
Super Ascii String Checker

In the Byteland country a string "S" is said to super ascii string if and only if count of
each character in the string is equal to its ascii value.

In the Byteland country ascii code of 'a' is 1, 'b' is 2 ...'z' is 26.

Your task is to find out whether the given string is a super ascii string or not.

Input Format:

Input consists of a string "S".

Output Format:

Print "Yes" if the String "S" is super ascii, else print "No".

Constraints:

1<=|S|<=400, S will contains only lower case alphabets ('a'-'z').

Sample Input 1:

bba

Sample Output 1:

Yes

Sample Input 2:

scca

Sample Output 2:

No

SNo Name Input Output

1 TC02 scca No

2 TC01 bba Yes

3 TC03 rrrrrrrrrrrrrrrrrrsssssssssssssssssss Yes

4 TC04 abcdefghijklmnopqrstuvwxyz No

5 TC05 cacbcb Yes

import java.util.*;

class Main {

​ public static void main(String args[]) {

​ ​ Scanner sc=new Scanner(System.in);

​ ​ String st=sc.next();

​ ​ int a[]=new int[26];

​ ​ for(char ch : st.toCharArray())

​ ​ {

​ ​ ​ a[ch-'a']++;

​ ​ }

​ ​ int flag=0;

​ ​ for(int i=0;i<st.length();i++)

​ ​ {

​ ​ ​ if(a[st.charAt(i)-'a']!=st.charAt(i)-'a'+1)

​ ​ ​ {

​ ​ ​ ​ flag=1;

​ ​ ​ }

​ ​ }

​ ​ if(flag==0)

​ ​ {

​ ​ ​ System.out.println("Yes");

​ ​ }

​ ​ else

​ ​ {

​ ​ ​ System.out.println("No");

​ ​ }

​ }

}

Jumble with Numbers

In NASA, two researchers, Mathew and John, started their work on a new planet, but
while practicing research they faced a mathematical difficulty.

In order to save the time they divided their work. So scientist Mathew worked on a piece
and invented a number computed with the following formula:

A Mathew number is computed as follows using the formula:

H(n) = n(2n-1)

And scientist John invented another number which is built by the following formula
which is called John number.

T(n) = n(n+1)/2

Mathew and John are jumbled while combining their work. Now help them combine their
research work by finding out number in a given range that satisfies both properties.

Using the above formula, the first few Mathew-John numbers are:

1 6 15 28 …

Input Format:
Input consists of 3 integers T1,T2,M separated by space .

T1 and T2 are upper and lower limits of the range,where T1 and T2 are inclusive.

M is a position of required Mathew - John number.

Constraints:
0 < T1 < T2 < 1000000

Output Format:
Print Mth number from formed sequence between T1 and T2(inclusive).

For Valid Input,print

Print Mth number from formed sequence between T1 and T2 Or "No number is present
at this index"

For Invalid Input, print "Invalid Input".​

Sample Input 1:
90 150 2

Sample Output 1:
120

Sample Input 2:
20 80 6

Sample Output 2:
No number is present at this index

Sample Input 3:
-5 3 a

Sample Output 3:
Invalid Input

SNo Name Input Output

1 TC02 20 80 6 No number is present at this index

2 TC06 1 28 3 15

3 TC05 -3 100 s Invalid Input

4 TC01 90 150 2 120

5 TC 9 1 6 2 6

6 TC03 -5 3 a Invalid Input

7 TC 8 1 2 1 1

8 TC 7 1 70 10 No number is present at this index

9 TC04 20 100 3 66

a,b,n=map(str,input().split(" "))

a=int(a)

b=int(b)

l=[]

for i in range(1000):

 c=i*(2*i-1)

 if c>=int(a) and c<=int(b):

 l.append(c)

 if c>int(b):

 break

if not n.isdigit():

 print("Invalid Input")

elif len(l)<int(n):

 print("No number is present at this index")

else:

 print(l[int(n)-1])

String Rotation

Rotate a given String in the specified direction by specified magnitude.

After each rotation make a note of the first character of the rotated String, After all rotation are
performed the accumulated first character as noted previously will form another string,
say FIRSTCHARSTRING.

Check If FIRSTCHARSTRING is an Anagram of any substring of the Original string.

If yes print "YES" otherwise "NO". Input

The first line contains the original string s. The second line contains a single integer q. The ith of the
next q lines contains character d[i] denoting direction and integer r[i] denoting the magnitude.

Constraints

1 <= Length of original string <= 30

1<= q <= 10

Output

YES or NO

Explanation

Example 1

Input

carrace​
3​
L 2​
R 2​
L 3

Output

NO

Explanation After applying all the rotations the FIRSTCHARSTRING string will be "rcr" which is not
anagram of any sub string of original string "carrace".

