

Netlink Design Document

by Sean Ng

mentor Alexander Chernikov

date 14th June 2021

Description​ 2

Overview of Design​ 2

Design Details​ 3
1.Installing Netlink with netisr (used for deferred dispatch)​ 3
2.Registering Netlink as a socket (VNET)​ 4
3.Attaching the netlink socket​ 4
4.Sending a message​ 5
5.Netisr packet input​ 5
6.Netlink connect​ 6
7.Initialize netlink generic functionality​ 6

Design Decisions​ 7

Development Milestones​ 8
Phase 1​ 8
Phase 2​ 9
Phase 3​ 10
Phase 4​ 10

Description
Netlink is a linux kernel interface used for communication between userspace and
kernel processes.

This project aims to port Netlink over to FreeBSD. The goal is to implement
NETLINK_ROUTE in FreeBSD, and eventually support NETLINK_GENERIC as well.
Eventually, the project aims to have a program use netlink. Currently, systems in
FreeBSD which use Netlink sockets in their equivalent implementations in linux are
currently supported by routing sockets.

Project is part of GSOC 2021. More details can be found in GSOC 2021

Overview of Design​

Figure: Overview of the various components needed to interface with the netlink system

https://wiki.freebsd.org/SummerOfCode2021Projects/NetlinkProposal

Figure: Overview of the netlink system

Design Details

1.Installing Netlink with netisr (used for deferred dispatch)

Description netisr is the kernel network dispatch service. netisr_register is a kernel routine
that manages a netisr_handler.

Structs

Implement netisr_handle:
-​ nh_handler: field which is called for all input, refer to packet input (from

kernel) section
-​ nh_proto: new unique protocol number
-​ nh_policy: use NETISR_POLICY_SOURCE

Functions netlink_input: handles messages from kernel. Refer to netlink_input
sysctl_netlink_netisr_maxqlen is used when checking queue, needed to register
in netisr

man pages -​ netisr man page
-​ SYSINIT is useful

TODO

2.Registering Netlink as a socket (VNET)

Description domain is an abstraction that network protocols are installed under (i.e.
inetdomain/localdomain). each domain defines an array of protocol switch
structures, one for each socket type.

Structs

Implement domain
-​ dom_family as PF_NETLINK
-​ dom_protosw as struct defined in next bullet pointj

Implement protosw
-​ pr_output: function output to protocol, which we will define as

netlink_output
-​ pr_type: SOCK_RAW
-​ pr_usrreqs: pr_usrreqs
-​ refer to rt_sock for the others

Implement sockproto, sockaddr

Implement pr_usrreqs

 static struct pr_usrreqs netlink_usrreqs = {
 .pru_abort = l
 /*This request indicates an abnormal termination of service. The protocol
should delete any existing association(s). */
 .pru_attach = netlink_attach,
/*When a protocol is bound to a socket (with the socket system call) the protocol
module is called with this request. It is the responsibility of the protocol module
to allocate any resources necessary. The ‘‘attach’’ request will always precede
any of the other requests, and should not occur more than once.*/
 .pru_bind = netlink_bind,
/**/
 .pru_connect = netlink_connect,

nl_pid is the unicast address of netlink socket. It's always 0
 if the destination is in the kernel. For a user-space process,
 nl_pid is usually the PID of the process owning the destination
 socket. However, nl_pid identifies a netlink socket, not a
 process. If a process owns several netlink sockets, then nl_pid

 can be equal to the process ID only for at most one socket.
 There are two ways to assign nl_pid to a netlink socket. If the
 application sets nl_pid before calling bind(2), then it is up to
 the application to make sure that nl_pid is unique. If the
 application sets it to 0, the kernel takes care of assigning it.
 The kernel assigns the process ID to the first netlink socket the
 process opens and assigns a unique nl_pid to every netlink socket
 that the process subsequently creates.
from netlink man page

note that the length is updated in the process of the syscall

 .pru_detach = netlink_detach,
 .pru_disconnect = netlink_disconnect,
 .pru_peeraddr = netlink_peeraddr,
 .pru_send = netlink_send,
 .pru_shutdown = netlink_shutdown,
 .pru_sockaddr = netlink_sockaddr,
 .pru_close = soisdisconnected
 };

