
There were two questions we asked you all to look at at the end of class today. This document 
describes the abstract interpretations that answer those questions (hopefully in sufficient detail). 
Please read through these, and please ask if there’s anything – major or minor, concept or 
detail – that you are unsure of. 
 

Question 1 
The first question asked you to answer two different questions about the function f, defined 
below: 
 
f(a, b, c): 
​ if (*): 
​ ​ x = a + b 
​ else: 
​ ​ x = a + c 
​ return x 
 
The questions are: 

●​ 1. Which variables’ values are definitely used in f? 
●​ 2. Which variables’ values might be used in f? 

 
(Note: the * condition means “random choice”) 
 
Consider a lattice with the following elements (element name on the left, definition on the right): 
 
T​ ​ ​ Top: may or may not have been used (unknown) 
 | 
U​ ​ ​ Used: definitely used 
 
What should the abstract store (i.e., abstract state) look like at the entry point of f? Nothing 
has yet been used. So, the abstract store is: 
 
[ x -> T, a -> T, b -> T, c -> T ]  Read this as: x has abstract type T, a has type T, … 
 
Note that the abstract store is a mapping from each variable to an element of the abstract 
domain. We’ll have an abstract store for each program point, which we can define as the union 
of all the entry and exit points from the nodes in the control flow graph (CFG). This is similar to 
the concrete store (aka memory). 
 
The next program point to consider is the if statement condition. Since this doesn't involve any 
of our variables (it is just *, the random choice operator), it inherits the stores from the first 
program point.  

https://en.wikipedia.org/wiki/Control-flow_graph


 
Now, we need to consider the two branches of the if statement. In the then branch, we have the 
statement: 
 
x = a + b 
 
Before this statement, we inherit the abstract state of the function entry point: 
 
[ x -> T, a -> T, b -> T, c -> T ] 
 
Now, we need a transfer statement for an assignment. For this analysis, the transfer statement 
for assignment has two parts: one for the left-hand-side (lhs) of the assignment, and another for 
the right-hand-side. The lhs transfer takes only one argument: the abstract state of the variable 
being defined. Here’s the definition: 
 
transfer_lhs(lhs): 
​  

lhs transfer_lhs(lhs) 

T T 

U T 

 
That is, after we assign a new value to a variable, it is always transferred to T (possibly used) 
because the new value hasn’t been used. However, we don’t have a lattice element that exactly 
represents that, so we choose the point that represents “unknown”. A more precise analysis (or 
one intended to answer different questions) might include a “definitely not used” lattice element, 
but we don’t need one to answer our questions. 
 
The transfer function for the rhs is more complicated: it takes an arbitrary number of variables’ 
abstract states: one for each variable in the expression on the rhs. Without loss of generality, 
however, we can consider each variable individually, because (unlike e.g. addition in the parity 
domain) the transfer of one variable is unaffected by the abstract values of the others. Here’s 
the definition: 
 
transfer_rhs(rhs): 
 

rhs transfer_rhs(rhs) 

T U 

U U 

 



What does this say? A variable that we don’t know has been used becomes used (because it 
was used!). A variable we already know is used stays used.  
 
So, which functions do we apply? Because the lhs is x, we apply transfer_lhs(x), to transition the 
state to (note that this is a no-op): 
 
[ x -> T, a -> T, b -> T, c -> T ] 
 
Then, we apply transfer_rhs to each variable on the rhs (in a real implementation, we’d do that 
by recursively descending into the tree until we reach individual variable nodes): 
 
transfer_rhs(a); transfer_rhs(b) 
 
That produces this state, which is the state after the then branch: 
 
[ x -> T, a -> U, b -> U, c -> T ] 
 
Similarly, the state at the beginning of the else branch is the initial state: 
 
[ x -> T, a -> T, b -> T, c -> T ] 
 
Then, we apply: 
 
transfer_lhs(x); transfer_rhs(a); transfer_rhs(c); 
 
To produce: 
 
[ x -> T, a -> U, b -> T, c -> U ] 
 
That is the state after the else branch. 
 
Then, we need to merge the then-branch state and the else-branch state. The two states are: 
 
then: [ x -> T, a -> U, b -> U, c -> T ] 
else: [ x -> T, a -> U, b -> T, c -> U ] 
 
The question we are interested in answering determines how to merge. If we are interested in 
the question “which variables are definitely used?”, then we want to take the least upper bound 
(lub) of each element in the state. That’s because we’re interested in variables that are used on 
every feasible path, so only those that are U on at least one path and T on none. For 
completeness, here’s the definition of the lub function, which has two arguments (represented 
here as the first row and first column): 
 



lub T U 

T T T 

U T U 

 
Doing this for the two states above gives us this final state: 
 
then: [ x -> T, a -> U, b -> U, c -> T ] 
else: [ x -> T, a -> U, b -> T, c -> U ] 
lub: [x -> T, a -> U, b -> T, c -> T] 
 
Notice that b and c both go to T, because on at least one path they were unused. Therefore, the 
answer is “only a is definitely used”, because only a maps to U at the end of the function. 
 
By contrast, if we want to answer “which variables might be used?”, then we want to use the 
greatest lower bound (glb), whose definition is: 
 

glb T U 

T T U 

U U U 

 
(Note the symmetry between these two definition tables) 
 
Applying glb to the then and else states: 
 
then: [ x -> T, a -> U, b -> U, c -> T ] 
else: [ x -> T, a -> U, b -> T, c -> U ] 
glb: [x -> T, a -> U, b -> U, c -> U] 
 
That lets us conclude that “a, b, and c might be used” by the end of the function. 
 

