { 
    function sfp_iter(curr) { 
        timed_prime_test(curr); 
        return curr + 2 > end 
        ? true 
        : sfp_iter(curr + 2); 
    } 
    return start % 2 === 0 
    ? sfp_iter(start + 1) 
    : sfp_iter(start); 
} 
 
Here are the smallest prime numbers greater than 1000, 10000, 100000, and 1000000, along 
with their testing times: 
 

Smallest primes greater 
than: 

Prime Testing time (ms) 

103 1009 1 

1013 0 

1019 0 

104 10007 0 

10009 1 

10037 1 

105 100003 1 

100019 2 

100043 1 

 

https://sourceacademy.org/sicpjs/1.2.5#ex-1.20
https://sourceacademy.org/sicpjs/1.2.6#ex-1.21
https://sourceacademy.org/sicpjs/1.2.6#ex-1.22
https://github.com/vapporwashmade/javascript-projects/blob/master/sicp/search_for_primes.js


106 1000003 8 

1000033 6 

1000037 7 

Exercise 1.23 
 

Exercise 1.24 

Exercise 1.25 
This function is essentially correct - it is doing exactly what we want expmod to do. However, 
exponentiation grows rapidly, and an is likely to exceed representation using 64 bits - the 
maximum number of bits for a number in JavaScript. 
 
 So we  

Exercise 1.26 

Exercise 1.27 
 

Exercise 1.28 

Exercise 1.29 
The function simpson applies Simpson’s rule to the function f to approximate the integral of f 
between a and b. (GitHub link) 
 
// applies simpson's rule to the function f 
// finds the integral of f from a to b with n intervals 
function simpson(f, a, b, n) { 
    const h = (b - a) / n; 
    function getnext(c) { 
        return c === 0 || c === n 
        ? f(a + c * h) 
        : c % 2 === 1 
        ? 4 * f(a + c * h) 
        : 2 * f(a + c * h); 

 

https://sourceacademy.org/sicpjs/1.2.6#ex-1.23
https://sourceacademy.org/sicpjs/1.2.6#ex-1.24
https://sourceacademy.org/sicpjs/1.2.6#ex-1.25
https://sourceacademy.org/sicpjs/1.2.6#ex-1.26
https://sourceacademy.org/sicpjs/1.2.6#ex-1.27
https://sourceacademy.org/sicpjs/1.2.6#ex-1.28
https://sourceacademy.org/sicpjs/1.3.1#ex-1.29
https://github.com/vapporwashmade/javascript-projects/blob/master/sicp/simpsonrule.js


    } 
    return (h / 3) * sum(getnext, 0, x => x + 1, n); 
} 
 
simpson(cube, 0, 1, 100); // 0.24999999999999992 
integral(cube, 0, 1, 100); // 0.24998750000000042 
 
simpson(cube, 0, 1, 1000); // 0.2500000000000003 
integral(cube, 0, 1, 1000); // 0.249999875000001 

Exercise 1.30 
function sum(term, a, next, b) { 
    function iter(a, result) { 
        return a > b 
               ? result 
               : iter(next(a), result + term(a)); 
    } 
    return iter(a, 0); 
} 

Exercise 1.31 
GitHub link 
 
The idea of the product function is the same as that of the sum function. The only differences 
are multiplying the term instead of adding and starting from one instead of zero (since 
multiplying by 1 has the same effect as adding 0).​
​
function product_recur(term, a, next, b) { 
    return a > b 
    ? 1 
    : term(a) * product_recur(term, next(a), next, b); 
} 
 
This is a recursive implementation. Similarly, here is an iterative implementation (analogous to 
the iterative implementation of sum):​
​
function product_iter(term, a, next, b) { 
    function iter(curr, total) { 
        return curr > b 
        ? total 

 

https://sourceacademy.org/sicpjs/1.3.1#ex-1.30
https://sourceacademy.org/sicpjs/1.3.1#ex-1.31
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        : iter(next(curr), total * term(curr)); 
    } 
    return iter(a, 1); 
} 
 
The factorial of a number n is just the product of all the integers between 1 and n, inclusive. We 
use the identity function as term, and the increment function as next (both represented as 
arrow functions).​
​
function factorial(n) { 
    return product_iter(x => x, 1, x => x + 1, n); 
} 
 

Now we want to approximate π using the formula . Our product function will π
4 = 2·4·4·6·6·8···

3·3·5·5·7·7···

come in handy here. 
 
