K8s Proposal: Pod Ready++

freehan@ thockin@ bgrant0607@ erictune@ dchen1107@

PU bl |C Anyone in the world with a link can comment on this doc.

GKE internal note is here.
KEP is here.

Problem Statement

Requirements

Current Readiness Definitions
Container Readiness

Pod Readiness
Endpoint Readiness

Proposal
Rationale

PodSpec
Constraints
Pod Readiness

Custom Pod Condition

Naming Convention
Kubelet PodStatus Control Flow
Workloads

Feature Integration

Problem Statement

tl;dr: pod life cycle ignores services, network policy and etc

Pod readiness indicates whether the pod is ready to serve traffic. Pod readiness is dictated by
kubelet with user specified readiness probe. On the other hand, pod readiness determines
whether pod address shows up on the address list on related endpoints object. K8s primitives
that manage pods, such as Deployment, only takes pod status into account for decision making,
such as advancement during rolling update.

https://docs.google.com/document/d/1M2xjJRy6m6btpfDDtGkx8UN42QKX8yHNE2fZ4m3_r0k/
https://github.com/kubernetes/community/blob/master/keps/sig-network/0007-pod-ready%2B%2B.md

| Service
5 L,
? y
! a
Workloads ! o :

{e.g. Deployment) : — Endpoints
i :«.
! Y

i MNetwork
_ Policy |

For example, during deployment rolling update, a new pod becomes ready. On the other hand,
service, network policy and load-balancer are not yet ready for the new pod due to whatever
reason (e.g. slowness in api machinery, endpoints controller, kube-proxy, iptables or
infrastructure programming). This may cause service disruption or lost of backend capacity. In
extreme cases, if rolling update completes before any new replacement pod actually start
serving traffic, this will cause service outage.

Schedule pod Syne pod k"*—--_h
Scheduler Kubelet
g
I Ready
Create| -
pod
[
firme

Requirements

Solution must be backward compatible with pod specification and kubelet control flow.
Solution must be backward compatible with core workload controllers (e.g. Deployment,
StatefulSet).

Solution must work with user-defined controllers (Operators).

Solution preferably should be transparent to k8s users. User should not be required to
change its existing manifests.

e Solution preferably does not create a dependency from a lower-level concept, (Pod),
onto a higher level concept(Ingress). Violates layering principles.

e Solution preferably does not create a dependency from workloads onto networking
concepts (e.g. Service, Ingress). This requires mass changes to all workload controllers.
Solution preferably does not introduce new core API objects.

Solution preferably does not introduces new backend selection mechanism (label
selector) to Service. This fundamentally changed the control flow and feedback loop
within k8s. Hence breaks all other systems that rely on this assumption.

Current Readiness Definitions

Container Readiness

A client determines whether a Container is "ready" by testing whether the Pod's
“status.containerStatuses]] list includes an element whose ‘name’ == name of the container
and whose ‘ready’ == true. That condition is set according to the following rule.

Container is ready == Container is running readiness probe returns success

Pod Readiness

A client determines whether a Pod is "ready" by testing whether the Pod's “status.conditions]]
list includes an element whose "type’ == "Ready" and whose “status’ == "True". That condition
is set according to the following rule.

Pod is ready == All containers are ready

Endpoint Readiness

A client determines whether an Endpoint is "ready" by testing whether the Endpoints’
“subsets[].addresses][]" list includes an element whose “targetRef" points to corresponding pod.
That condition is set according to the following rule.

Endpoint is ready == Pod is ready

Proposal

This proposal aims to add extensibility to pod readiness. Besides container readiness, external
feedback can be injected into PodStatus and influence pod readiness. Thus, achieving pod
‘ready++”.

Rationale

Why not fix the workloads?

There are a lot of workloads including core workloads such as deployment and 3rd party
workloads such as spark operator. Most if not all of them take pod readiness as a critical signal
for decision making, while ignoring higher level abstractions (e.g. service, network policy and
ingress). To complicate the problem more, label selector makes membership relationship implicit
and dynamic. Solving this problem in all workload controllers would require much bigger change
than this proposal.

Why not extend container readiness?