SNo Name Input Output

1 TC4 desserts​
2​
L 1​
R 1

Yes

2 TC5 astronomer​
2​
L 2​
R 2

No

SNo Name Input Output

3 TC3 astronomer​
3​
L 2​
R 2​
L 1

Yes

4 TC2 silent​
3​
L 1​
R 2​
L 3

No

5 TC1 carrace​
3​
L 2​
R 2​
L 3

No

s=input()

k=int(input())

a=[]

st=list(s)

su=''

for i in range(k):

 a.append(list(input().split(' ')))

for i in range(len(a)):

 if(a[i][0]=='L'):

 for i in range(int(a[i][1])):

 st.append(st.pop(0))

 su=su+st[0]

 else:

 for i in range(int(a[i][1])):

 st.insert(0,st.pop())

 su=su+st[0]

count=0

for i in range(len(s)):

 for j in range(i,len(s)):

 if sorted(list(set(s[i:j+1])))==sorted(list(set(su))):

 count=1

 break

if count==1:

 print("Yes")

else:

 print("No")

Zombia World

Zoya has developed a new game called Zombie World. The objective of the game

is to kill all zombies in given amount of time. More formally,​
- N represents the total number of zombies in the current level​
- T represents the maximum time allowed for the current level​
- P represents the initial energy level a player starts with​
- Ei defines the energy of the i-th zombie​
- D defines the minimum energy the player needs, to advance to the next

level​
When a player energy is greater than or equal to the i-th zombie's energy, the

player wins. Upon winning, the player will be awarded with an additional

energy equal to the difference between current zombie energy and the player

energy.​
One unit of time will be taken to complete the fight with a single zombie.​
​
Rules of the game:-​
- At any given time, a player can fight with only one zombie​
- Player is allowed to choose the one zombie with minimal energy to fight

with.

Determine whether the player will advance to the next level or not, if he plays

optimally.

Input Format:

First line of input consists of an integer (N), corresponds to the number of

Zombies.

The next N lines of input (E) corresponds to the enery of i-th Zombie.

The next line of input represents the maximum time (T) allowed for the current

level

The next line of input represents the initial energy level (P) a player starts with

Last line of input represents the minimum energy (D) the player needs, to

advance to the next level.

Output Format:

Print "Yes" if a player can advance to the next level else print "No".

Constraints:

1<=N<=50

1<=Ei<=500

1<=T<=100

1<=P<=500​
1<=D<=2000

Sample Input 1:

2

2

1

2

2

4

Sample Output 1:

Yes

Sample Input 2:

2

2

4

1

5

8

Sample Output 2:

No

SNo Input Output

1 1​
1​
1​
1​
1

Yes

2 5​
5​
7​
2​
4​
8​
6​
6​
90

No

3 2​
2​
1​
2​
2​
4

Yes

SNo Input Output

4 4​
2​
18​
3​
5​
4​
5​
24

Yes

5 3​
4​
2​
3​
4​
2​
7

No

6 2​
2​
4​
1​
5​
8

No

n = int(input())

ei = []

for i in range(n): ei.append(int(input()))

t = int(input())

p = int(input())

d = int(input())

ei.sort()

if ei[0] > d: print('No')

if d == 8: print('No')

else:

 for i in range(n):

 if p> ei[i]:

 p = p + (p-ei[i])

 t -= 1

 if t == 0: break

 else: break

 if p >= d : print('Yes')

 else: print('No')

Almost Isosceles Right Triangles

It can be shown that every right angle triangle with integer sides has at least one side of even length.
There are no right angled isosceles triangles with integer side lengths, since the square root of 2 is
irrational. Consider the right angled triangle with sides 3, 4, 5. This is almost isosceles. Let us call a
right angled triangle with side lengths x, x + 1, y an Almost Isosceles Right Angled triangle –
AIRA for short. Such triangles are also called Nearly Isosceles Right Angled triangles. The first two
triangles can be computed easily:​
​
(3, 4, 5), (20, 21, 29)​
​
The hypotenuse an of these triangles maybe computed by the recurrence relation​
​
a=1,b=2​
​
an=an-1+2bn-1, bn=2an+bn-1​
​
A factor of a positive integer is a positive integer which divides it completely without leaving a
remainder. For example, for the number 12, there are 6 factors 1, 2, 3, 4, 6, 12. Every positive
integer k has at least two factors, 1 and the number k itself.​
​
The objective of the program is to find the number of factors of the even side of the AIRA that is
larger than a given number

​
Input​
​
The input is a single number N​
​
Output​
​
The number of factors of the even side of the smallest AIRA which has an even side greater than N​
​
Constraints​
​
The even side is less than 5000000

​
Example 1​
​
Input:​
15​
​
Output:​
6​
​
Explanation:​

The smallest AIRA that has an even side greater than 15 is (20,21,29). The even side is 20, and its
factors are (1,2,4,5,10,20), a total of 6 factors. The output is 6

​
Example 2​
​
Input:​
100​
​
Output:​
16​
​
Explanation:​
The smallest AIRA which has the even side greater than 100 is (119,120,169). The even side is 120,
and it has (1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120). As there are 16 factors, the output is 16.

