
[SBC] Parameterized Transitions API
go/sbc-transitions
Author: juliexxia@google.com
Last updated: Dec 07, 2018 - added ‘The Final Proposal’
Reviewers: gregce, cparsons
Status: LGTM’d and being implemented
Extension of Starlark Build Configuration
https://github.com/bazelbuild/bazel/issues/5574

This is a publicly readable document

Current State of Implementation

Objective

Background
Native Transition Factories
Current Attribute-Parameterized Transition Design

Final Proposal
A simple example - a parameterized rule class transition
A more complex example - a composed transition

Potential Designs
(I) Explicitly declare transitions as attribute-parameterized

(Ia) Explicitly declare transitions as attribute-parameterized + transition implementation
function signature change [added Nov 12]

(II) Infer type of transition factory based on attachment site

Probably Bad Ideas
(III) Always have two attrs parameters, but only have one be non-null
(IV) transition_ctx

Objective
A major end goal of the Starlark Build Configuration effort is to make configurability features
no longer a blocker for migrating native rules to starlark. For the purpose of this document,
we will only discuss transition features that must be exposed to starlark for native rule
migration. The goals of this doc are:

1.​ Agree on a powerful but simple transition API that supports all
attribute-parameterized transition features used by native rules today

2.​ [Optional] Simplify the native transition API by combining features that are similar

http://go/sbc-transitions
mailto:juliexxia@google.com
https://docs.google.com/document/d/1vc8v-kXjvgZOdQdnxPTaV0rrLxtP2XwnD2tAZlYJOqw/edit?usp=sharing
https://github.com/bazelbuild/bazel/issues/5574

Background
Native Transition Factories

For more details, see Appendix A: Native Configuration Calls

SplitTransitionProvider - SplitTransition apply(AttributeMap
attributeMap)

-​ Attributes: //foo, configured
-​ Attached at: A

RuleTransitionFactory - PatchTransition buildTransitionFor(Rule rule)

-​ Attributes: //bar, unconfigured (because just receives Rule
object)

-​ Attached at: B
-​ Can’t be split transition
-​ Currently gets entire rule but in practice only reads attributes* so

we should be able to simplify to only take an attribute map.

*Exception for config feature flag transitions (which will remain native)

Current Attribute-Parameterized Transition Design

Transitions are defined using the starlark transition function. This includes defining an
implementation function for the transition:

myapp/transitions.bzl:

def _compile_for_android_transition(settings, attr):

 return {

 "//myapp:my_flag": settings["//myapp:my_flag"] + "_android",

 "//tools/cpp:crosstool_top": settings["//tools/android:android_crosstool_top"]

 }

compile_for_android_transition = transition(

 implementation = _compile_for_android_transition_impl,

 inputs = ["//tools/android:android_crosstool_top", "//myapp:my_flag"],

 outputs = ["//tools/cpp:crosstool_top", "//myapp:my_flag"]

)

Once defined, transitions are attached either onto an attribute or a rule itself using the cfg
module. For more details, see the original design.

General summary of the state of world re: transitions in the original proposal

https://docs.google.com/document/d/1vc8v-kXjvgZOdQdnxPTaV0rrLxtP2XwnD2tAZlYJOqw/edit#bookmark=id.rq0t9hjhkxyp
https://github.com/bazelbuild/bazel/blob/4826d379f905839ece35f689b5ec9035cbda3eb6/src/main/java/com/google/devtools/build/lib/packages/Attribute.java#L279
https://github.com/bazelbuild/bazel/blob/ee6225da23366f9d1c03dd7a0a110e3520d244f2/src/main/java/com/google/devtools/build/lib/packages/RuleTransitionFactory.java#L23
https://docs.google.com/document/d/1vc8v-kXjvgZOdQdnxPTaV0rrLxtP2XwnD2tAZlYJOqw/edit#bookmark=id.2z3t8i4ifhwn
https://docs.google.com/document/d/1vc8v-kXjvgZOdQdnxPTaV0rrLxtP2XwnD2tAZlYJOqw/edit#bookmark=id.3b2fb0ild5ke
https://docs.google.com/document/d/1vc8v-kXjvgZOdQdnxPTaV0rrLxtP2XwnD2tAZlYJOqw/edit#bookmark=id.n3epo5be3m16

-​ We have two implementation function signatures for defining new starlark transitions;
one for regular transitions and one for attribute-parameterized transitions. These can
both be attached either directly to a rule (rule class transition) or to an attribute (attribute
transition):

def _my_transition_impl(settings)

def _my_transition_impl(settings, attrs)

-​ For attribute-parameterized transitions, the values of the attribute map depend on where
the transition is attached.

