Node Failure Recover with ForceEviction
Authors: jinxu@

Background

Kubernetes relies on a node agent (aka kubelet) to report the health of a node. There are a
variety of reasons for kubelet fail to update its node status, including kernel crash, panic, or
update which cause system reboot, system hang due to heavy load, network partition issue, or
kubelet fails to start. When this happens, Kubernetes will taint the node status as “NotReady”
and will trigger eviction of pods on the failed node with taint-based eviction and start new pods
on other healthy nodes.

However, users often reported issues during the failure handling including old pods cannot be
deleted correctly, new pods cannot be started correctly due to volume failing to detach from old
node and attach to new node issues, or it takes a long time for new pods to start. This document
is trying to investigate the failure handling issues for pods and their volumes with a goal of
improving system reliability and failure recovery capabilities.

Goals

When kubelet is not responsive, the current failure recovery with Pod eviction does not work
well. Pod eviction and resource clean up normally require a kubelet acknowledge so that Pod
will be deleted from API server and also volume can be released (detached from the node). This
proposal is trying to address this problem with a new type of taint based eviction, ForceEviction.
The overall idea is to force delete Pods with zero grace period. This means that a Pod will be
deleted immediately from API server without waiting for kubelet reponse. In this way, new
statefulSet Pod can be started again on other healthy node and volumes will be detached
quickly.

This force eviction can be very useful for quick failure recovery in certain scenarios. For
example, for bare-metal cluster, shutting down a node is often used as the last recovery step if
node is no longer responsive and there is no other way (or no time) to diagnose the root cause
and fix it. When node is shutdown, all processes stops and volumes are no longer mounted, so
Pods can be safely deleted without waiting for kubelet to perform any clean up. The main
challenge for this ForceEviction is to make sure no race condition between Pod eviction and
Kubelet restarts Pods when it comes back.

Proposal

Currently, Kubernetes already supports four types of taint effects:
e NoSchedule: Pods that do not tolerate this taint are not scheduled on the node.
e PreferNoSchedule: Kubernetes avoids scheduling Pods that do not tolerate this taint

onto the node.

e NoExecute: Pod is evicted from the node if it is already running on the node, and is not
scheduled onto the node if it is not yet running on the node.
We propose to add a new effect, TaintEffectForceEviction. For a Pod that cannot tolerant this
taint, it will be force deleted from the node with zero grace period. In node shut down case,
controller could add the following taint to the node.

taint := &v1.Taint{
Key: nodeShutdown,
Value: "true",
Effect: v1.TaintEffectForceEviction,

After the node is tainted, node lifecycle controller will trigger to force delete all the pods from the
node. To avoid race condition, kubelet also requires some additional handling when node is

tainted which is explained in more details below.

Master Node lifecycle controller

Node kubelet

When node is marked as “NotReady” and
tainted with “ForceEviction”. Taint manager
will perform the following steps

1. Check node condition whether Ready
becomes true again. If yes, remove
the taint if ForceEviction pods on the
node is not started yet or already
finished. Otherwise, skip the rest. If
Ready is still false, continue with next
step 2.

2. Remove VolumelnUse list for this
node and Remove VolumesAttached
list

3. Evict pods from the node with --force
and 0 grace period

During startup: send out heartbeat by
updating node status.

Before starting up Pod, Pod canAdmit checks
taint and pod tolerations to decide whether to
admit pod or not.

e |f node condition can not be retrieved,
do not start Pods that cannot tolerant
ForceEviction taint

e If node has taint or node Ready
condition is not true (heartbeat has
not yet sent out), do not start Pods
that cannot tolerant ForceEviction
taint

The following diagrams list the possible scenarios during force eviction. The test cases should

cover all these scenarios

2. Cloud provider controller
taints node “ForceEviction”

3. Taint manager checks Node ready
condition is false, remove VolumelnUse
and VolumeAttached Lists

4. Taint manager starts to
evict Pods from node

5. Attach_detach_controller
detach volumes from node

6. Pods are all force deleted

7. Remove the taint after all
Pos are evicted

2. Cloud provider controller
taints node “ForceEviction"

3. Taint manager remove VolumelnUse
and VolumeAttached Lists

4. Taint manager starts to
evict Pods from node

5. Attach_detach_controller
detach volumes from node

6. Pods are all force deleted

7. Remove the taint after all
Pos are evicted

Scenario 1: Heartbeat is sent
out after the taint

1. Node is shut down

3a. Node is restarted and send heartbeat
(Node Ready condition is set to true.)