 



Question 2 
The second question asked us to think about why an abstract domain containing the following 
abstract values terminates on the function g (defined below): 
 
odd​ ​ x % 2 == 1 
even2​ ​ x % 2 == 0 
even4​ ​ x % 4 == 0 
is2​ ​ x == 2 
 
Implicit in the question is that we also have a top and bottom lattice element. 
 
Here’s the definition of g, the function we want to look at: 
 
g(): 
​ x = 2 
​ while (x < 10): 
​ ​ x = x + 2 
​ return x 
 
Note that g only has one variable. That means our abstract stores will only have one entry at 
each program location. 
 
How many abstract stores are there (i.e., what program locations are there)? To figure that out, 
we need a CFG. The CFG for g looks like this: 
 



 
On entry to the function, we have this store: 
 
[ x -> 丄 ] 
 
That is, x is undefined. (If x was a formal parameter of function g, the initial store would be [ x -> 
T ];  convince yourself that this makes sense and understand why.) 
 
Following the CFG edges, we can now process the node “x = 2”. Because our abstract domain 
has an element for “is exactly 2”, we can conclude that the store after processing that node is: 
 
[ x -> is2 ] 
 
At this point, we have to enter the test node. It has two incoming CFG edges, so we have to 
merge the stores for each. We don’t know anything about the other edge (the one that comes 
from the end of the while-loop), so we use a store that maps x to bottom, and then use the lub: 
 
[ x -> 丄 ] lub [ x -> is2 ] = [ x -> is2 ] 
 
So for now, we’ll enter the loop with the store [ x -> is2 ]. 
 
At this point, we can process the statement x = x + 2. “2” is abstracted as “is2”. We can then 
consult the transfer function for +: 
 



 

+ T odd even2 even4 is2 丄 

T T T T T T 丄 

odd T even2 odd odd odd 丄 

even2 T odd even2 even2 even2 丄 

even4 T odd even2 even4 even2 丄 

is2 T odd even2 even2 even4 丄 

丄 丄 丄 丄 丄 丄 丄 

 
(Look at the table and convince yourself it’s correct) 
 
We’re in the case where both arguments to the + are abstracted as is2, so we now have the 
store: 
 
[ x -> even4 ] 
 
Now, we have to follow the CFG edge back to the start of the loop, and merge it with our store 
from before: 
 
[ x -> even4 ] lub [ x -> is2 ] = [ x -> even2 ] 
 
Following a similar process, we reprocess “x = x + 2” in this new context. The transfer function 
for +(even2, is2) induces this store afterward: 
 
[ x -> even2 ] 
 
Since that’s different from our last time around the loop, we have to process the loop again. The 
transfer function for +(even2, is2) still results in the store: 
 
[ x -> even2 ] 
 
So, we can stop processing the loop (we’ve reached a fixpoint). Then, we process the last CFG 
edge and conclude that at the end, the result store is: 
 
[ x -> even2 ] 
 
 



Exercises 
Test your understanding by working through the following three exercises. (I added additional 
questions, so you can test whether you could generalize your understanding to a different 
program.) 
 
Given an abstract interpretation design, here are the steps to apply it: 

1.​ Determine the set of program points for which an abstract store is needed. 
2.​ Create an initial abstract store for each program point, before doing any 

interpretation of the code! 
a.​ At this point, you only know: 

i.​ The number of program points 
ii.​ The number and kind of variables that need to be tracked 

b.​ At this point, you do not know anything about the statements in between the 
program points. 

3.​ Abstractly interpret the code (statement by statement) and update the abstract stores.  

Abstract domain 
For all three exercises, we consider the following abstract domain: 
* T:  Top (unknown) 
* O: Odd (x % 2 == 1) 
* E: Even (x % 2 == 0) 
*丄: Bottom (undefined)  

Questions 
●​ What is an adequate lattice for this domain?​

(Recall that (1) the lattice must include all types and (2) the edges define subtype 
relationships. Note that the edges do not correspond to the transfer functions, defined 
over the abstract domain. 

●​ Convince yourself that the abstract domain is complete – that is, any possible concrete 
value can be mapped to a type in that domain.) 

 



Program 1 
def f() { 

[ x -> ____ ] ​ ​ ​ <- abstract store at this program point 
  x = 1; 

[ x -> ____ ] ​ ​ ​ <- abstract store at this program point 
  x = x * 0; 

[ x -> ____ ] ​ ​ ​ <- abstract store at this program point 
  x = 1 / x; 

[ x -> ____ ] ​ ​ ​ <- abstract store at this program point 
  return x; 

[ x -> ____ ] ​ ​ ​ <- abstract store at this program point 
} 
 

Questions 
●​ What is the initial abstract store for each program point? 
●​ Would the initial abstract store be different if x was not a local variable but rather a 

formal parameter of the function x? 
●​ Where did you apply the abstraction function, transfer function(s), or the lub? 
●​ After abstract interpretation, what do you know about the values that f can return? 

 

Program 2 
def f() { 
  if (*) {          ​ ​ ​ ​ ​ <- condition ‘*’ is independent of x 

    x = 1; 

  } else { 

    x = 0; 

  } 

  x = 1 / x; 

  return x; 

} 

Questions 
●​ How many abstract stores are there; what are their initial mappings for x? 
●​ Where did you apply the abstraction function, transfer function(s), or the lub? 
●​ After abstract interpretation, what do you know about the values that f can return? 



 

Program 3 
def f() { 
  x = 10; 

  while (x != 0) { 

    x = x -1; 

  } 

  x = 1 / x; 

  return x; 

} 

 

Recall that this example requires a fix-point analysis: given the initial abstract stores, follow the 

control flow and update the abstract stores until they no longer change. 

 

Questions 
●​ How many abstract stores are there; what are their initial mappings for x? 
●​ Where did you apply the abstraction function, transfer function(s), or the lub? 
●​ After abstract interpretation, what do you know about the values that f can return? 
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