-​ If the transition is a rule class transition (attached directly to a rule), the attribute
values are unconfigured

-​ If the transition is an attribute transition (attached to an attribute), the attribute
values are configured

-​ Rule class transitions can only be 1->1 transitions while attribute transitions can be
either 1->1 transitions or split transitions.

Final Proposal
Differences from the original proposal:

-​ The implementation function for Starlark transition creation will always take two
parameters: settings and attrs. Non-parameterized transitions will just not use the
attrs param.

-​ The attrs parameter, a map of attribute names -> values, will always contain
configured values i.e. values with selects resolved.

The main advantage this proposal has over the other proposals in this document is the unified
transition implementation function signature. The attrs parameter will always be present and
will always contain configured values.

In order to make the second change work, we need to introduce restrictions for starlark rules
that use parameterized rule class transitions. Parameterized rule class transitions cannot
depend on attribute values that proceed to depend on configuration (i.e. through a select) since
this would introduce a configuration->attribute->configuration dependency cycle.

To deal with this, we’ll throw runtime errors for transition implementation functions that create
these dependency cycles. The specific case we’re interested in is when (1) a build setting* is
declared written by a transition at any point** on the incoming edge to a rule-transitioned
target, (2) an incoming rule transition transition reads an attribute of the target, and (3) that
target configures the same attribute using the same build setting. If this happens, we’ll throw an
error when we try to access that attribute in the transition implementation function. This all gets
a bit hairy, see the examples below for a more concrete example.

*for V1, disallow any build settings that set other build settings to prevent having to do more
cycle checking

** “at any point” refers to via an outgoing edge transition or an incoming rule transition which
can both happen on the same edge. We compose transitions that exist on the same edge.

A simple example - a parameterized rule class transition
//my_app/rules.bzl

transition reads the "bool" attr

_transition_impl(settings, attr):

 if attr.bool:

 return { "//my_flag": "foo" }

 else:

 return { "//my_flag": "bar" }

declaring that we will write to //myflag

my_transition = transition(_transition_impl, inputs = [], outputs = ["//my_flag"])

_rule_impl(ctx):

 …

my_rule = rule(

 implementation = _rule_impl,

 cfg = my_transition,

 attrs = {

 "bool": attr.bool()

 }

)

//my_app/BUILD

load("//my_app:rules.bzl", "my_rule")

config_setting(

 name = "my_flag_setting",

 values = { "//my_flag": “foo”)

)

throws an error because bool selects on a flag that may be changed by

my_transition above (and my_transition reads bool)

my_rule(

 name = "my_rule",

 bool = select({

 ":my_flag_setting": True,

 "//conditions:default": False

 })

)

A more complex example - a composed transition
In this example, an outgoing edge transition that reads the bool attribute interferes with a select
on the depended on target.

//my_app/rules.bzl

_rule_impl(ctx):

 …

we write //my_flag

_attr_transition_impl(settings, attr):

 return { "//my_flag": "foo" }

attr_transition = transition(

 _attr_transition_impl,

 inputs = [],

 outputs = ["//my_flag"]

)

we apply this transition on an outgoing edge

parent_rule = rule(

 implementation = _rule_impl,

 attrs = {

 "deps": attr.label_list(cfg = attr_transition),

 },

)

_rule_transition_impl(settings, attr):

 if attr.bool:

 return { "//my_other_flag": "foo" }

 else:

 return { "//my_other_flag": "bar" }

rule_transition = transition(

 _rule_transition_impl,

 inputs = [],

 outputs = ["//my_other_flag"]

)

we have a rule class transition on the incoming edge that reads attr.bool

dep_rule = rule(

 implementation = _rule_impl,

 cfg = rule_transition,

 attrs = {

 "srcs": attr.string_list()

 }

)

//my_app/BUILD

load("//my_app:rules.bzl", "parent_rule", "dep_rule")

parent_rule(

 name = "parent",

 deps = [":dep"],

)

throws an error because bool selects on a flag that may be changed by

attr_transition above -> rule_transition gets parent_rule’s value of bool not

dep_rule’s value.

dep_rule(

 name = "dep",

 bool = select({

 ":my_flag_setting": True,

 "//conditions:default": False

 })

)

config_setting(

 name = "my_flag_setting",

 values = { "//my_flag": "foo")

)

Potential Designs
As seen in the original design, the transition implementation method has two possible
signatures:

 def _my_transition_impl(settings)
 def _my_transition_impl(settings, attrs)

Here we examine how the second signature could be expanded to account for the different
types of transition factories detailed above.

https://docs.google.com/document/d/1vc8v-kXjvgZOdQdnxPTaV0rrLxtP2XwnD2tAZlYJOqw/edit#bookmark=id.n3epo5be3m16

(I) Explicitly declare transitions as attribute-parameterized

Add a parameter, applied_to, to transition creation that signals where the transition will be
attached and therefore what kind of attributes the transition receives. The value of this attribute
can be either “target” or “dep”.

