
Chapter 7: MicroProfile Metrics

Introduction
This chapter provides a comprehensive and detailed overview of MicroProfile
Metrics, a widely used specification for monitoring microservices. You will gain an
understanding of the various types of metrics and how you can use them to monitor
microservices effectively. Additionally, this chapter covers the standard metrics
provided by MicroProfile and how you can leverage them to monitor various aspects
of microservices.

Furthermore, this chapter discusses the process of instrumenting microservices,
which involves adding code to the application to collect metrics. You will learn how to
expose endpoints to access metric data and interpret the data generated by these
metrics.

This chapter also highlights the importance of integrating monitoring solutions with
MicroProfile Metrics. You will learn how to incorporate monitoring solutions and
choose the right monitoring solution for your needs.

By the end of this chapter, you will have a deep understanding of MicroProfile
Metrics and the various techniques for monitoring microservices. This chapter will
equip you with the knowledge and skills to effectively monitor your microservices and
ensure they perform optimally.

Topics to be covered:

●​ Introduction to MicroProfile Metrics
●​ Need for Metrics in Microservices
●​ Types of Metrics
●​ MicroProfile Metrics Dependency
●​ Metrics Annotations
●​ Using Metadata with Metrics
●​ Categories of Metrics
●​ Metric Registry
●​ Instrumenting Microservices with Metrics
●​ Creating Custom Metrics

Introduction to MicroProfile Metrics

It is essential to monitor its status regularly to ensure smooth microservice
operations. You can monitor a microservice using two different techniques: Metrics
and health checking. Health checks provide information on the health status of a

service, such as whether it is up and running, while Metrics offer more detailed
information on its performance, such as response times, throughput, and error rates.
In the previous chapter, we discussed health checks and their importance. This
chapter will cover the MicroProfile Metrics specification, which provides a
standardized way of collecting and exposing performance data for Java
microservices.

MicroProfile Metrics is a specification for developers who want to measure their
applications' performance more thoroughly. It provides a set of annotations and APIs
to track various metrics related to the application's health and performance. For
instance, developers can use these APIs to track metrics such as request counts,
the response times, and the payload sizes, essential for real time performance
monitoring and troubleshooting.

This specification defines a standardized format for exposing these metrics, which
other tools and frameworks can easily collect and track. By using this specification,
developers can monitor the performance of their applications in real time and identify
any issues that may impact the user experience.

Moreover, this specification defines a set of standard metrics that we can expose in
various formats, such as JMX (Java Management Extensions), JSON (JavaScript
Object Notation), or Prometheus. Developers can choose the format that works best
for their needs. With the help of this tool, developers can optimize their applications
for better performance, ensuring that they meet the requirements of their consumers
while delivering a seamless experience.

JMX is a comprehensive platform that provides developers the tools to monitor and
manage Java applications efficiently, however its use is more common in traditional,
monolithic architectures. JMX can be complex to handle remotely and does not
integrate well outside JVM environments. MicroProfile Metrics provides support for
more modern alternatives like JSON and Prometheus, facilitating metrics exposure
through REST endpoints, which can be more scalable and flexible in cloud-native
environments. This makes it more accessible and compatible in environments with
multiple programming languages and technologies.

JSON allows developers to represent a wide range of data types, including strings,
numbers, arrays, and objects. It is also widely supported across different
programming languages and platforms, making it ideal for transmitting data between
systems and platforms.

Prometheus is a powerful tool designed to monitor and collect metrics from your
services. It provides a highly efficient time-series database system that securely
stores your data for long-term analysis. With Prometheus, you can easily visualize
and gain insights into your system's performance, allowing you to make informed
decisions and optimize your services for better efficiency and reliability.

Need for Metrics in Microservices

Metrics, enables developers and operators to monitor and measure the behavior of
microservices at runtime. This observability is crucial for:

●​ Performance Tuning: Identifying bottlenecks and optimizing resource
utilization to ensure services are running efficiently.

●​ Scalability: Making informed decisions on when to scale services up or down
based on real-time data on load and performance.

●​ Troubleshooting: Quickly pinpointing issues by analyzing trends in
performance metrics, leading to reduced downtime.

●​ Service Health Monitoring: Complementing the MicroProfile Health checks by
providing deeper insights into the internal state of a service, beyond simple
up/down statuses.

