
Proposal for Google Summer of Code (GSoC) 2025​
Project Title: Internationalization with AI Translation Support for Music Blocks​

Organization: Sugar Labs 

 

Personal Information 

Name: Aman Chadha​
GitHub Profile: AmanChadha​
GitHub PR for Music Blocks: PR #4459 

Already Merged PR in Music blocks: 

#4437: Fixed Tests for Turtle Singer and Synth Utils 

#4433: Fix PO File Errors 

Other Merged PR: 

#5523: Manipulation: Make jQuery.cleanData not skip elements during cleanup(JQuery 

Library). 

 

About Me 

I'm a passionate open-source contributor with a strong focus on AI and music technology. I actively 

engage on platforms like Stack Overflow (reputation: 2496) and have contributed to multiple 

open-source projects, including Sugar Labs. My merged PRs in Music Blocks, such as fixing Turtle 

Singer tests (#4437) and resolving PO file errors (#4433), showcase my ability to tackle technical 

challenges. I thrive at the intersection of creativity and innovation, blending cutting-edge neural 

networks with music technology to create meaningful solutions. 

 

Synopsis 

Music Blocks currently uses an outdated internationalization (i18n) system called webL10n.js, which 

lacks support for modern i18n features such as pluralization and language-specific formatting. This 

project aims to modernize the i18n system by migrating to a contemporary JavaScript i18n 

framework (specifically i18next) and integrating AI translation services to assist human translators. By 

leveraging tools like Google Translate or DeepL, initial translations can be generated automatically, 

reducing manual effort and supporting additional languages more efficiently. 

 

https://github.com/ac-mmi
https://github.com/sugarlabs/musicblocks/pull/4459
https://github.com/sugarlabs/musicblocks/pull/4437
https://github.com/sugarlabs/musicblocks/pull/4433
https://github.com/jquery/jquery/pull/5523
https://github.com/jquery/jquery/pull/5523


 

 

Benefits to the Community 

●​ Enables more accurate and culturally appropriate translations with modern formatting 

capabilities. 

●​ Reduces the workload on human translators by providing automatic initial translations. 

●​ Supports more languages, enhancing accessibility and inclusivity. 

●​ Facilitates a streamlined translation process for future updates. 

 

Deliverables 

1.​ Migration from WebL10n to i18next 

2.​ Integration of AI Translation Support 

3.​ Creation and Update of JSON Translation Files 

4.​ Documentation for Future Maintenance 

5.​ Automated Testing for Translation Accuracy 

 

 

Technical Details 

1. Migration from WebL10n to i18next 

The migration involves replacing the outdated webL10n.js system with the modern i18next 

framework. This change affects several key files: 

●​ ``The function _() is updated to use i18next.t() for translation lookups. Key features added 

include:  

o​ Fallback strategies for translation:  

▪​ Cleaned text (without special characters) 

▪​ Lowercase version 

▪​ Title case version 

▪​ Hyphenated text 

o​ Support for specific languages like Kanji and Kana with sub-language handling. 



o​ Pseudo code version of _() function which would be used for this translation 

procedure. You can check the implementation in my PR #4459. 

 

 

●​ Function _(text, options={}): 
●​     If text is empty → return "" 
●​  
●​     Clean text by removing special characters 
●​     Set language and check if it's "kanji" or "kana" 
●​         If yes, try fetching translation with special suffix 
●​         If not found, fallback to normal translation 
●​  
●​     Try translating text in different variations: 
●​         1. Original text 
●​         2. Cleaned text (without special characters) 
●​         3. Lowercase version 
●​         4. Title-case version 
●​         5. Hyphenated version (spaces → "-") 
●​  
●​     If translation is still missing, return original text 
●​  
●​     Preserve original text's capitalization: 
●​         - If all uppercase → return translated text in uppercase 
●​         - If all lowercase → return translated text in lowercase 
●​         - If title-case → return translated text in title-case 
●​  
●​     Return final translated text 
●​  

●​ WebL10n.js script tags are removed, and i18next is imported. 