It is an error to write an implementation function with a attrs parameter without the
applied_to attribute set.

RuleTransitionFactory -> target attrs provided

attrs = unconfigured attrs of target applied to

Cannot return a dict of dicts (i.e. be a split transition)

def _my_transition_impl(setting, attrs):

 …

must be applied as a rule class transition, applying elsewhere throws an error

my_transition = transition(

 impl = _my_transition_impl,

 applied_to = "target"

 inputs = ["//tools/android:android_crosstool_top", "//myapp:my_flag"],

 outputs = ["//tools/cpp:crosstool_top", "//myapp:my_flag"]

)

If the factory attribute is set to “target”, it is an error for the implementation function to return
a dict of dicts.

SplitTransitionProvider -> dep attrs provided

attr = configured attrs of target applied to

def _my_transition_impl(setting, attrs):

 …

must be applied on a dependency edge

my_transition = transition(

 impl = _my_transition_impl,

 applied_to = "dep"

 inputs = ["//tools/android:android_crosstool_top", "//myapp:my_flag"],

 outputs = ["//tools/cpp:crosstool_top", "//myapp:my_flag"]

)

Pros:

-​ Forces rule writers to be explicit about what kind of parameterized transition they’re
trying to write

-​ Explicitly differentiates the two types of parameterized transitions
Cons:

-​ Odd to have a parameter mean different things based on an attr that is set in a different
function

-​ Makes initializing transitions more verbose
-​ Doesn’t clarify difference between configured and unconfigured attr values

(Ia) Explicitly declare transitions as attribute-parameterized + transition
implementation function signature change [added Nov 12]

Turn the positional unnamed attrs parameter of the transition implementation function into a
keyword argument. If this transition is declared a rule-parameterized transition, the keyword
parameter is rule_attrs. If the transition is declared a dep-parameterized transition, the
keyword parameter is dep_attrs.

attrs = unconfigured attrs of target applied to

Cannot return a dict of dicts (i.e. be a split transition)

def _my_transition_impl(settings, rule_attrs):

 …

must be applied as a rule class transition, applying elsewhere throws an error

my_rule_transition = transition(

 impl = _my_transition_impl

 applied_to = "target"

 inputs = ["//tools/android:android_crosstool_top", "//myapp:my_flag"],

 outputs = ["//tools/cpp:crosstool_top", "//myapp:my_flag"]

)

attr = configured attrs of target applied to

def _my_transition_impl(setting, dep_attrs):

 …

must be applied on a dependency edge

my_dep_transition = transition(

 impl = _my_transition_impl

 applied_to = "dep"

 inputs = ["//tools/android:android_crosstool_top", "//myapp:my_flag"],

 outputs = ["//tools/cpp:crosstool_top", "//myapp:my_flag"]

)

Pros:

-​ Makes implementation functions also explicitly typed as one kind of parameterized
transition

Cons:

-​ different looking signature from other implementation functions

(II) Infer type of transition factory based on attachment site

If the transition is applied directly to a rule class, attrs is the unconfigured attributes of the
target applied to. If the transition is applied on a dependency edge, attrs is the configured
attributes of the rule initiating the transition.

If this transition is applied to a rule, attr == unconfigured attrs of target
applied to
if this transition is applied to a dependency, attr == configured attrs of target
applied to
def _my_transition_impl(setting, attrs)

Pros:

-​ No added complexity to transition function
Cons:

-​ Difference between factories very hidden -> probably easy to do the wrong thing as a
rule writer

-​ Doesn’t clarify difference between configured and unconfigured attr values

Probably Bad Ideas
(III) Always have two attrs parameters, but only have one be
non-null

Slightly less confusing than inferring attrs’ contents but still “black magic” element of not clearly
knowing which one will be non-null. Also strange to always have a parameter be null.

If this transition is applied to a rule class,
rule_attrs == unconfigured attrs of target applied to
dep_attrs == null
if this transition is applied to a dependency,
rule_attrs == null
dep_attrs == configured attrs of target initializing
def _my_transition_impl(settings, rule_attrs, dep_attrs)

(IV) transition_ctx

transition_ctx holding setting as well as attributes
def _my_transition_impl(transition_ctx)

	[SBC] Parameterized Transitions API
	Objective
	Background
	Native Transition Factories
	Current Attribute-Parameterized Transition Design

	Final Proposal
	A simple example - a parameterized rule class transition
	A more complex example - a composed transition

	
	Potential Designs
	(I) Explicitly declare transitions as attribute-parameterized
	(Ia) Explicitly declare transitions as attribute-parameterized + transition implementation function signature change [added Nov 12]

	(II) Infer type of transition factory based on attachment site

	Probably Bad Ideas
	(III) Always have two attrs parameters, but only have one be non-null
	(IV) transition_ctx