Types of Metrics

MicroProfile Metrics offers a range of customizable metrics that can be used to
measure and monitor microservices' performance. It allows developing
microservices that are observable, manageable, and which provide insights into their
behavior.

The MicroProfile Metrics specification includes four different types of metrics that
serve specific monitoring purposes: Counter, Gauge, Histogram, and Timer. Each of
these types offers unique insights into different aspects of application behavior and
performance. Below is the breakdown of available metric types:

1.​ Counter: A Counter is a simple metric type that represents a single numerical
value that can only increase or be reset to zero. It's typically used to count
occurrences of certain events, such as the number of requests processed,
items created, or tasks completed. Since counters can only go up, they are
resettable to start counting from zero again, which is particularly useful for
tracking totals over a specific interval.

2.​ Gauge: It is a metric type that measures an instantaneous value of something
, which can arbitrarily go up or down. It’s used to capture the value of a metric
at a particular point in time like the size of a queue, memory usage, or current
number of active user sessions. Gauges are typically used for values that
fluctuate over time and provide a current "gauge" of what's happening.

3.​ Histograms: They provide a distribution of values for a given metric, which are
useful for identifying performance outliers. It measures the frequency of
values in different ranges (or "buckets") and is useful for tracking the
distribution of values, such as response times or data sizes. Histograms can
give insights into the variability, average, median, percentiles, and trends of
the measured data over time.

4.​ Timer: It is a specialized metric type that aggregates timing durations and
provides count, total time, mean, minimum, and maximum duration, and it
usually reports the duration distribution as well. It effectively combines a
Histogram and a Meter, measuring the rate of events and the time duration of
each event. Timers are invaluable for tracking the duration of certain activities

or operations within your application, such as processing time or method
execution time.

By leveraging these metrics, developers and operators can gain a deeper
understanding of how their microservices are performing. They can use this
information to identify areas where improvements can be made and optimize their
microservices' performance.

MicroProfile Metrics Dependency

If you're using Maven, add the following dependency to your pom.xml file located in
the root folder of your project:

<dependency>​
 <groupId>org.eclipse.microprofile.metrics</groupId>​
 <artifactId>microprofile-metrics-api</artifactId>​
 <version>5.1.1</version>​
</dependency>

For Gradle, add the corresponding dependency to your build.gradle file located
within the root folder of your project:

dependencies {
 providedCompile
'org.eclipse.microprofile.metrics:microprofile-metrics-api:5.1.1'
}

Metrics Annotations

MicroProfile Metrics defines a set of annotations to be used for exposing metrics.
These annotations can be used on classes, methods, or fields. Table 7-1 shows the
list of Metrics Annotation along with their descriptions.

Annotations Descriptions

@Timed It times how long a method takes to execute and
exposes this information as a metric.

@Counted It tracks how many times a method is invoked and
exposes this information as a metric.

@Gauge It allows you to expose a custom metric that can be any
value. It is useful for exposing application-specific
metrics.

Besides annotations, MicroProfile Metrics also defines a set of programmatic APIs
for working with metrics. These APIs can be used to register custom metrics or
access existing metrics.

Using Metadata for Metrics

In MicroProfile Metrics, metadata plays a crucial role in defining, understanding, and
managing the various metrics that applications expose. Metadata essentially
provides descriptive information about a metric, such as its name, description, type,
unit of measurement, and additional tags or labels. This information not only aids in
the identification and categorization of metrics but also enhances their
interpretability, making it easier for developers, operators, and monitoring tools to
understand what each metric represents and how it should be used.

Components of Metadata

●​ Name: A unique identifier for the metric. Naming conventions are important
for clarity and consistency.

●​ Description: A human-readable description of what the metric measures and
any additional context.

●​ Type: Specifies the type of metric (e.g., Counter, Gauge, Timer, etc.), which
determines how its data should be interpreted.

●​ Unit of Measurement: Indicates the unit in which the metric value is reported
(e.g., milliseconds, bytes, requests per second), crucial for understanding the
scale and magnitude of the metric.

●​ Tags/Labels: Key-value pairs that provide additional dimensions to a metric,
such as the module or component it relates to, enabling more granular
analysis and filtering.

Example

Consider a metric that tracks the number of user login attempts in a web application.
The metadata for this metric might look like this:

●​ Name: login_attempts
●​ Description: "Counts the number of user login attempts, including successes

and failures."
●​ Type: Counter
●​ Unit: attempts
●​ Tags: { action="login", outcome="success|failure" }

This metadata tells us that login_attempts is a counter metric, meaning it will
increment over time, tracking login attempts. The description provides context on
what is being counted, and the tags allow for differentiation between successful and
failed attempts.