4a. Kubelet checks taint and node status, only
admits pods that can tolerate the taint

8 Kubelet can starts new Pods

Scenario 2: Kubelet cannot send
reach API server after restarted

1. Node is shut down

2a. Node is restarted, but could not
reach API| server and update Node status

4a. Kubelet tries to check taint and node status

but failed, only admits pods that can tolerate
the taint

8 Kubelet can starts new Pods

2a. Cloud provider controller
taints node “ForceEviction”

3. Taint manager checks Node ready
condition is true, remove the taint

kep-number
title

authors

owning-sig

participating-sigs

reviewers

approvers

Scenario 3: Kubelet sends out
heartbeat before the taint manager
checks the node condition

1. Node is shut down

2. Node is restarted and send heartbeat
(Node Ready condition is set to true.)

4a. Kubelet checks taint and node status, can
start Pods

- "@yujuhong"
editor: TBD
creation-date: 2019-1-18
last-updated: 2019-1-18
status: implementable
see-also:

- n/a

replaces:

- n/a

superseded-by:

- n/a

Title

Node Failure Recovery with ForceEviction Taint

Table of Contents

* [Title] (#title)
* [Table of Contents] (#table-of-contents)
* [Summary] (#summary)
* [Motivation] (#motivation)
* [Goals] (#goals)
* [Non-Goals] (#non-goals)
* [Proposal] (#fproposal)
* [User Stories] (fuser-stories)
* [Workarounds] (#workarounds)
* [Alternatives] (falternatives)
* |[Risks and Mitigations] (#frisks-and-mitigations)
* [Graduation Criterial (#graduation-criteria)

* [Implementation History] (#implementation-history)

Summary

Current taint-based eviction does not work well to handle node failures.

When a node fails and kubelet cannot respond, Pod will be struck in

terminating and cannot be deleted, and Volume cannot be detach either.
To address the issue of failing to recover Pod from node failure, we are
proposing a new taint-base eviction effect, ForceEviction.

With this new type of eviction, Pods can be deleted forcefully without
waiting for

Kubelet's acknowledgement and volumes can be detached faster. The main
challenge

of this proposal is to make sure no race condition between Pod eviction
and Kubelet

restarts Pods when it comes back.

Motivation

Kubernetes relies on a node agent (aka kubelet) to report the health of a
node.

There are a variety of reasons that kubelet fails to update its node
status,

such as kernel crash, panic, or update which causes system reboot,

system hangs due to heavy load, network partition, and machine is powered
off

due to failures. When this happens, Kubernetes currently uses a
taint-based eviction

trying to recovery from the failed node. The recovery process will taint
the node

status as “NotReady” and will trigger eviction of pods on the failed node
if the node

is in "NotReady" state for a while (set to 5 minutes by default) so that
new pods

could be started on other healthy nodes.

However, users often reported issues during the failure handling including
old pods

cannot be deleted correctly, new pods cannot be started correctly due to
volume failing

to detach from old node and attach to new node issues, or it takes a long

time for new

pods to start. The main reason for this problem is due to the fact that
Pod deletion requires

kubelet's acknowlegement. When a Pod is evicted (deleted) from a node, the
deletion timestamp

is first set on the Pod. However the Pod will not be actually deleted from
API server until kubelet

finishes cleaning up all the resources of this Pod and kills the running
containers. If the node

is in a failed state and kubelet cannot respond, Pod will be stuck in a
teminating state forever.

In addtion, the containers status for the Pod are still running since
kubelet cannot update it,

which blocks attach detach controller to detach volumes. The current
taint-based eviction actually

cannot give any benefit in the sense that Pod can only be succesfully
evicted after Kubelet comes

back healthy, in which case there is no need of Pod eviction at all.

Goals

This proposal is trying to investigate the failure handling issues for
pods

and their volumes with a goal of improving system reliability and failure
recovery capabilities.

Among different kinds of failures, node shut down is the main user case
this proposal tries

to address. In this case, we are sure that all containers are stopped, and
all mounts are gone

so that it is safe to take some recovery actions more aggresively without

waiting for kubelet correspondence.
to delete the Pods from API server without waiting for kubelet's
acknoledgement.

Volumes can also be safely detached since mounts no longer exist.

Non-Goals

This proposal is not trying to address the recovery issue for all types of
failures. For example for network

partition issue, because this is no source of truth about whether Pods are
running or not, it is not possible

for controller decide what recovery actions should take based on the node

status.

Proposal

Currently, Kubernetes already supports four types of taint effects:

- NoSchedule: Pods that do not tolerate this taint are not scheduled on
the node.

- PreferNoSchedule: Kubernetes avoids scheduling Pods that do not tolerate
this taint onto the node.

- NoExecute: Pod is evicted from the node if it is already running on the
node, and is not scheduled

onto the node if it is not yet running on the node.

ForceEviction Taint Effect

We propose to add a new effect, TaintEffectForceEviction. For a Pod that
cannot tolerant this taint,

it will be force deleted from the node with zero grace period which means
that Pod can be deleted immediately

without waiting for Kubelet to responde. One important use case of this
taint is node shut down case. If node

controller or some external controller detact that node is powered off,
the controller could add the following

taint to the node.

taint := &vl.Taint{
Key: nodeShutdown,
Value: "true",

Effect: vl.TaintEffectForceEviction,

After the node is tainted, node lifecycle controller will trigger to
forcely delete all the Pods from the node.