 

2. Improving String Handling & RTL Support in i18n Migration 

As part of the migration from WebL10n to i18next, we need to address certain string-handling 

limitations and ensure better support for Right-to-Left (RTL) languages. 

2.1​Resolving String Concatenation Issues 

In the current codebase, some strings are concatenated like: 

const name = currentKey + " " + _(mode); 

This approach does not work well for languages with different word orders (e.g., RTL 

languages). Instead of manually concatenating strings, we will use interpolation with 

placeholders: 

​ const name = _("music.mode", { key: currentKey, mode: mode }); 

for eg: In English: "C Major" 

In French: "Do Majeur" (Order changes) 

https://github.com/sugarlabs/musicblocks/pull/4459


In Arabic (RTL): كبير C (Word order reversed)​
In my _() function I have added new optional parameter for the same you can check in 

utils/utils.js.The functions are critical in playing a role in mitigating new such kind o f 

challenges and could be further used in many such incidents. 

 

 

3. Optimizing Translation Keys for Maintainability 

●​ Instead of using full sentences as keys, we should use short, descriptive keys. For Eg. 

{ 

  "The Semi-tone transposition block will shift the pitches contained inside Note blocks up (or 

down) by half steps.": "El bloque de transposición de semitonos desplazará los tonos dentro 

de los bloques de nota hacia arriba (o abajo) en semitonos." 

} 

​
should change to 

 

{ 

  "block.semitone_transpose": "El bloque de transposición de semitonos desplazará los tonos 

dentro de los bloques de nota hacia arriba (o abajo) en semitonos." 

} 

Making it easier for developers and translators to manage. 

Instead of parsing and then merging we can use a two way translator for better transforming 

abilities and could be further scaled using such kind of similar archetypes and finally done in 

order for similar kind of replication​
 

4. Unified JSON Structure for Japanese 

●​ Previously, Kana and Kanji translations were stored in separate JSON files. 

●​ Now, they have been merged into a single JSON file under locales/ja.json. 

●​ This simplifies maintenance and avoids r in reedundant translation efforts. 

●​ When the user selects Japanese (Kana) or Japanese (Kanji), the application correctly applies 

the preferred writing system. 

For example, earlier we had two separate files: ja.json and ja-kana.json. Instead of maintaining two 
separate files, we will now consolidate them into a single file called ja.json. This file will contain 
subkeys for "kana" and "kanji," each holding the corresponding translations of the relevant words, as 
shown below 
 
{ 
  "Refresh your browser to change your language preference.": { 
    "kanji": "言語を変えるには、ブラウザをこうしんしてください。", 
    "kana": "げんごを かえるには、ブラウザを こうしんしてください。" 
  }, 
  "project undefined": { 
    "kanji": "プロジェクト未定義", 

http://utils.js


    "kana": "プロジェクトみていぎ" 
  }, 
  "action": { 
    "kanji": "アクション", 
    "kana": "アクション" 
  }, 
  "duck": { 
    "kanji": "あひる", 
    "kana": "あひる" 
  } 
} 
  
 

5. i18next Language Initialization & Loading 

●​ The loader.js file initializes i18next, loads the translations from locales/{{lng}}.json and 

updates the UI dynamically. 

●​ The key Separator: '=)' is used to handle structured keys correctly. 

6. Handling Language Preferences in  

●​ If a user has previously selected a language, it is stored in this.storage.languagePreference. 

●​ For Japanese:  

o​ If ja is selected, it appends the Kana preference (ja-kana or ja-kanji). 

o​ This ensures the correct script is used based on user preferences. 

7. Language Selection Logic in Language Selector Dropdown 

●​ When a user selects a language from the dropdown:  

o​ The preference is stored. 

o​ For Japanese, ja-kana or ja-kanji is explicitly set. 

o​ A message prompts the user to refresh the browser to apply changes. 

 

8. Translation Key Lookup with Fallback (``) 

●​ If a key does not exist in the selected language, it falls back to more regionally or linguistically 

similar languages. This way, the fallback would feel more natural to users. 