Purpose and Importance of Metadata

●​ Identification: Metadata helps uniquely identify a metric within the application
or across different systems. The name and tags associated with a metric can
precisely pinpoint its source and purpose.

●​ Documentation: Through descriptive texts and labels, metadata serves as
documentation for metrics, explaining their meaning, usage, and any relevant
context that users might need to interpret the data correctly.

●​ Standardization: By defining expected metadata for metrics, MicroProfile
Metrics promotes standardization across applications and tools, facilitating
easier integration with monitoring and analysis tools.

●​ Categorization and Filtering: Metadata allows metrics to be categorized and
filtered based on tags or other attributes. This is particularly useful in complex
systems with numerous metrics, enabling users to focus on the most relevant
data points.

●​ Configuration: Some metadata fields can influence how a metric is collected,
stored, or displayed by monitoring systems, offering a degree of control over
the metrics pipeline.

Categories of Metrics

In MicroProfile Metrics, metrics are organized into three distinct scopes: Base,
Vendor, and Application. This categorization is designed to clearly separate metrics
by their origin and relevance, making it easier for developers and operators to
monitor and manage the performance of their microservices. Each scope serves a
specific purpose and contains a different set of metrics:

-​ Base Metrics are common to all applications, such as the number of CPUs or
the amount of free memory. These metrics provide essential information
about the underlying Java Virtual Machine (JVM) and the core libraries that
are common across all MicroProfile applications. Base metrics typically
include JVM-specific metrics such as memory usage, CPU load, thread
counts, and garbage collection statistics. The intention behind base metrics is
to offer a consistent set of low-level metrics that are universally applicable
and useful for monitoring the health and performance of the JVM itself, which
is the foundation upon which all MicroProfile applications run.

Base metrics are exposed under the path /metrics?scope=base.

-​ Application Metrics are specific to an application, they are defined by the
developers of the MicroProfile applications themselves. These are custom
metrics that are specific to the business logic or operational aspects of the
application. Developers use annotations or programmatic APIs to create and
register these metrics, tailoring them to monitor the performance and
behavior of their application's unique functionalities. Application metrics
enable developers to gain insights into the runtime characteristics of their
application, such as the number of transactions processed, response times
for specific endpoints, or the rate of specific business events.

Application metrics are exposed under the path
/metrics?scope=application.

-​ Vendor Metrics are specific to a particular vendor or technology. These
metrics provide insights into the performance and behavior of the runtime's
internal components and extensions. Since different MicroProfile
implementations may offer additional features or optimize certain areas
differently, vendor metrics can vary widely between runtimes. They allow
runtime vendors to expose unique metrics that are relevant to their
implementation, offering users the ability to monitor vendor-specific aspects
of their applications.

Application metrics are exposed under the path /metrics?scope=vendor.

Besides the standard metrics above, MicroProfile Metrics also supports custom
metrics. You can use custom metrics to track application-specific information not
covered by the standard metrics.

Metric Registry

The MetricRegistry component acts as a container for storing and managing
metrics within an application. It provides a structured way to collect, organize, and
access various types of metrics (e.g., counters, gauges, histograms, timers, and
metered metrics) for monitoring the behavior and performance of applications. It
offers a centralized repository where metrics can be registered, updated, and
retrieved. This allows applications to consistently monitor critical operational and
performance statistics.

Types of Metric Registries

MicroProfile Metrics defines several types of registries, categorized by their scope:

●​ Application Scope (MetricRegistry.Type.APPLICATION): Contains custom
metrics that are specific to the application. These are typically the metrics
that developers explicitly create and register to monitor application-specific
behaviors.

●​ Base Scope (MetricRegistry.Type.BASE): Contains metrics that are
fundamental and common across all MicroProfile applications. These metrics
provide basic information about the underlying JVM and application server.

●​ Vendor Scope (MetricRegistry.Type.VENDOR): Contains metrics that are
specific to the implementation of the MicroProfile platform being used. These
metrics offer insights into vendor-specific features and optimizations.

Instrumenting Microservices with MicroProfile
Metrics

Instrumenting microservices with MicroProfile Metrics enables developers to gain
detailed insights into their application's operational health and performance. This
level of observability is essential for maintaining scalable and resilient microservice
architectures in dynamic environments.

