
avenuDub Design Document  

1. Overview 

1.1 Project Summary 
avenuDub is an app to familiarize UW students with the Ave and businesses surrounding 
campus. It includes a catalog of local businesses, including student discounts available nearby. 
It also includes safety information important for students to be aware of while on the Ave. 

1.2 Problem Statement 
-​ Problem Definition: Students new to UW are often unaware of local businesses and 

discounts available to them there. They may also be unaware of safety considerations to 
keep in mind while navigating campus.  

-​ Root Cause: There are no resources available to familiarize students with the areas 
around campus. 

-​ Solution Approach: Create a comprehensive guide of nearby businesses, discounts, 
and crime to enable students to discover more spots around campus with safety.  

-​ Target Users: Students new to UW.  
 

2. Team Structure 

2.1 Leadership 
-​ Project Lead: Samantha Autrey 
-​ Club Lead Guide: Joey Kang 

2.2 Team Composition 

Role Name Responsibilities 

Team Manager Ananya Tripathi -Onboarding new team 
members 
-Keeping track of/updating 
the task board in GitHub 

Lead Samantha Autrey -Keeping track of holistic 
project progress 
-Leading/organizing meetings 



-Maintaining firm 
deadlines/expectations of 
progress 

Frontend Megan Yam 
Ananya Tripathi 
Samantha Autrey 

-Managing the user interface; 
first point of contact if 
something looks incorrect 
-Reporting on UI 
progress/development 
setbacks 
-Communicating with the 
backend team to ensure 
smooth connection 

Backend Joonho Choi 
Nimai Belur 

-Managing the back-end of 
the application, including 
databases, API’s, and web 
scraping technology  
-Reporting on 
development/data setbacks 
-Communicating with the 
front end team to ensure 
smooth connection 

3. Product Requirements 

3.1 MVP Features (P0) 

Feature Description Success Criteria Testing Approach 

Student Discounts Upon clicking a 
business on the map, 
users will be able to 
see if they offer 
discounts for 
students and what 
they have to do in 
order to verify student 
status. Data will be 
gathered from the 
UW provided list of 
student discounts, 
cultural RSOs, etc. 

- Users can click on a 
business and view 
discount information 
- Verification method 
is clearly displayed 
for each business 
participating in 
student discount 
-  

Make sure that a 
place with known 
discounts displays 
said discounts on our 
map or catalog.  
 
Examine each 
number provided for 
accuracy - check for 
inadvertent 
truncation/incorrect 
information 



Feature Description Success Criteria Testing Approach 

Location of 
Businesses 

Pinpoints of locations 
of businesses and a 
brief description of 
what kind of 
food/products it 
primarily offers. 

- Each business 
location is marked 
accurately on the 
map 
- Description correctly 
matches the type of 
food/products 
primarily offered 

-Make sure all edge 
cases are caught: ex, 
business name or 
attribute is null or 
empty  
-Cross reference with 
already functioning 
models (an existing 
navigation platform) 
 

Incident Reporting Pinpoints on map of 
where incidents occur 
within a month. Data 
will be gathered from 
UW 60 day crime log, 
UW/Seattle police, 
user reports, etc. 

- Locations on map 
matches locations on 
UW crime log 
- Old data is erased 
from map after a 
month 
 
 

-Cross reference with 
actual crime-log to 
check for location 
accuracy, check for 
SQL injection 
vulnerability 
-Make sure all edge 
cases are caught: ex, 
a field is null or empty 
-In conjunction with 
web-scraper testing: 
ensure that any faulty 
data is filtered out 

Areas of 
low-visibility/high-risk 

For high-risk areas, 
crime data will be 
analyzed to calculate 
what areas crime are 
more likely to occur 
in. Areas of high-risk 
will be highlighted in 
red. Areas of 
low-visibility include 
areas that are not 
well-lit, or have 
broken street lights. 
Depending on 
whether it’s a broken 
streetlight or an area 
of low visibility, it will 
be displayed on the 

- High-risk area is 
appropriately 
calculated 
- Data gathered from 
sources match 
- Outages that are 
resolved are removed 
from map shortly 
after resolution 
 

-Cross-reference with 
user submission 
testing: ensure that 
user-input is not 
vulnerable to 
injection/filters bad 
data 
-Ensure that 
user-input is filtered 
for 
database-breaking 
keywords (null) 
-Cross-reference 
generated map points 
with city data/energy 
logs 



Feature Description Success Criteria Testing Approach 

map as a pinpoint or 
highlighted in yellow. 
Data will be gathered 
from the Seattle City 
Lights/Puget Sound 
Energy’s outage map 
and from user reports 

3.2 Post-MVP Features (P1/P2) 

Priority Feature Description 

Low Menu When clicking a restaurant on 
the app, the user will see 
what they have to offer and 
their prices. If implemented, 
data will be gathered from a 
range of sources, such as 
Yelp, business’ website, etc. 