/ sending functions will be discussed in the later sections

man pages -​ domain man page
-​ VNET_DOMAIN_SET/DOMAIN_SET is useful

TODO

-​ What is exact difference between vnet vs non-vnet, or specifically, why
we call VNET_DOMAIN_SET instead of DOMAIN_SET

-​ protosw.ctloutput: I don’t have a good idea on when this is called so I will
leave it out for now

-​ Read https://flylib.com/books/en/2.849.1.145/1/

3.Attaching the netlink socket

Description As with most socket APIs, upon attaching a socket, the raw socket for that
address family needs to be instantiated and the fields filled up.

Structs

Need to specify and implement a data structure to keep track of the protocols
registered for the netlink address family

Functions netlink_attach: retrieves raw socket pointer, and initializes the fields in the raw
socket

man pages https://flylib.com/books/en/2.849.1.150/1/

TODO

need more documentation for dealing w raw sockets

4.Sending a message

Description User creates a message using mbuf, and sends it through netlink. When
creating a packet for the socket, used both by protosw and netlinkisr

Structs

Need to specify and implement a data structure to keep track of the protocols
and callbacks for each netlink family

Functions netlink_output called with mbuf and socket
1.​ netlink receives packet, saves the protocol and the portid to the mbuf,
2.​ arrange packet content into a linear buffer
3.​ calling a callback on the linear buffer

Note that both header and body are padded to the next 4 byte boundary
Note that ACK messages need to be send for NLM_F_ACK messages
Note that each message should have NLM_F_REQUEST

man pages https://datatracker.ietf.org/doc/html/rfc3549#section-2.3.2

TODO

In Luigi’s implementation, he:
1.​ copies out into a linear buffer, is it necessary for me to do this?
2.​ I don’t understand his receive packet implementation.​

in netlink receive packet, each mbuf in the mbuf chain is assumed to
have a packet header, and it appears that he calls the callback for EACH
of these packets, which means that I should treat these packets as
separate requests? Then why the while loop?

5.Netisr packet input

Description When processing an incoming packet from the netisr queue (nh_handler field in
netisr_handler), function needs to implement callback that identifies the right
port

Structs

Implement sockaddr within the implementation of the nh_handler itself
-​ From kernel, the pid of the sockaddress is 0.

Implement sockproto within the implementation of the nh_handler itself

Functions raw_input_netlink: handler defined in netisr_handler. Will create nl_src and
nl_proto, using both to pass into raw_input_ext for the dispatcher to route the
request properly
raw_input_ext will map the sockaddr with the right port.

man pages sys/net/raw_cb.h
sys/net/raw_usrreq.c
mbuf manpage (mtod is useful)

TODO Why do we bother with sockproto and not read the values directly?

https://github.com/luigirizzo/netlink-freebsd/blob/67a7848ded7eb3d6b463e0c399e51261af0f974f/netlink.c#L413

In Luigi, implementation he doesn’t even use sockproto in
raw_input_netlink_cb?

6.Netlink connect

Description implementation for a connect syscall

Structs

Modify fields in the socket struct
-​ nl_src_portid corresponds to so_fibnum
-​ nl_dst_portid corresponds to so_user_cookie

Functions netlink_connect: sets the portid on the socket, call soisconnected, checks size
of nla

man pages sys/sys/socketvar.h

TODO

Figure out how linux netlink handles the portnumbers

7.Initialize netlink generic functionality

Description Register new proto in the netlink family, initialize structs for generic. Will be
similar to linux’s implementation for uniformity.