Say we want to continue this approximation for n terms. There are two ways we can go about 
this. The first way is to calculate the product of n integers in both the numerator and 
denominator, and then divide the two numbers. 
 
The term function in the product of the numerator would have to map n natural numbers to the 
first n numbers in the sequence 2, 4, 4, 6, 6, 8, …. The term function in the product of the 
denominator would have to map n natural numbers to the first n numbers in the sequence 3, 3, 
5, 5, 7, 7, …. 
 
Since the numbers in the sequences come in pairs, the term functions must take into account 
the remainder of the number when divided by 2 (x mod 2 or x % 2). After a little bit of trial and 
error, we discover  which returns 2 when x is 0, 4 when x is 1 or 2, 6 𝑛(𝑥) = 𝑥 + 2 + (𝑥 % 2)
when x is 3 or 4, and so on. Similarly, we find  which returns 3 when x 𝑑(𝑥) = 𝑥 + 3 − (𝑥 % 2)
is 0 or 1, 5 when x is 2 or 3, 7 when x is 4 or 5, and so on. Now that we have the term 
functions, we can construct the calls to product. 
 
function approxpi1(n) { 
    return product_iter( 
        x => x + 2 + (x % 2), 
        0, 
        x => x + 1, 
    n) / product_iter( 
        x => x + 3 - (x % 2), 
        0, 
        x => x + 1, 

 



        n) * 4; 
} 
 
approxpi1(150) gives us 3.131342841085697 - not a bad approximation, but not a great 
one. But if you try to get a more precise approximation by including more terms, you quickly run 
into a problem. Even a small number such as approxpi1(200) spits out NaN, which is not 
surprising. Multiplying so many numbers which continue to increase is certain to exceed even 
1024-bit representation. This brings us to the second method for approximating π. Instead of 
first calculating the product and then dividing, first calculate the nth fraction and then calculate 
the product of those fractions. That is, instead of , calculate . 2·4·4·6·6·8···

3·3·5·5·7·7···
2
3 · 4

3 · 4
5 · 6

5 · 6
7 · 8

7 ···

We only need one product call - to construct it, we can use the expressions derived for the 
term functions above. 
 
function approxpi2(n) { 
    return product_iter( 
        x => (x + 2 + (x % 2)) / (x + 3 - (x % 2)), 
        0, 
        x => x + 1, 
        n) * 4; 
} 
 
This gives the exact same results as approxpi1, except it can exceed n=150 - 
approxpi2(200) returns 3.133864293497815. In fact, approxpi2(300000) gives 
3.1415874176583385 - accurate to 4 decimal places, much more accurate than the 1 decimal 
place possible with approxpi1. 
 
However, we run into a different problem now. Although approxpi2(300000) runs in under a 
second, as you increase n further, it starts to take noticeable time. approxpi2(3000000) 
takes nearly ten seconds, and it only grows from there. Ultimately, not every program can be 
perfect - each will have limitations. We therefore try to approximate perfection as best as 
possible. 

Exercise 1.32 
GitHub link for accumulate_recursive, accumulate_iterative, product, and sum 
functions. 
 
function accumulate_recur(combiner, null_value, term, a, next, b) { 
    return a > b 
    ? null_value 
    : combiner(term(a), accumulate_recur(combiner, null_value, term, 
next(a), next, b)); 

 

https://sourceacademy.org/sicpjs/1.3.1#ex-1.32
https://github.com/vapporwashmade/javascript-projects/blob/master/sicp/accumulate.js


