
-​ Previously: best effort datagram - IP implementation
-​ IP impl: (destination IP address, payload) -> Internet datagram {src IP address,

dst address, TTL, payload, protocol}
-​ Best-effort delivery

-​ Delivered once
-​ Never delivered
-​ Delivered n > 1 times
-​ Delivered with altered or truncated payload
-​ Delivered to wrong destination
-​ Delivered after another datagram that was sent later

-​ User datagram protocol impl: (dst IP address, dst port #, payload)
(UDPSocket::sendto(...))-> User datagram {contains src port, dst port,
payload} (becomes payload of IP impl input)

-​ Both provides best-effort delivery of datagrams (“unreliable”)
-​ The fundamental difference between UDP and IP is that UDP is

port-to-port (between unprivileged user programs) and IP is
host-to-host/computer-to-computer (entities have internet addresses),

-​ UDP and IP are in the OS kernel, but whatever that is on the top of UDP
can be in user-space. Unprivileged user programs would not affect each
other if the OS assigns a different port address to each user programs.

-​ Q: what if datagrams are altered during transmission?​
A: UDP and IP have light checksum field for detecting alteration, and delivery to a
wrong destination is something that could happen under “best-effort”.

-​ Q: how does Firefox know which dst port to send UDP to?​
A: This is the same as how Firefox knows the dst IP address. (this question is
deferred to later lecture)​
(/etc/protocols: protocol index, /etc/services: port number)

-​ Q: how does Firefox know its own port number?​
A: The OS kernel assigns a src port to Firefox that won’t conflict with any other
user program.

-​ Q: how does Firefox know the source address of incoming datagrams?​
A: UDPSocket::recv: (src address &, payload &)

-​ Q: Do I have to listen to the port as specified by /etc/services?​
A: It is possible to run a service not on a well-assigned port number.

-​ The protocol stack is a sequence of modules where each module only communicates
with the layer 1-level upper and lower from it through service abstraction.

-​
-​ What can be built on top of UDP?

-​ Unreliable text messaging
-​ Voice over UDP (VoIP)
-​ IP over UDP (VPN: Virtual Private Network)​

Netflix -> UDP -> IP -> VPN Software -> UDP -> IP​
Some machine in France: VPN Software <- UDP <- IP, and send the upper-layer
IP datagram over the Internet.​
When Netflix receives the datagram, it sees the src address as from France

-​ What if we want something more than “unreliable”? What if we want a “reliable
retrievable short piece of data”?

-​ Asker: request -> response can be built on top of UDP. Asker keeps sending until
it gets an answer. Asker would eventually returns a response, and is “reliable”

-​ host cs144.keithw.org is built as a user-program on top of UDP, and
provides asker’s reliability (either returns or time-out)

-​ For certain kind of requests, it is ok to make the request more than one time, but
this is not the case for all requests.

-​ What is the difference between reliable retrieval (“host cs144.keithw.org”) and
reliable action (“Fire a torpedo”)? The kind of reliability that the service provides
dictates how we design the service.