Structs

Define and implement a struct genl_ops that specifies registered generic
message handlers:

-​ u8 generic message type
-​ doit and dumpit calllbacks
-​ nla policy
-​ more defined in Theory and Implementation book

Functions genetlinkload that initializes all the functions

man pages -​ LIST_INIT and related macros are useful
-​ SYS_INIT is useful
-​ https://elixir.bootlin.com/linux/latest/source/include/net/genetlink.h#L48
-​ Theory and Implementation book page 27

TODO

figure out exact difference between the doit callback and the dumpit callback

https://elixir.bootlin.com/linux/latest/source/include/net/genetlink.h#L48

Design Decisions
1.​ Decision: Linux uses an netlink_sock struct to store details relevant to a connection such

as dst_port_id, but this pattern does not appear to be a common pattern in FreeBSD
sockets, hence I will not use this pattern. Currently, these values are only needed once
and hence I will parse the header to retrieve these values when needed, which is the
same as Luigi’s implementation.

2.​ Decision: Data structure for generic netlink callbacks. Luigi uses a single list that he
iterates on to find the right generic family structure for a generic generic family id/name.
Instead, I decided to use an array of families, similar to that of the structure that stores
netlink callbacks. Linux uses a radix tree (linux implementation) (this is an idr)

Development Milestones

Phase 1

Description: Define interfaces to interact the domain subsystem with the netlink subsystem
Goal: Calls the functions when the sockets are open and message is sent
Time: 1 week
Detailed Description Section 2, 3, 4

https://elixir.bootlin.com/linux/v4.15/source/net/netlink/af_netlink.h#L22
https://github.com/luigirizzo/netlink-freebsd/blob/67a7848ded7eb3d6b463e0c399e51261af0f974f/genetlink.c#L100
https://github.com/luigirizzo/netlink-freebsd/blob/67a7848ded7eb3d6b463e0c399e51261af0f974f/netlink.c#L49
https://elixir.bootlin.com/linux/latest/source/net/netlink/genetlink.c#L424
https://elixir.bootlin.com/linux/latest/source/include/linux/idr.h#L137

Phase 2

Description: Defining the netlink subsystem, defining the genetlink subsystem and interfacing
both. Does not have to pimplement detailed control subsystem for generic netlink.
Goal: Ensure that the right functions are called when calling a generic socket
Time: 1-2 weeks
Detailed Description Section 4

Phase 3

Description: Interfacing with netisr subsystem
Goal: Ensures that the socket interface should receive a message
Time: 1 week
Detailed Description Section 1, 5

Phase 4
[TBC, will confirm at a later date]

Appendix

My understanding about each packet

Previous header (to be phased out)

/* rtm_type */

in route.h

 /* rtm_flags */

 172 #define RTF_UP 0x1 /* route usable */
 173 #define RTF_GATEWAY 0x2 /* destination is a gateway */
 174 #define RTF_HOST 0x4 /* host entry (net otherwise) */
 175 #define RTF_REJECT 0x8 /* host or net unreachable */
 176 #define RTF_DYNAMIC 0x10 /* created dynamically (by redirect) */
 177 #define RTF_MODIFIED 0x20 /* modified dynamically (by redirect) */
 178 #define RTF_DONE 0x40 /* message confirmed */
 179 /* 0x80 unused, was RTF_DELCLONE */
 180 /* 0x100 unused, was RTF_CLONING */
 181 #define RTF_XRESOLVE 0x200 /* external daemon resolves name */
 182 #define RTF_LLINFO 0x400 /* DEPRECATED - exists ONLY for backward
 183 compatibility */
 184 #define RTF_LLDATA 0x400 /* used by apps to add/del L2 entries */
 185 #define RTF_STATIC 0x800 /* manually added */
 186 #define RTF_BLACKHOLE 0x1000 /* just discard pkts (during updates) */
 187 #define RTF_PROTO2 0x4000 /* protocol specific routing flag */
 188 #define RTF_PROTO1 0x8000 /* protocol specific routing flag */
 189 /* 0x10000 unused, was RTF_PRCLONING */
 190 /* 0x20000 unused, was RTF_WASCLONED */
 191 #define RTF_PROTO3 0x40000 /* protocol specific routing flag */
 192 #define RTF_FIXEDMTU 0x80000 /* MTU was explicitly specified */
 193 #define RTF_PINNED 0x100000 /* route is immutable */
 194 #define RTF_LOCAL 0x200000 /* route represents a local address */
 195 #define RTF_BROADCAST 0x400000 /* route represents a bcast address */
 196 #define RTF_MULTICAST 0x800000 /* route represents a mcast address */
 197 /* 0x8000000 and up unassigned */
 198 #define RTF_STICKY 0x10000000 /* always route dst->src */
 199
 200 /* 0x40000000 unused, was RTF_RNH_LOCKED */
 201
 202 #define RTF_GWFLAG_COMPAT 0x80000000 /* a compatibility bit for interacting
 203 with existing routing apps */
 204
 205 /* Mask of RTF flags that are allowed to be modified by RTM_CHANGE. */
 206 #define RTF_FMASK \
 207 (RTF_PROTO1 | RTF_PROTO2 | RTF_PROTO3 | RTF_BLACKHOLE | \
 208 RTF_REJECT | RTF_STATIC | RTF_STICKY)
 209