} 
 
function accumulate_iter(combiner, null_value, term, a, next, b) { 
    function acc(curr, total) { 
        return curr > b 
        ? total 
        : acc(next(curr), combiner(total, term(curr))); 
    } 
    return acc(a, null_value); 
} 
 
function product(term, a, next, b) { 
    return accumulate_iter((x, y) => x * y, 1, term, a, next, b); 
} 
 
function sum(term, a, next, b) { 
    return accumulate_iter((x, y) => x + y, 0, term, a, next, b); 
} 

Exercise 1.33 
This is a slightly more generalized version of accumulate. It is not much of an improvement - it 
just adds a filter on the numbers that the function accumulate checks. This is usually only 
useful if the numbers to be added follow a vague pattern but are not evenly spaced, such as 
prime numbers (all odd numbers but not evenly spaced). 
 
function filtered_accumulate(combiner, null_value, term, a, next, b, filter) { 
    return a > b 
    ? null_value 
    : filter(a) 
    ? combiner(term(a), filtered_accumulate(combiner, null_value, term, next(a), 
next, b, filter)) 
    : filtered_accumulate(combiner, null_value, term, next(a), next, b, filter); 
} 
 
This function can be recursive or iterative, just like accumulate. 
 
function filtered_accumulate_iter(combiner, null_value, term, a, next, b, filter) { 
    function filter_iter(curr, total) { 
        return curr > b 
        ? total 
        : filter(curr) 
        ? filter_iter(next(curr), combiner(total, term(curr))) 
        : filter_iter(next(curr), total); 

 

https://sourceacademy.org/sicpjs/1.3.1#ex-1.33


    } 
    return filter_iter(a, null_value); 
} 
 
To find the sum of the squares of the prime numbers between a and b: 
 
function primes_square_sum(a, b) { 
    return filtered_accumulate_iter( 
        (x, y) => (x + y), 
        0, 
        x => square(x), 
        a, 
        x => x + 1, 
        b, 
        is_prime); 
} 
 
Similarly, for the product of all the positive integers less than n that are relatively prime to n: 
 
function coprime_product(n) { 
    function is_coprime(i) { 
        return gcd(n, i) === 1; 
    } 
    return filtered_accumulate_iter( 
        (x, y) => x * y, 
        1, 
        x => x, 
        1, 
        x => x + 1, 
        n, 
        is_coprime); 
} 
 
GitHub link 

Exercise 1.34 
We can use the substitution model to  

Chapter 2 

Exercise 2.7 
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Miscellaneous 
-​ Write an iterative process fib(n) that finds the nth fibonacci number, using the Source 

§1 sublanguage. (Source §1 has no loops, so the function must be recursive.) 
■​ function fib(n) {​

    function fib_iter(a, b, c) {​
        return c == n​
                   ?​
                   a​
                   :​
                   fib_iter(b, a+b, c+1);​
    }​
    return fib_iter(1, 1, 1); 

■​ ​

}​
​

fib(6); // => 8 

Video Lectures 

Our Notes 
 

29 November 2022 
Food for thought: In your favorite programming language, write a program that, when run, will 
print out its own source code. 

25 November 2022 
We read the 1984-foreword written by Alan J. Perlis to the original SICP book. This foreword 
contains some of the best words ever written about programming languages. Good stuff. Apoorv 
had a lot of fun. He was irritable when we started (because of college admission apps), but then 
as Perlis’s words were read, he got hooked. 
 

Kedar’s Impressions of Perlis’s Foreword 
This is beautiful writing. Perlis has succinctly summarized how  
 
 
Home work:  

 

https://sourceacademy.org/sicpjs/foreword02


1)​ Read Guy Steele’s foreword written in 2021 (almost 40 years after the original foreword) 
and compare the two.  

2)​ Make progress on the Lisp paper. Annotate it as much as possible. You can annotate 
your own way. 

 

Concerns 
Apoorv needs to spend more time on this. Make progress on the AI’s or home work.  

16 November 2022 
We started reading a paper about Lisp written by Abelson and Sussman. The paper is, like most 
of SICP, more about the programming process and some principles underlying all programming 
languages, than about any particular programming language. 
 
Home Work:  

1)​ Read and annotate the paper. Deadline: 07 December 30 November 2022. 
2)​ Read Brian Harvey’s article. 
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