Proposal for Google Summer of Code (GSoC) 2025

Project Title: Internationalization with Al Translation Support for Music Blocks
Organization: Sugar Labs

Personal Information

Name: Aman Chadha
GitHub Profile: AmanChadha
GitHub PR for Music Blocks: PR #4459

Already Merged PR in Music blocks:

#4437: Fixed Tests for Turtle Singer and Synth Utils

#4433: Fix PO File Errors

Other Merged PR:

#5523: Manipulation: Make jQuery.cleanData not skip elements during cleanup(JQuery

Library).

About Me

I'm a passionate open-source contributor with a strong focus on Al and music technology. | actively
engage on platforms like Stack Overflow (reputation: 2496) and have contributed to multiple
open-source projects, including Sugar Labs. My merged PRs in Music Blocks, such as fixing Turtle
Singer tests (#4437) and resolving PO file errors (#4433), showcase my ability to tackle technical
challenges. | thrive at the intersection of creativity and innovation, blending cutting-edge neural
networks with music technology to create meaningful solutions.

Synopsis

Music Blocks currently uses an outdated internationalization (i18n) system called webL10n.js, which
lacks support for modern i18n features such as pluralization and language-specific formatting. This
project aims to modernize the i18n system by migrating to a contemporary JavaScript i18n
framework (specifically i18next) and integrating Al translation services to assist human translators. By
leveraging tools like Google Translate or Deepl, initial translations can be generated automatically,
reducing manual effort and supporting additional languages more efficiently.


https://github.com/ac-mmi
https://github.com/sugarlabs/musicblocks/pull/4459
https://github.com/sugarlabs/musicblocks/pull/4437
https://github.com/sugarlabs/musicblocks/pull/4433
https://github.com/jquery/jquery/pull/5523
https://github.com/jquery/jquery/pull/5523

Benefits to the Community

e Enables more accurate and culturally appropriate translations with modern formatting
capabilities.

e Reduces the workload on human translators by providing automatic initial translations.
e Supports more languages, enhancing accessibility and inclusivity.

e Facilitates a streamlined translation process for future updates.

Deliverables
1. Migration from WebL10n to i18next
2. Integration of Al Translation Support
3. Creation and Update of JSON Translation Files
4. Documentation for Future Maintenance

5. Automated Testing for Translation Accuracy

Technical Details

1. Migration from WebL10n to i18next

The migration involves replacing the outdated webL10n.js system with the modern i18next
framework. This change affects several key files:

e “The function _() is updated to use i18next.t() for translation lookups. Key features added
include:

o Fallback strategies for translation:

= Cleaned text (without special characters)

Lowercase version
= Title case version

= Hyphenated text

o Support for specific languages like Kanji and Kana with sub-language handling.



o Pseudo code version of _() function which would be used for this translation
procedure. You can check the implementation in my PR #4459.

Function _(text, options={}):
If text empty — return ""

Clean text by removing special characters

Set language check if it's "kanji" or "kana"
If yes, try fetching translation with special suffix
If found, fallback to normal translation

translating text different variations:
1. Original text
. Cleaned text (without special characters)
Lowercase version

. Hyphenated version (spaces — "-")

If translation still missing, return original text

Preserve original text's capitalization:
- If all uppercase — return translated text uppercase
- If all lowercase — return translated text lowercase
- If title-case — return translated text title-case

Return final translated text

[ J
[}
[
[}
[
[}
[
[ J
[ J
[ J
[}
[
° . Title-case version
[
[ J
[
[ J
[}
[
[ J
[
[ J
[
[ J
[ ]

WebL10n.js script tags are removed, and i18next is imported.

2. Improving String Handling & RTL Support in i18n Migration

As part of the migration from WebL10n to i18next, we need to address certain string-handling
limitations and ensure better support for Right-to-Left (RTL) languages.

2.1 Resolving String Concatenation Issues
In the current codebase, some strings are concatenated like:
const name = currentKey + " " + _(mode);

This approach does not work well for languages with different word orders (e.g., RTL
languages). Instead of manually concatenating strings, we will use interpolation with
placeholders:

const name = _("music.mode", { key: currentKey, mode: mode });
for eg: In English: "C Major"

In French: "Do Majeur" (Order changes)


https://github.com/sugarlabs/musicblocks/pull/4459

In Arabic (RTL): =S C (Word order reversed)

In my _() function | have added new optional parameter for the same you can check in
utils/utils.js.The functions are critical in playing a role in mitigating new such kind o f
challenges and could be further used in many such incidents.

3. Optimizing Translation Keys for Maintainability

Instead of using full sentences as keys, we should use short, descriptive keys. For Eg.

{

"The Semi-tone transposition block will shift the pitches contained inside Note blocks up (or
down) by half steps.": "El bloque de transposicion de semitonos desplazard los tonos dentro
de los bloques de nota hacia arriba (o abajo) en semitonos."

}

should change to

{

"block.semitone_transpose": "El bloque de transposicion de semitonos desplazard los tonos
dentro de los bloques de nota hacia arriba (o abajo) en semitonos."

}

Making it easier for developers and translators to manage.

Instead of parsing and then merging we can use a two way translator for better transforming
abilities and could be further scaled using such kind of similar archetypes and finally done in
order for similar kind of replication

4. Unified JSON Structure for Japanese

Previously, Kana and Kanji translations were stored in separate JSON files.
Now, they have been merged into a single JSON file under locales/ja.json.
This simplifies maintenance and avoids r in reedundant translation efforts.