Very Low 
 
 

Events Locations of local events 
happening on the Ave. This 
could be anything ranging 
from concerts, food festivals, 
farmers markets, etc. If 
implemented, this feature 
may rely solely on user input. 

4. User Experience Design 

4.1 Wireframes 
-​ Design Links: 

https://www.figma.com/team_invite/redeem/ZMC4xu8M1VgGMQzpuTp7eF  
-​ Design System: Material Design 

4.2 User Journeys 

Journey 1: Students Discovering Businesses and Safety Tips for the Ave. 
1.​ Initial State: Splash Screen -> Map with information (similar to Google Maps) 
2.​ User Actions:  

https://www.figma.com/team_invite/redeem/ZMC4xu8M1VgGMQzpuTp7eF
https://m3.material.io/


-​ Tap on a point on map and see information for that location 
-​ Click on search bar to find a business 
-​ Toggle safety information and business information on/off using buttons under 

search bar  
-​ Double click/hold either toggle to get a text list version of either the safety or 

business information  
-​ Click user account button on bottom left to access settings page.  
-​ Click report button on bottom right to report some sort of safety hazard.  

3.​ End State:  
-​ Search Bar: User sees dropdown with desired results, as well as history of past 

5-6 searches, and the option to filter results 
-​ Detailed Catalog of businesses/crime information, with favorited locations further 

up  
-​ User account: Includes name, account information, favorites 
-​ Reporting page: can request user location (or user can manually input them), and 

they can input a description of the issue + a photo  

Journey 2: Businesses Adding/Modifying their Information 
1.​ [Same as Journey 1, with the following additions] 
2.​ End State: 

a.​ User Account also includes business information, and allows modification of their 
information (and does not include favorites) 

 

5. Technical Architecture 

5.1 System Overview 
[Insert high-level architecture diagram] 
Check out https://app.diagrams.net/ 
 
https://lucid.app/lucidchart/112c3255-cc64-48bd-9e00-24a8625617e1/edit?viewport_loc=-11%2
C-11%2C1579%2C671%2C0_0&invitationId=inv_a0dd726a-b151-4247-a27d-720c1b32d0c2

 

https://app.diagrams.net/
https://lucid.app/lucidchart/112c3255-cc64-48bd-9e00-24a8625617e1/edit?viewport_loc=-11%2C-11%2C1579%2C671%2C0_0&invitationId=inv_a0dd726a-b151-4247-a27d-720c1b32d0c2
https://lucid.app/lucidchart/112c3255-cc64-48bd-9e00-24a8625617e1/edit?viewport_loc=-11%2C-11%2C1579%2C671%2C0_0&invitationId=inv_a0dd726a-b151-4247-a27d-720c1b32d0c2


5.2 Frontend Specification 
-​ Frameworks: React Native 
-​ Key Libraries: Mapbox, Beautiful Soup 

Core Components 

Component Purpose Props/State 

BusinessMarker Used to store information 
about a specific business on 
the ave. When clicked on, the 
user can see relevant 
information like its name, 
address, and student 
discounts if applicable. 

Props 
name: string, address: string, 
discountInfo?: { {    
discountDesc: string, 
verifyMethod: string} }, 
mainProduct: string,  
coords: {{xCoord: bigint, 
yCoord: bigint}} 
State 
descVisible: boolean 

IncidentMarker Marks map on location where 
crime happened. When 
clicked on, users can see any 
additional information if 
applicable. 

Props 
crimeType: string, address: 
string, coords: {{xCoord: 
bigint, yCoord: bigint}}, date: 
{{month: number, day: 
number, year: number, hour: 
number, minute: number, 
second: number}}, addtInfo?: 
string 
State 
descVisible: boolean 

HighRiskLowVis Highlights areas where crime 
tends to happen, or areas 
that have low visibility at night 
(not including street lights). 
When clicked on, the user 
can see relevant details, such 
as list of crimes that 
happened in the area 

Props 
highRisk: boolean, location: 
List<Path>, addtInfo?: string 
States 
descVisible: boolean 

BrokenLight Pinpoints location of where 
there’s a broken street light. 
When clicked on, the user 
can see additional details, 

Props 
coords: {{xCoord: bigint, 
yCoord: bigint}}, address?: 
string, startDate: {{month: 



Component Purpose Props/State 

such as photo proof and start 
date. 

number, day: number, year: 
number, hour: number, 
minute: number, second: 
number}} 
State 
descVisible: boolean 

5.3 Backend Specification 

API Endpoints 
 
Endpoint: [PATH] 
 
Method: [GET/POST] 
 
Description: API is called on when the user wants to fetch data about a location or upload 
information about crimes/businesses in their area. Different use cases will dictate what the API 
request and response will look like. 
 
