6-3 Parametric Equations and Motion Day 1

Imagine that a rock is dropped from a 420-ft tower. The rock's height y (in feet) above the ground seconds later (ignoring air resistance) is modeled by $y = -16t^2 + 420$. The rock actually falls in a straight line, so we can graph 2 equations to simulate the fall.

$$x = 3$$

 $y = -16t^2 + 420$ when $t = 0, 1, 2, 3, 4, 5$

These 2 equations are an example of parametric equations with a parameter t which represents time.

On your calculator:

Mode: Parametric

window: t as it is described

У

Definition:

The graph of the ordered pairs (x,y) where

$$x = f(x)$$

$$y = g(x)$$

are functions defined on the interval *I* of t-values is a **parametric curve**.

The equations are **parametric equations** for the curve, the variable t is a **parameter** and *I* is the parameter interval.

Example 1: Graphing Parametric Equations:

For the given parameter interval, graph the parametric equations:

$$x = t^2$$

$$y = 3t$$

a.
$$-3 \le t \le 1$$

b.
$$-2 \le t \le 3$$
 c. $-3 \le t \le 3$

c.
$$-3 < t < 3$$

Example 2: Eliminating a Parameter:

Eliminate the parameter and identify the graph of the parametric curve.

$$x = 1 - 2t$$

 $y = 2 - t$ where $-\infty \le t \le \infty$

Example 3: Eliminating a Parameter:

Eliminate the parameter and identify the graph of the parametric curve.

$$x = t^2 - 2$$
$$y = 3t$$

Example 4: Eliminating a Parameter:

Eliminate the parameter and identify the graph of the parametric curve.

$$x = 2 \cos t$$

 $y = 2 \sin t$

Facts about the parameter with Trig functions:

- 1. The parameter t is the central angle, so the condition $0 \le t \le 2\pi$ causes the grapher to trace the circle completely starting at (1,0).
- 2. Changing the endpoints of the parameter interval moves the starting and the final points for the grapher.
- 3. If the length of the parameter interval is greater than 2π then the grapher traces a part of the circle more than once.
- 4. If the length of the parameter interval is less than 2π then the grapher traces a portion of the circle.

Example 5: Finding Parametric Equations for a Line Find the parametrization of the line through the points $A = (-2,3)$ and $B = (3,6)$.
Example 6: Finding Parametric Equations for a Line Segment Find the parametrization of the segment through the points A = (-2,3) and B = (3,6).

Practice:

Eliminate the parameter and identify the curve:

1.
$$x = 2-t$$

 $y = 2t - 1$

2.
$$x = t$$

 $y = 1 - t^2$

3.
$$x = t^2$$

 $y = 2 - t$

4.
$$x = 6 \cos t$$

 $y = 6 \sin t - \pi \le t \le \pi$

5.
$$x=7 \cos t$$

 $y=7 \sin t - 2\pi \le t \le 2\pi$

7. Find the parametrization of the segment through A(1,-1) and B (-2, 7).