Because the main goal of this effect is to recover from failures as soon
as possible, the grace period of deleting

the pod will be set to 0. The controller or system admin who taint the
node with ForceEviction should make sure that

no workload is running (pods are running) any more on the node to ensure
the [pod

safety] (https://github.com/kubernetes/community/blob/master/contributors/d
esign-proposals/storage/pod-safety.md) .

Coordination between Node Controller and Kubelet

If Kubelet comes back healthy in the middle of force eviction process,
there might be race condition between kubelet

starting Pods while they are being deleted since force deletion does not
require kubelet coordination any more.

To avoid race condition between controller and kubelet, kubelet also
requires some additional handling when node

is tainted which is explained in more details below.

For node lifecycle controller, we plan to add the following eviction

logic:

When node is marked as “NotReady” and tainted with “ForceEviction”. Taint

manager will perform the following steps

1. Check node condition whether Ready becomes true again. If yes, remove
the taint if ForceEviction pods on the node

is not started yet or already finished. Otherwise, skip the rest. If Ready
is still false, continue with next step 2.

2. Remove VolumelInUse list for this node and Remove VolumesAttached list

3. Evict pods from the node with --force and 0 grace period

For node Kubelet, it will first send out heartbeat by updating node status

during start up.

Before starting up Pod, Pod canAdmit function checks taint and pod
tolerations to decide whether to admit pod or not.

- If node condition can not be retrieved, do not start Pods that cannot
tolerant ForceEviction taint. But we should allow

to start static Pods.

- If node has taint or node Ready condition is not true (heartbeat has not
yet sent out), do not start Pods

that cannot tolerant ForceEviction taint.

The following iternate the possible events happened during the eviction

process for node shut down use case.

Scenario 1: Heartbeat is sent out after the taint

1. Node is shut down

2. Cloud provider controller checks the node status and taints node with
“ForceEviction” taint effect

3. Taint manager checks Node ready condition is false, remove VolumeInUse
and VolumeAttached Lists

4. Taint manager confirms that no new heartbeat from kubelet and starts to
evict Pods from node

5. Node might be restarted and kubelet will send heartbeat (Node Ready
condition is set to true.)

Kubelet checks taint and only admits pods that can tolerate the taint.

6. Attach detach controller detach volumes from node

7. Remove the taint after all Pods are evicted

8. Kubelet can starts new Pods after taint is removed.

Scenario 2: Kubelet cannot reach API server after restarted

1. Node is shut down
2. Cloud provider controller taints node “ForceEviction”
3. Taint manager checks Node ready condition is false, remove VolumeInUse

and VolumeAttached Lists

4. Node is restarted, but could not reach API server and update Node
status

5. Kubelet tries to check taint and node status but failed, only admits
pods that can tolerate the taint

6. Taint manager confirms that no new heartbeat from kubelet and starts to
evict Pods from node

7. Attach detach controller detach volumes from node

8. Remove the taint after all Pods are evicted

Scenario 3: Kubelet sends out heartbeat before the taint manager

checks the node condition

1. Node is shut down

2. Node is restarted and sends heartbeat (Node Ready condition is set to
true.)

3. Taint manager checks Node ready condition is true, remove the taint

4. 4a. Kubelet checks taint and node status, can start Pods

User Stories

As a kubernetes administrator/IT automation tool, I want workload can be
recovered quickly when some nodes fail.

Some controller could detect the node failures, and could shut it down so
that the workload running on the node could

be recoved on other healthy nodes. The controller or system admin should
make sure that no workload is running on

the node (e.g., shut down the node) when the taint is applied to the node.

Alternatives

Kubernetes administrator/IT automation tool could choose to delete the
node API object from API server if it detect some

node failures. In this way, Pods will be garbage collected after a while.
However, this way it will lose some meta data that

were applied to the node already which is not ideal. Also after fixing the

node, administroator has to register this node back.

Risks and Mitigations

Graduation Criteria

Implementation History

Check “shutdown” taint:

s it i L echeel it
b. Pod admit checks taint and pod tolerations to decide whether admit pod or not

after node shut down, pods might not be properly deleted from API server because kubelet is no
longer responding. Furthermore, volumes cannot be detached because containers status is
running (kubelet cannot update its status any more).

However, in reality is after node is shut down, all containers are stopped, and all mounts are
gone. If system can check node is in shutdown state, it is safe to delete the Pods from API
server so that new Pods can be started in other nodes. There are two efforts going on to
address this.

e Taint the node “shutdown” state: cloud provider normally can check node status through
their API. Therefore, cloud node controller could taint the node shutdown status by
checking the node status through cloud provider. For bare-metal environment, there is a
node fencing proposal for this purpose. The idea is to use external controller to taint the
node.

e Controller force delete pods from nodes in shutdown state: this is the focus of this
proposal. The idea is to monitor node shutdown state. Node controller can try to force
delete the pods from shutdown node. However, If node restarts, make sure no new pods
come up and mount when controller is detaching the volumes

	Node Failure Recover with ForceEviction
	Background
	Goals
	Proposal