POST Request:  Adds crime/business information to the database 
 
{ 
  "type": "object", 
  "properties": { 
    "reportType": { 
      "type": "string", 
      "enum": ["crime", "business"], 
      "description": "Type of report being submitted" 
    }, 
    "details": { 
      "type": "string", 
      "description": "Details about the crime or business information" 
    }, 
    "location": { 
      "type": "object", 
      "properties": { 
        "latitude": { "type": "number", "description": "Latitude of the location" }, 
        "longitude": { "type": "number", "description": "Longitude of the location" } 
      }, 
      "required": ["latitude", "longitude"] 
    }, 



    "timestamp": { 
      "type": "string", 
      "format": "date-time", 
      "description": "Time the incident or business info was reported" 
    }, 
  }, 
  "required": ["reportType", "details", "location", "timestamp"] 
} 
 
EXAMPLE: 
 
{ 
  "reportType": "crime", 
  "details": "Suspicious activity observed", 
  "location": { 
    "latitude": 47.6062, 
    "longitude": -122.3321 
  }, 
  "timestamp": "2024-11-19T10:00:00Z" 
} 
 
Response: 
 
{ 
  "type": "object", 
  "properties": { 
    "status": { 
      "type": "string", 
      "description": "Status of the report submission (e.g., 'success' or 'failure')" 
    }, 
    "reportId": { 
      "type": "string", 
      "description": "Unique identifier for the submitted report" 
    }, 
    "message": { 
      "type": "string", 
      "description": "Additional information about the status" 
    } 
  } 
} 
 
EXAMPLE: 
 
{ 



​ “status”: “Success”, 
​ “reportId”: “abcdef”, 
​ “Message”: “Submitted successfully” 
} 
 
GET Request: Gets crime/business information from database 
 
{ 
  "type": "object", 
  "properties": { 
    "type": { 
      "type": "string", 
      "enum": ["crime", "business"], 
      "description": "Type of information to retrieve" 
    }, 
    "location": { 
      "type": "object", 
      "properties": { 
        "latitude": { "type": "number", "description": "Latitude of the location" }, 
        "longitude": { "type": "number", "description": "Longitude of the location" }, 
        "radius": { "type": "number", "description": "Radius (in kilometers) to search" } 
      }, 
      "required": ["latitude", "longitude", "radius"] 
    } 
  }, 
  "required": ["type", "location"] 
} 
 
EXAMPLE RESPONSE: 
{ 
  "status": "success", 
  "data": [ 
    { 
      "id": "crime123", 
      "type": "crime", 
      "details": "Robbery at 5th Avenue.", 
      "location": { "latitude": 47.6097, "longitude": -122.3331 }, 
      "timestamp": "2024-11-18T14:30:00Z" 
    }, 
    { 
      "id": "crime124", 
      "type": "crime", 
      "details": "Car theft reported.", 
      "location": { "latitude": 47.6100, "longitude": -122.3340 }, 



      "timestamp": "2024-11-19T08:45:00Z" 
    } 
  ], 
  "message": "2 records found." 
} 
 
 
 
Status Codes: 
 
- 200: Successful request 
- 400: Bad request (invalid parameters) 
- 500: Server error 

Core Libraries 
-​ Web Framework (if applicable): Node.js 
-​ Database Driver (if applicable): MySQL Connector 
-​ Other Dependencies: bcrypt 

5.4 Data Model 

Database Selection 
-​ Type: SQL 
-​ Technology: MySQL 
-​ Justification: Having a table to represent our data is the most appropriate choice for our 

project, as the data we’re storing is simple, making any dynamic storing of data 
unnecessary and complicated. 

Schema 
https://drawsql.app/teams/na-849/diagrams/avenudub 



 

5.5 External Services 

Service Purpose Integration Method 

FreeDB Cloud server that stores SQL 
tables 

MySQL Connector 

6. Testing Strategy 

6.1 Testing Layers 

Layer Framework/Method 

Unit Serenity/JS, Jest  
 
Request (for REST API testing) 
Pytest 

Integration Serenity/JS 
-​ Mapbox -> REST API -> React Native 
-​ BeautifulSoup -> Database 
-​ Database ->  REST API -> React 

Native 

E2E Appium + Serenity/JS 

https://medium.com/@luxequality/introduction-to-serenity-js-f85fd6d3fd64
https://requests.readthedocs.io/en/latest/
https://serenity-js.org/handbook/mobile-testing/#:~:text=Mobile%20testing%20with%20Serenity/JS%20Serenity/JS%20integrates%20with,native%20mobile%20tests%20using%20the%20Appium%20protocol.