For instance: 

●​ Languages like Quechua, Aymara, and Guarani could fall back to Spanish since it is more 
familiar in those regions. 

●​ Bengali, Nepali, and Punjabi could fall back to Hindi, which is widely understood in South 
Asia. 

●​ Haitian Creole, Wolof, and Lingala could fall back to French due to historical and linguistic 
ties. 

●​ Brazilian and Angolan Portuguese could fall back to European Portuguese. 



●​ Somali, Hausa, Pashto, and Persian could fall back to Arabic as it shares more linguistic 
commonality. 

●​ Simplified and Traditional Chinese could fall back to their respective Chinese variants. 
●​ This ensures that missing translations do not break the UI. 

9. AI Translation Support 

●​ A Python script named translate_ai.py is developed to handle automatic translation of 

missing phrases. 

●​ It leverages services like Google Translate API to fill gaps in JSON translation files. 

●​ The script can:  

o​ Create new JSON files for new languages. 

o​ Update existing JSON files with missing translations. 

o​ Log changes for manual verification. 

●​ This accelerates the translation process while allowing human translators to review and 

refine the output. 

 

10. Translation Accuracy Verification 

●​ To ensure high-quality translations, I implemented a two-step verification process: 

●​ Back-Translation Check: We translate the localized text back into English and compare it with 

the original. This helps detect inconsistencies in meaning.​
Example from the Catalan translation file: 

"Refresh your browser to change your language preference.": "Actualitzeu el navegador per 

canviar la vostra preferència d’idioma."​
The English back-translation of the Catalan text is: "Update your browser to change your 

language preference."​
We can see the meaning is preserved, but the wording changed slightly. 

●​ Lexical similarity: To measure translation accuracy quantitatively, we calculate a lexical 

similarity score between the original and back-translated text. 

Original: "Refresh your browser to change your language preference." 
Back-Translated: "Update your browser to change your language preference." 
Lexical Similarity Score: 90.09%  
 
If the similarity is below 60%, the translation is flagged for manual review. The system logs 
results in a JSON file, marking translations that may need human intervention. 

I have attached the translation file(ca.json),back-translation.json and report.json in the link 

given below: 

https://github.com/sugarlabs/musicblocks/pull/4459#issuecomment-2777613083 

11. Changes to PO Files 

●​ Since the JSON structure has changed, PO files may need updates to align with the new 

format. 

https://github.com/sugarlabs/musicblocks/pull/4459#issuecomment-2777613083


●​ Initially, we will convert all existing .po files to .json format to maintain compatibility. 

However, moving forward, newly translated files will be created directly in .json format using 

our AI translation code. This approach simplifies the process by eliminating the need for .po 

files in the future. 

●​ Additionally, this transition eliminates the need for the .ini file previously used for 

configuration, as i18next handles this internally. 

●​ Specifically, we need to decide:  

o​ Should untranslated Kana default to Kanji or English? 

 

 

What have bee  n the more generous of the idea sibeing presented in the case and outline more structure in order to deal with the same 

and hide it if possible with more of the responsibilities if possible or otherwise make a denial statement theat follows the requirements\ 

 

 

Project Timeline 

Period Task 

May 20 - June 10 Research i18next features, finalize migration plan 

June 11 - July 5 Migrate key files to i18next, replace webL10n 

July 6 - July 20 Implement AI translation support (translate_ai.py) 

July 21 - Aug 10 Generate and validate translation files 

Aug 11 - Aug 15 Implement automated testing for translations 

Aug 16 - Aug 20 Documentation and final testing 

 

Expected Outcomes 

●​ A modern i18n system in Music Blocks using i18next. 

●​ A functional Python script for AI-assisted translations. 

●​ Automated tests to ensure translation accuracy. 

●​ Comprehensive documentation for future developers. 

 

To Get Involved 

●​ Review my PR on GitHub: PR #4459 

https://github.com/sugarlabs/musicblocks/pull/4459


●​ Test the AI translation tool with various languages. 

●​ Suggest additional features or improvements. 

 


