
Biswas 378H Aadarsh Narayan, Jeriah Yu, Luke Thistlethwaite 1

CS 378H: Autonomous Robotics
Milestone 3 Report

1)​ Previous Mathematical/Algorithmic Computations
Rapidly Exploring Random Tree: We use the RRT algorithm to plan paths. An

additional constraint is that we limit how far the new steered path goes toward the
random sample to avoid “spaghettification” and reduce the likelihood of the path
intersecting a wall, allowing the tree to build iteratively.

1.​ Start with a graph only having our start point
2.​ Sample a random point, x_rand
3.​ Find nearest neighbor in graph, x_near
4.​ Transform both points to local reference frame around nearest neighbor
5.​ Steer towards random point with optimal constrained curve and max dist

a.​ This is the only step in local reference, collision checks are in
global reference frame.

6.​ Find this new end point, transform to global reference frame, x_new
7.​ Do coarse bounding box check for potential intersecting wall segments

a.​ For each found, check if true intersection via arc intersect below
8.​ If no collisions from the checks, add to graph
9.​ Repeat from step 2 until within epsilon distance of goal point.

Steer to Point: Given the random point selected by RRT, we calculate the “near”
true point we steer to in the direction of the random goal point. This is done by first
transforming from global to local reference frame (rotation + translation), then the

ideal curvature is given by , where x and y are the coordinates of the 𝑘 = 2𝑦

𝑥2+𝑦2

transformed goal point. If the curvature is too tight, we clamp to the max curvature
allowed by our limits. The arc path segment is then constructed, and a maximum
distance is set, so the planning occurs in small increments. The final point 𝑑

coordinates in local reference frame are . We then 𝑥' = 1
𝑘 𝑠𝑖𝑛(𝑘𝑑), 𝑦' =

1
𝑘 (1 − 𝑐𝑜𝑠(𝑘𝑑))

transform back to global coordinates (translation + rotation).

Biswas 378H Aadarsh Narayan, Jeriah Yu, Luke Thistlethwaite 2

Bounding Box Wall Collision: As part of the RRT planning, we have to compute

whether the travel path arc is collision-free. First, a bounding box method is used to
coarsely isolate the line segments of the map that may intersect with the travel path
(the arc intersect collision check is computationally expensive). We define the
bounding box to be from x_near (step 3) to x_new (step 6), with additional margin to

account for the dimensions of the car: . 𝑚𝑎𝑟𝑔𝑖𝑛 = 𝑙2 + (𝑤
2)

2

​ Arc Intersect Wall Collision: For each segment (and for the outer and inner
radius of the car), we do the following:

1.​ Extend the path arc into a circle and extend the segment into a line.
2.​ Compute the intersection points by formula if they exist (if not, collision-free):

Where m is the slope, (a,b) is the center of the circle, (c,d) is a point on the line.

3.​ Switch back to arc and segment and check if the intersection points overlap the
ranges of both the arc and the wall segment or if it’s outside the bounds (false
positive).

Biswas 378H Aadarsh Narayan, Jeriah Yu, Luke Thistlethwaite 3

​ For vertical lines, we currently adjust the values slightly to avoid division by 0,
but this can lead to very large slope values that may lose precision, so a further
improvement is to do a second implementation based on y-values and choose that
when slope > 1 or < -1.
Desmos graph with derivation: https://www.desmos.com/calculator/nyco4akfli
​ Distance Transform + Sampling Points: In order to randomly sample points from
the grid for RRT, we set up a distribution based on the distance of a point from the
walls, biasing sampling towards narrower areas. We then set up a CDF using this as
our distribution. See below for an example:

2)​ New Adjustments
Accounting for Dynamic Obstacles: planning collision detection was adjusted by
converting line segments from the map into point clouds and using prior
collision checking algorithms. This allows for easier integration with the LIDAR
point cloud scan enabling us to account for both static wall obstacles and
obstacles not found on the blueprint.
Dynamic Replanning: in line with the milestone goals, we rerun the RRT
algorithm if we find that our planned path intersects an obstacle ahead of us.
Currently, this involves creating a new random tree starting from the current
location toward the same goal.

3)​ Code Organization
graphgen.cc

https://www.desmos.com/calculator/nyco4akfli

Biswas 378H Aadarsh Narayan, Jeriah Yu, Luke Thistlethwaite 4

-​ steerToPoint(): Determines the arc needed to travel closest to the
exploration goal.

-​ pathLineIntersection(): Computes the arc wall collision above.
-​ computeBoundingBox(): Computes the bounding box that is first used as

a quick filter for relevant map lines.
-​ validPath(): Checks if a path (from steerToPoint) is valid (collision-free)

via above functions.
-​ createGraph(): Implements the RRT tree graph algorithm.
-​ visualizePath(): backtraces the RRT graph from the end goal to the start

via parent pointers and visualizes them.
​ steer.cc

-​ steer(): Manages the kinodynamic constraints of the car to ensure the
generation of a feasible path

​ dynamic_planner.cc
-​ comparePlanWithScan(): Takes the current point cloud and uses it to

update a kdTree representing the map in places where it detects points.
Each detection increases our confidence that a point is there

-​ needToReplan(): Checks our current state and determines if our planned
path is invalid due to high confidence in a particle intersecting our future
path

​ distance_transform.cc
-​ getDistanceTransform(): Takes the current world map and generates a

joint distribution over the x,y plane with higher values in regions of
greater wall density

4)​ Challenges Faced
​ We had some problems with earlier milestone code, whose hidden bugs are
now rearing their ugly heads. We had to fix our point targeting code from MS 1, since it
only assumed forwards motion was necessary. We also had to improve our RRT
because it struggled to path through chokepoints.

5)​ Individual Contributions
Aadarsh - tweaked RRT parameters in order to improve performance, including
involving multiple nearest neighbors, biasing depth over branching, reducing
path length, debugged point targeting, wrote dynamic replanning logic

Biswas 378H Aadarsh Narayan, Jeriah Yu, Luke Thistlethwaite 5

Jeriah - Debugging RRT failing to branch out, improving particle filter to jitter
less, tuning RRT params, debugging and fixing linking issues (again) to make
the code actually run, wrote Report
Luke - Rewrote MS 1 code in order to better approximate global plan,
implemented distance transform, added CDF sampling logic from distance
transform, updated scoring function, played with different versions of clearance,
path planning tuning, code refactorization, debugging

6)​ GitHub Link: https://github.com/Aadarsh271/Autonomous-Driving/tree/lt-final-pathing
Commit Hash: ed0b2e4d17ae4b02c86dd117d1cfc43ea0227193

7)​ Videos
Navigating Around the GDC 1 (No replanning)
Navigating Around the GDC 2 (With Replanning)

https://github.com/Aadarsh271/Autonomous-Driving/tree/lt-final-pathing
https://drive.google.com/file/d/10OuA1nxmnM2og1AdsPbCqxPgTAyGu756/view?usp=sharing
https://drive.google.com/file/d/1X-t0m9GW_wcYsj3eU4lLJtH9T7zXwCeI/view?usp=sharing