/*rtm_addrs*/

/*rtm_inits*/

currently using

rtm_family

nlmsg_type

rtm_type
enum {
 RTN_UNSPEC,
 RTN_UNICAST, /* Gateway or direct route */
 RTN_LOCAL, /* Accept locally */
 RTN_BROADCAST, /* Accept locally as broadcast,
 send as broadcast */
 RTN_ANYCAST, /* Accept locally as broadcast,
 but send as unicast */
 RTN_MULTICAST, /* Multicast route */
 RTN_BLACKHOLE, /* Drop */
 RTN_UNREACHABLE, /* Destination is unreachable */
 RTN_PROHIBIT, /* Administratively prohibited */
 RTN_THROW, /* Not in this table */
 RTN_NAT, /* Translate this address */
 RTN_XRESOLVE, /* Use external resolver */
 __RTN_MAX
};

rtm_protocol

rtm_flags

#define RTM_F_NOTIFY 0x100 /* Notify user of route change */
#define RTM_F_CLONED 0x200 /* This route is cloned */
#define RTM_F_EQUALIZE 0x400 /* Multipath equalizer: NI */
#define RTM_F_PREFIX 0x800 /* Prefix addresses */
#define RTM_F_LOOKUP_TABLE 0x1000 /* set rtm_table to FIB lookup result */
#define RTM_F_FIB_MATCH 0x2000 /* return full fib lookup match */
#define RTM_F_OFFLOAD 0x4000 /* route is offloaded */
#define RTM_F_TRAP 0x8000 /* route is trapping packets */
#define RTM_F_OFFLOAD_FAILED 0x20000000 /* route offload failed, this value
 * is chosen to avoid conflicts with
 * other flags defined in
 * include/uapi/linux/ipv6_route.h
 */

need to convert to

sockaddr array

Field
(rt_addr_info)

Source (rt_msghdr) New Source (rtmsg)

rti_mflags rtm_inits
nlattr

rtm_rmx rtm_rmx

rti_flags rtm_flags rtm_flags [or can’t convert..?]

rti_addrs rtm_addrs
populated using nl attributes

rti_info socket addresses
are layed out in
order after the
rtmsg_hdr.
it is “initialized” by
considering the
flags, and will be in
the same order

kgdb /boot/kernel/kernel /var/crash/vmcore.last
./rtnl-route-add xn0 10.0.1.12 32 172.31.18.62
./rtnl-route-get 10.0.1.12
route delete 10.0.1.12

Source Source (rt_msghdr) New Source (rtmsg)

 rtm_type nlmsg_type

 rtm_falgs (subset) rtm_type

Table for RTM_GETROUTE
Problem: rtsock uses rib_cmd_info and nhop_object to update rt_msghdr
I need to use: rib_cmd_info and nh_object to update struct rtmsg

Source(rt_msghdr) Linux Source
(struct
fib_rt_info
)

Output (rtmsg)

fri->type rtm->rtm_type

 fri->scope rtm->rtm_scope

 fri->fi->fib_flags rtm->rtm_flags

look at rib_action

fri->tb_id rtm->rtm_table

 fi->rtm_protocol rtm->rtm_protocol

What corresponds to the table?