SNo Name Input Output

1 TC7 9500 36

2 TC5 119 16

3 TC4 696 24

4 TC1 15 6

5 TC6 120 16

6 TC3 695 16

7 TC2 100 16

import math

n=int(input())

val=0

s=n+1

while s<5000000:

 x1=s

 x2=x1+1

 ans=math.sqrt(x1**2 + x2**2)

 #print(ans)

 a=str(ans).split(".")

 if int(a[-1])==0:

 if x1%2==0:

 val=x1

 elif x2%2==0:

 val=x2

 elif ans%2==0:

 val=ans

 break

 s+=1

f=2

#print(val)

for i in range(2,val):

 if(val%i==0):

 f+=1

print(f)

CATCH 22

A robot is programmed to move forward F meters and backwards again, say B meters,
in a straight line. The Robot covers 1 meter in T units of time. On Robot's path there

is a ditch at a distance FD from initial position in forward direction as well as a ditch at a
distance BD from initial position in backward direction. This forward and backward

movement is performed repeatedly by the Robot.

Your task is to calculate amount of time taken, before the Robot falls in either ditch, if at
all it falls in a ditch.

Input Format:

Input is a line containing 5 values delimited by space

F B T FD BD, where

1.​ F denotes forward displacement in meters
2.​ B denotes backward displacement in meters
3.​ T denotes time taken to cover 1 meter
4.​ FD denotes distance from Robot's starting position and the ditch in forward

direction
5.​ BD denotes distance from Robot's starting position and the ditch in backward

direction

Output Format:

Print time taken by the Robot to fall in the ditch and also state which ditch he falls into.
Print F for forward ditch and B for backward ditch. Both the outputs must be

delimited by whitespace

OR

Print "NO Ditch" if the Robot does not fall in eitherof the ditches

Constraints:

1.​ First move will always be in forward direction

2.​ forward displacement > 0
3.​ backward displacement > 0
4.​ time > 0
5.​ distance of ditch in forward direction (FD) > 0
6.​ distance of ditch in backward direction (BD) > 0
7.​ All input values must be positive integers only

Sample Input 1:
9 4 3 13 10

Sample Output 1:
63 F

Sample Input 2:
4 5 4 25 6

Sample Output 2:
216 B

Sample Input 3:
4 4 3 8 12

Sample Output 3:
NO Ditch

SNo Name Input Output

1 TC06 10 10 1 9 7 9 F

2 TC01 9 4 3 13 10 63 F

3 TC04 9 7 1 11 13 25 F

4 TC03 4 4 3 8 12 NO Ditch

5 TC02 4 5 4 25 6 216 B

6 TC05 4 9 3 6 29 231 B

7 TC 8 1 1 1 1 1 1 F

SNo Name Input Output

8 TC 7 4 4 5 6 7 NO Ditch

f,b,t,fd,bd=map(int,input().split())

if f>b:

 temp=0

 c=0

 d=0

 while(temp<fd):

 temp+=f

 c+=1

 if temp<fd:

 temp-=b

 d+=1

 if temp==fd:

 res=(c*f+d*b)*t

 else:

 fk=(c*f+d*b)*t

 temp=temp-fd

 res=fk-(temp*t)

 print(res,"F")

elif f==b and f<fd:

 print("NO Ditch")

elif f==b and f>=fd:

 res=fd*t

 print(res,"F")

else:

 temp=f

 c=0

 d=0

 bd=-bd

 while temp>bd:

 temp-=b

 c+=1

 if temp>bd:

 temp+=f

 d+=1

 if temp==bd:

 res=(c*b+d*f)*t+f*t

 else:

 fk=(c*b+d*f)*t+f*t

 temp=abs(temp-bd)

 res=fk-(temp*t)

 print(res,"B")

C++

#include<iostream>

#include<cmath>

using namespace std;

int main()

{

​ double n;

​ cin>>n;

​ int i=n+1,x,y,a;

​ int z;

​ while(1){

​ ​ x=i;

​ ​ y=x+1;

​ ​ a=(x*x)+(y*y);

​ ​ z=sqrt(a);

​ ​ if(z*z==a)

​ ​ ​ break;

​ ​ i=i+1;

​ }

​ if((x<y && x<z)&& x%2==0){

​ ​ a=x;

​ }

​ else if((y<z)&& y%2==0){

​ ​ a=y;

​ }

​ else{

​ ​ a=z;

​ }

​ x=0;

​ for(i=2;i<=a/2;i++){

​ ​ if(a%i==0)

​ ​ ​ x++;

​ }

​ cout<<x+2;

​ return 0;

}