When the user selects Japanese (Kana) or Japanese (Kanji), the application correctly applies
the preferred writing system.

For example, earlier we had two separate files: ja.json and ja-kana.json. Instead of maintaining two
separate files, we will now consolidate them into a single file called ja.json. This file will contain
subkeys for "kana" and "kanji," each holding the corresponding translations of the relevant words, as
shown below

{

b,

"project undefined": {

"Refresh your browser to change your language preference.": {

"kanji": "BEREZEABICIE. TSIOYFEZS LALTEZY, »,
"kana": "[FAZE MRBICIEK, T59HFE CS5LALTLESL, "

"kanji": "FAY T FREK",


http://utils.js

"kana": "ZFAYIH FHTNE"
},

"action": {
"kanji": "Fo3vn,
"kana": "3
}’
"duck": {
"kanji": "HVBH",
"kana": "&HUVBH"
}

5. i18next Language Initialization & Loading

e The loader.js file initializes i18next, loads the translations from locales/{{Ing}}.json and
updates the Ul dynamically.

e The key Separator: '=)" is used to handle structured keys correctly.
6. Handling Language Preferences in
e If a user has previously selected a language, it is stored in this.storage.languagePreference.
e ForJapanese:
o Ifjais selected, it appends the Kana preference (ja-kana or ja-kaniji).
o This ensures the correct script is used based on user preferences.
7. Language Selection Logic in Language Selector Dropdown
e When a user selects a language from the dropdown:
o The preference is stored.
o For Japanese, ja-kana or ja-kanji is explicitly set.

o A message prompts the user to refresh the browser to apply changes.

8. Translation Key Lookup with Fallback (™)

e |[f a key does not exist in the selected language, it falls back to more regionally or linguistically
similar languages. This way, the fallback would feel more natural to users.

For instance:

e Languages like Quechua, Aymara, and Guarani could fall back to Spanish since it is more
familiar in those regions.

e Bengali, Nepali, and Punjabi could fall back to Hindi, which is widely understood in South
Asia.

e Haitian Creole, Wolof, and Lingala could fall back to French due to historical and linguistic
ties.

e Brazilian and Angolan Portuguese could fall back to European Portuguese.



Somali, Hausa, Pashto, and Persian could fall back to Arabic as it shares more linguistic
commonality.

Simplified and Traditional Chinese could fall back to their respective Chinese variants.
This ensures that missing translations do not break the Ul.

9. Al Translation Support

A Python script named translate_ai.py is developed to handle automatic translation of
missing phrases.

It leverages services like Google Translate API to fill gaps in JSON translation files.
The script can:

o Create new JSON files for new languages.

o Update existing JSON files with missing translations.

o Log changes for manual verification.

This accelerates the translation process while allowing human translators to review and
refine the output.

10. Translation Accuracy Verification

To ensure high-quality translations, | implemented a two-step verification process:
Back-Translation Check: We translate the localized text back into English and compare it with
the original. This helps detect inconsistencies in meaning.

Example from the Catalan translation file:

"Refresh your browser to change your language preference.": "Actualitzeu el navegador per
canviar la vostra preferéncia d’idioma."

The English back-translation of the Catalan text is: "Update your browser to change your
language preference."

We can see the meaning is preserved, but the wording changed slightly.

Lexical similarity: To measure translation accuracy quantitatively, we calculate a lexical
similarity score between the original and back-translated text.

Original: "Refresh your browser to change your language preference."

Back-Translated: "Update your browser to change your language preference."

Lexical Similarity Score: 90.09%

If the similarity is below 60%, the translation is flagged for manual review. The system logs
results in a JSON file, marking translations that may need human intervention.

I have attached the translation file(ca.json),back-translation.json and report.json in the link
given below:

https://aithub.com/sugarlabs/musicblocks/pull/4459%#issuecomment-2777613083

11. Changes to PO Files

Since the JSON structure has changed, PO files may need updates to align with the new
format.


https://github.com/sugarlabs/musicblocks/pull/4459#issuecomment-2777613083

e Initially, we will convert all existing .po files to .json format to maintain compatibility.
However, moving forward, newly translated files will be created directly in .json format using
our Al translation code. This approach simplifies the process by eliminating the need for .po
files in the future.

e Additionally, this transition eliminates the need for the .ini file previously used for
configuration, as i18next handles this internally.

e Specifically, we need to decide:

o Should untranslated Kana default to Kanji or English?

What have bee n the more generous of the idea sibeing presented in the case and outline more structure in order to deal with the same

and hide it if possible with more of the responsibilities if possible or otherwise make a denial statement theat follows the requirements\

Project Timeline

Period Task

May 20 - June 10 Research i18next features, finalize migration plan
June 11 -July 5 Migrate key files to i18next, replace webL10n

July 6 - July 20 Implement Al translation support (translate_ai.py)
July 21 - Aug 10 Generate and validate translation files

Aug 11 - Aug 15 Implement automated testing for translations
Aug 16 - Aug 20 Documentation and final testing

Expected Outcomes

e A modern i18n system in Music Blocks using i18next.
e A functional Python script for Al-assisted translations.
e Automated tests to ensure translation accuracy.

e Comprehensive documentation for future developers.

To Get Involved

e Review my PR on GitHub: PR #4459


https://github.com/sugarlabs/musicblocks/pull/4459

e Test the Al translation tool with various languages.

e Suggest additional features or improvements.