Tracking response time using @Timed

MicroProfile Metrics also allows you to track a method's response time as a timed
metric. The code example below shows how to use the @Timed annotation to track the
response time.

import org.eclipse.microprofile.metrics.annotation.Timed;​
// ...​
​
public class ProductResource {​
​
 // ...​
 // Expose the response time as a timer metric​
 @Timed(name = "productLookupTime",​
 tags = {"method=getProduct"},​
 absolute = true, ​
 description = "Time needed to lookup for a products")​
 public Product getProduct(@PathParam("id") Long productId) {​
 return productService.getProduct(productId);​
 }​
​
 // ...

It will expose a metric called productLookupTime, which will track the amount of time
spent in the getProduct() method in milliseconds.

You can visit the following URL https://localhost:<port>/metrics?scope=application
(Replace <port> with the actual port where the server is running) to see the
Response time of this method as below:

...​
HELP productLookupTime_seconds_max Time needed to lookup for a

products​
TYPE productLookupTime_seconds_max gauge​
productLookupTime_seconds_max{method="getProduct",mp_scope="applic

ation",} 0.002270643​
...

https://localhost

Tracking number of invocations
MicroProfile Metrics also allows you to track the number of invocations of a method
as a counter metric. The code example below shows how to use the @Counted
annotation to track the invocation count.

import org.eclipse.microprofile.metrics.Metrics;​
import org.eclipse.microprofile.metrics.MetricType;​
​
public class ProductResource {​
​
 // Expose the invocation count as a counter metric​
 @Counted(name = "productAccessCount",​
 absolute = true,​
 description = "Number of times the list of products is requested")​
 public Response getProducts() {​
 // Method implementation​
 //​
 }​
}

In the example above, the @Counted annotation tells MicroProfile Metrics to track the
number of invocations of the getProducts() method and expose this metric as a
counter. The name, and description of the metric can also be specified.

You can visit the following URL https://localhost:<port>/metrics?scope=application
(Replace <port> with the actual port where the server is running) to see the number
of times this method is called as below:

...​
HELP productAccessCount_total Number of times the list of

products is requested​
TYPE productAccessCount_total counter​
productAccessCount_total{mp_scope="application",} 3.0​
...

Creating a Custom Metric

Creating a custom metric to track the number of products in a catalog within a
ProductService microservice involves using the MicroProfile Metrics API. This custom
metric can be implemented as a gauge, which measures an instantaneous value (in
this case, the current number of products in the catalog).

import org.eclipse.microprofile.metrics.annotation.Gauge;​
... ​
​
@Path("/products")​
@ApplicationScoped​

https://localhost

public class ProductResource {​
 // ... ​
​
 ​
 @GET​
 @Path("/count")​
 @Produces(MediaType.APPLICATION_JSON)​
 @Gauge(name = "productCatalogSize", ​
unit = "none", ​
description = "Current number of products in the catalog")​
 public long getProductCount() {​
 return productCatalogSize;​
 }

The gauge metric productCatalogSize can be accessed through the following
endpoint:

/metrics?name=io_microprofile_tutorial_store_product_resource_ProductResource_pr

oductCatalogSize

This custom metric implementation provides a real-time insight into the size of your
product catalog, which can be invaluable for monitoring the scale of your service's
data and understanding its behavior over time.

Summary

This Chapter delved into the intricacies of MicroProfile Metrics, illuminating its role
as a pivotal specification for efficiently monitoring microservices. Now you are
equipped with a thorough understanding of diverse metric types and their application
for monitoring microservice performance. This chapter highlighted the need of
regular microservice monitoring via metrics and health checks, emphasizing metrics
for detailed performance insights such as response times and throughput. Through
practical examples, this chapter showcases how to instrument microservices with
MicroProfile Metrics, leveraging standard metrics, and creating custom metrics to
monitor microservices comprehensively.

	Chapter 7: MicroProfile Metrics
	Introduction
	Topics to be covered:
	Introduction to MicroProfile Metrics

	Types of Metrics
	MicroProfile Metrics Dependency
	Metrics Annotations
	Components of Metadata
	Example
	Purpose and Importance of Metadata

	Categories of Metrics
	Metric Registry
	Types of Metric Registries

	Instrumenting Microservices with MicroProfile Metrics
	Tracking response time using @Timed
	Tracking number of invocations

	Summary

