Equation Sheet

Moles (mol)	Atoms, molecules, formula units, particles	
	Avogadro's Number	
	6.022 x 10 ²³ particles / mole	

Molar Mass	Mass (grams, g)	
Sum of the masses of all elements in a compound (g/mol)	Moles (mol)	

Molar Mass: sum of all the masses of the elements in a compound.

Ex. H₂O

 $H = 2 \times 1.01 = 2.02$

 $O = 1 \times 16.0 = 16.00$

18.02 g/mol

Percent Composition

% composition = Mass of element

x 100

Mass of compound

 $H = 2 \times 1.01 = 2.02$

 $O = 1 \times 16.0 = 16.00$

18.02 g/mol

% H = (2.02 / 18.02) x 100 = 11.20 %

% O = (16.00 / 18.02) x 100 = 88.79 %

Equation Sheet

Empirical Formula:

- 1. Convert percentage to grams (change unit)
- 2. Divide grams by the atomic mass of the element
- 3. Divide each # of moles by the smallest number of moles
- 4. **Special numbers: To get a whole number...
 - a. 0.25 multiply all values by 4
 - b. 0.50 multiply all values by 2
 - c. 0.67 or 0.33 multiply all values by 3
- 5. To find the Molecular formula, divide the molecular mass (must be given in the problem) by the empirical mass to find the ratio.
- 6. Multiply all subscripts in the empirical formula by the ratio to get the molecular formula

Example: What is the empirical formula of a compound that has 25.18% hydrogen and 74.81 % carbon?

Example: What is the molecular formula of a compound that has 25.18% hydrogen and 74.81 % carbon, the molecular mass of the compound is 64.0 g/mol?

Empirical formula is CH_4 . The empirical mass is $(C = 12.0) + H = (4 \times 1.01) = 16.0 \text{ g/mol}$

Ratio = molecular mass
$$64.0 \text{ g/mol}$$
 $= 4 \text{ Molecular formula} = C_4H_{16}$ empirical mass 16.0 g/mol

Equation Sheet

Concentration Units

Solution: <u>solvent</u> (largest quantity: it does the dissolving) + <u>solute</u> (smallest quantity it gets dissolved)

Molar Volume	Volume (liters)		
22.414 L/mol	Moles (mol)		
	Molar Mass (g/mol)		

Molar Volume

22.414 L/mol

Density

(g/L)

Moles (mol)			
Molarity	Volume of solution		
Moles solute / L solution	Liters (L)		
	1000 ml = 1 L		

Moles		
(mol)		
Molality	Mass of solvent	
Moles solute / kg solvent	Kilograms (kg)	
	1000 g = 1 kg	

Equation Sheet

				1	
Percent by mass (m/m) =	Mass of solute			
		Mass of solvent		X 100	
Percent by volume (v/v	v) =	Volume of solute			
		Volume of solvent		X 100	
M ₁ x V ₁		= M ₂ 2		x V ₂	
Mass of solute					
Percent by mass (m/m) =		Mass of solvent		X 100	
	•	Moles			
(mol)					
Molarity Volume of solution		on			
Moles solute / L solution			Liters (L)		
		1000 ml = 1	1 L		

Moles

Equation Sheet

		(mol)		
Molality		М	Mass of solvent	
Moles solute / kg solvent			Kilograms (kg)	
1000 g = 1		1000 g = 1	kg	
Percent by mass (m/m)) =	Mass of solute		X 100
		Mass of solvent		
Percent by volume (v/v) = Volume of solute				
		Volume of s	Volume of solvent	
M ₁ x V ₁	=		$M_2 \times V_2$	
Percent by mass (m/m) =		Mass of solute		X 100
		Mass of solvent		