Layer Framework/Method 

-​ Access​ing, updating & displaying data 
from database 

Android SDK 
-​ Ensure UI is navigable (i.e. interactive 

map displays accurate information 
legibly) via Android Emulator 

6.2 Quality Assurance 
-​ Code Review Process:  

-​ Peer reviewing/testing code for each MVP 
-​ Using version control (GitHub) to review code before fulfilling pull requests 

-​ Using branches to prevent version conflict 
-​ CI/CD Integration: 

-​ CI 
-​ Version Control: GitHub 
-​ Automated Testing: (See 6.1) 
-​ Automated Builds: Jenkins + Gradle 

-​ CD 
-​ Infrastructure as Code (IaC): Define infrastructure using code (e.g., 

Terraform or AWS CloudFormation) to ensure consistent environments. 
-​ Artifact Creation: Docker images 
-​ Deployment Scripting: Ansible, Kubernetes, or Terraform 

-​ Pipeline Orchestration: Tekton Pipelines 
-​ Blue-Green Deployments: Implement blue-green deployments to 

minimize downtime during releases. 

 

7. Non-Functional Requirements 

7.1 Security 
-​ How do we prevent our database from being tampered with 

-​ Use prepared statements to avoid SQL injection attacks 
-​ CAPTCHA & filtering to avoid spam attacks (i.e. mass submission of 

inappropriate content through the user submission field) 
-​ Establish contingencies for when database fails / is compromised 



7.2 Privacy 
-​ Login info: how do we encrypt a user’s login information to protect their data? 

-​ Bcrypt 
-​ Location: how do we ensure that a user’s location cannot be accessed? 

-​ Usage of a secure library for location-based interactive map 

7.3 Accessibility 
-​ Accessibility mode 

-​ Larger fonts 
-​ Screen reader 
-​ Vibration alerts for safety 
-​ Voice-to-text 
-​ Details on navigational accessibility (i.e. stairs, steep inclines, etc) 
-​ Colorblindness-friendly UI 

8. Project Timeline 

8.1 Development Phases 

Phase Deliverables Timeline 

Learning/Setup -A working React Native 
framework on which to start 
development 
-A working database 
back-end that meets our 
specifications 
-Working knowledge of 
python/react in order to meet 
Front/Back end needs 

Fall Quarter 

MVP Development -Working business catalog 
including student discounts 
as well as location 
-Working crime 
database/corresponding 
accurate markers on map 

Winter Quarter/Early Spring 
Quarter 

Testing -Ensure UI functionality, 
including dropdowns, gesture 
responses (even unintended 
ones), and buttons/paths 

Mid/Late Spring Quarter 



Phase Deliverables Timeline 

-Ensure database 
functionality, including proper 
retrieval/storage of entries 

Post-MVP -Implement menus for 
restaurants 
-Have a separate list for 
events on the Ave 
-Catalog locations of 
utilities/services 

Summer Quarter and Beyond 

8.2 Milestones 
1.​ Club-wide spec presentation 
2.​ Design review 
3.​ MVP Completion 
4.​ All Tests Pass 
5.​ Showcase! 


	avenuDub Design Document  
	1. Overview 
	1.1 Project Summary 
	1.2 Problem Statement 

	2. Team Structure 
	2.1 Leadership 
	2.2 Team Composition 

	3. Product Requirements 
	3.1 MVP Features (P0) 
	3.2 Post-MVP Features (P1/P2) 

	4. User Experience Design 
	4.1 Wireframes 
	4.2 User Journeys 
	Journey 1: Students Discovering Businesses and Safety Tips for the Ave. 
	Journey 2: Businesses Adding/Modifying their Information 


	5. Technical Architecture 
	5.1 System Overview 
	5.2 Frontend Specification 
	Core Components 

	5.3 Backend Specification 
	API Endpoints 
	Core Libraries 

	5.4 Data Model 
	Database Selection 
	Schema 

	5.5 External Services 

	6. Testing Strategy 
	6.1 Testing Layers 
	6.2 Quality Assurance 

	 
	7. Non-Functional Requirements 
	7.1 Security 
	7.2 Privacy 
	7.3 Accessibility 

	8. Project Timeline 
	8.1 Development Phases 
	8.2 Milestones 