Container readiness is tied to low level constructs such as runtime. This inherently implies that
the kubelet and underlying system has full knowledge of container status. Injecting external
feedback into container status would complicate the abstraction and control flow. Meanwhile,
higher level abstractions (e.g. service) generally takes pod as the atom instead of container.

PodSpec

Introduce an exitra field called ReadinessGates in PodSpec. The field stores a list of
ReadinessGate structure as follows:

type PodReadinessGate struct {
conditionType string

The ReadinessGate struct has only one string field called ConditionType. ConditionType refers
to a condition in the PodCondition list in PodStatus. And the status of conditions specified in the
ReadinessGates will be evaluated for pod readiness. If the condition does not exist in the
PodCondition list, its status will be default to false.

Constraints

- ReadinessGates can only be specified at pod creation.
- No Update allowed on ReadinessGates.
- ConditionType must conform to the naming convention of custom pod condition.

Pod Readiness

Change the pod readiness definition to as follows:

https://github.com/GoogleCloudPlatform/spark-on-k8s-operator

Pod is ready == containers are ready AND

Kubelet will evaluate conditions specified in ReadinessGates and update the pod “Ready”
status. For example, in the following pod spec, two readinessGates are specified. The status of
“‘www.example.com/feature-1"is false, hence the pod is not ready.

Kind: Pod

spec:
readinessGates:
- conditionType: www.example.com/feature-1
- conditionType: www.example.com/feature-2

status:

conditions:

- lastProbeTime: null
lastTransitionTime: 2018-01-01T00:00:00Z
status: "False"
type: Ready

- lastProbeTime: null
lastTransitionTime: 2018-01-01T00:00:00Z
status: "False"
type: www.example.com/feature-1

- lastProbeTime: null
lastTransitionTime: 2018-01-01T00:00:00Z
status: "True"
type: www.example.com/feature-2

containerStatuses:

- containerID: docker://XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ready : true

Another pod condition “ContainerReady” will be introduced to capture the old pod “Ready”
condition.

ContainerReady is true == containers are ready

Custom Pod Condition

Custom pod condition can be injected thru PATCH action using KubeClient. Please be noted
that “kubectl patch” does not support patching object status. Need to use client-go or other
KubeClient implementations.

Naming Convention

The type of custom pod condition must comply with k8s label key format. For example,
“‘www.example.com/feature-1".

Kubelet PodStatus Control Flow

As kubelet no longer dictates every field in PodStatus, the following kubelet changes are
needed:
- Use PATCH instead of PUT to update PodStatus fields that are dictated by kubelet.
- Only compare the fields that managed by kubelet for PodStatus reconciliation .
- Watch PodStatus changes and evaluate ReadinessGates for pod readiness.

Workloads

To conform with this proposals, workload controllers MUST take pod “Ready” condition as the
final signal to proceed during transitions.

For the workloads that take pod readiness as a critical signal for its decision making, they will
automatically comply with this proposal without any change. Majority, if not all, of the workloads
satisfy this condition.

Feature Integration

In this section, we will discuss how to make ReadinessGates transparent to K8s API user. In
order words, a K8s API user does not need to specify ReadinessGates to use specific features.
This allows existing manifests to just work with features that require ReadinessGate.

Each feature will bear the burden of injecting ReadinessGate and keep its custom pod condition
in sync. ReadinessGate can be injected using mutating webhook at pod creation time. After pod
creation, each feature is responsible for keeping its custom pod condition in sync as long as its
ReadinessGate exists in the PodSpec. This can be achieved by running k8s controller to sync
conditions on relevant pods. This is to ensure that PodStatus is observable and recoverable
even when catastrophic failure (e.g. loss of data) occurs at API server.

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://github.com/kubernetes/client-go
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.9/#podcondition-v1-core
https://kubernetes.io/docs/admin/admission-controllers/#mutatingadmissionwebhook-beta-in-19

	K8s Proposal: Pod Ready++
	Problem Statement
	Requirements
	Current Readiness Definitions
	Container Readiness
	Pod Readiness
	Endpoint Readiness

	Proposal
	Rationale
	PodSpec
	Constraints

	Pod Readiness
	Custom Pod Condition
	Naming Convention

	Kubelet PodStatus Control Flow
	Workloads
	Feature Integration