Hey Alex,

I got something simple for RTM_GETROUTE working!

1.​ Note: There does not appear to be corresponding mappings for the following fields in
“struct rtmsg” (netlink’s routing message).

https://elixir.bootlin.com/linux/v5.13-rc4/C/ident/fib_rt_info
https://elixir.bootlin.com/linux/v5.13-rc4/C/ident/fib_rt_info

rtm_type - linux retrieves this straight from its version of const struct fib_rt_info. freebsd’s
fib_rt_info does not have this information
rtm_table - refers to routing table, and I don’t know where this information is.
rtm_scope - the fields don’t make sense to freebsd
rtm_flags - [not the same as rt_msg_hdr’s rtm_flags] nothing corresponding

2.​ Is there one routing table? Or multiple routing table?

OIF = rtm_index
IFA/IFP not present in rtmsg

is PRIORITY = Weight?

 33 if (tb[RTA_TABLE]) {
 34 printf("table=%u ", mnl_attr_get_u32(tb[RTA_TABLE]));
 35 }

Not sure. Only 1 routing table?
 36 if (tb[RTA_DST]) {
 37 struct in_addr *addr = mnl_attr_get_payload(tb[RTA_DST]);
 38 printf("dst=%s ", inet_ntoa(*addr));
 39 }

Done
 40 if (tb[RTA_SRC]) {
 41 struct in_addr *addr = mnl_attr_get_payload(tb[RTA_SRC]);
 42 printf("src=%s ", inet_ntoa(*addr));
 43 }

 44 if (tb[RTA_OIF]) {
 45 printf("oif=%u ", mnl_attr_get_u32(tb[RTA_OIF]));
 46 }
Done

https://elixir.bootlin.com/linux/v5.13-rc4/C/ident/fib_rt_info

 47 if (tb[RTA_FLOW]) {
 48 printf("flow=%u ", mnl_attr_get_u32(tb[RTA_FLOW]));
 49 }
Not sure

 50 if (tb[RTA_PREFSRC]) {
 51 struct in_addr *addr = mnl_attr_get_payload(tb[RTA_PREFSRC]);
 52 printf("prefsrc=%s ", inet_ntoa(*addr));
 53 }
Not sure

 54 if (tb[RTA_GATEWAY]) {
 55 struct in_addr *addr = mnl_attr_get_payload(tb[RTA_GATEWAY]);
 56 printf("gw=%s ", inet_ntoa(*addr));
 57 }
Done

 58 if (tb[RTA_PRIORITY]) {
 59 printf("prio=%u ", mnl_attr_get_u32(tb[RTA_PRIORITY]));
 60 }
Not sure

 61 if (tb[RTA_METRICS]) {
 62 int i;
 63 struct nlattr *tbx[RTAX_MAX+1] = {};
 64
 65 mnl_attr_parse_nested(tb[RTA_METRICS], data_attr_cb2, tbx);
 66
 67 for (i=0; i<RTAX_MAX; i++) {
 68 if (tbx[i]) {
 69 printf("metrics[%d]=%u ",
 70 i, mnl_attr_get_u32(tbx[i]));
 71 }
 72 }
 73 }
 74 }

	Netlink Design Document
	
	
	
	Description
	Overview of Design​
	
	Design Details
	1.Installing Netlink with netisr (used for deferred dispatch)
	2.Registering Netlink as a socket (VNET)
	
	3.Attaching the netlink socket
	4.Sending a message
	5.Netisr packet input
	6.Netlink connect
	7.Initialize netlink generic functionality

	Design Decisions
	Development Milestones
	Phase 1

	
	
	Phase 2

	
	Phase 3

	
	Phase 4

	

