
Mutode: Generic JavaScript and Node.js Mutation Testing Tool

Diego Rodríguez Baquero
d.rodriguez13@uniandes.edu.co - 201223538

Adviser: Mario Linares Vásquez

m.linaresv@uniandes.edu.co

I. Topic

Mutode: Generic JavaScript and Node.js
Mutation Testing Tool for npm based programs,
applications, packages and modules.

II. Introduction

Mutation testing is a technique in which faults
(mutants) are inserted into a program or
application to assess its test suite effectiveness.
It works by inserting the mutant and running the
program’s test suite to identify if the mutant is
detected (killed) or not (survived). Although
computationally expensive, it has proven to be
an effective method to assess application test
suites [1]. Statement and branch coverage are
not enough [2][3] and studies have shown that
mutation testing is more effective than data flow
testing [4].

Many mutation testing frameworks and tools
have been built for the various programing
languages, covering general programming
mutation operators as well as specific mutation
operators, applicable only to each one of the
languages. There are various tools in the
literature and practice. For the Java language, we
found tools such as PIT [5], Javalanche [6],
Bacterio [7] and Judy [8]. For the C language we
found MILU [9]. For the C++ language we
found Mull [10] and Mutate++ [11]. For C# we
found VisualMutator [12], NinjaTurtles [13] and
NinjaTurtlesMutator [14]. For the Python

language we found Cosmic Ray [15], Mutmut
[16] and MutPy [17]. For the Ruby language
there is mutant [18]. For the more web-focused
language PHP, we found HumBug [19],
Infection [20]. For the Android ecosystem we
found MDroid+ [21]. However, very few tools
have been built for the JavaScript language,
more specifically, there’s a lack of tools for the
Node.js runtime and npm based applications.

Node.js is an asynchronous, event driven
JavaScript runtime design to run any type of
application, even backend services with I/O
access to virtual memory, network and disk. It’s
based in Chromium’s V8 JavaScript engine and
it is fully open source and community driven.

npm is the package manager for Node.js, built as
an open source project in 2009 and later
registered as a company in 2014. It’s also an
ever growing registry of open source modules
built for the JavaScript, Node.js and Web
ecosystems [22]. The over 600,000 packages
hosted in npm are downloaded over 4 billion
times per week [23]. More and more software is
published in npm every day, representing a huge
opportunity to share code and solutions, but also
to share bugs and faulty software.

We will analyze prior work for mutation
operators in JavaScript and Node.js and propose
a new framework which leverages npm package
ecosystem to build a generic tool that allows
easy, zero-configuration mutation testing on

current generation applications using any testing
framework. By generic we mean that it will
support any type of test suite that runs with the
npm test command, without plugins or
configuration. The approach will be
implemented under the name Mutode and
released as an Open Source module on the npm
registry. It’s important to note that it is assumed
that the application to be mutated has an
automated test suite. Mutode generates mutants
and run the test suite without knowledge of what
the tests are and which are executed.

Finally, we will empirically evaluate Mutode
effectiveness by running it on the top npm
modules with automated test suites.

III. Prior work

In the literature, we found Mutandis [24], a
framework built in Java, focused on browser
JavaScript applications. It utilizes Mozilla’s
Rhino AST parser to mutate the application and
intercepts network requests to analyze their
content. If a test suite is available for a given
application, it’s used to profile it. This tool,
however, wasn’t made for Node.js applications
and npm modules. Besides the initial work 5
years ago, no work or maintainance has been
done to the library since. There is also a lack of
documentation in its GitHub repository and
instructions on how to use it.

In the practice, the main mutation testing
framework available for JavaScript and Node.js
is Stryker [25]. An open source framework
available on the code hosting platform GitHub.
It offers over 30 mutation operators and the
availability to run tests with Karma, Mocha or
other frameworks through a custom built plugin.
It requires configuration and doesn’t support
other test frameworks besides Karma and Mocha

without a plugin. This represents a room for
improvement for a new tool that works out of
the box with any test suite. Another tool is
mutant [26], however it’s unmaintained, only
had 5 versions and was considered in the
proof-of-concept stage.

There is a big room of opportunity to create a
mutation testing tool that targets the latest
practices for software development in JavaScript
and Node.js, both backend and frontend code;
one that works with any type of testing
framework; and one which requires zero or
minor configuration. We fill this gaps with
Mutode and offer a practical solution to make
mutation testing as easy as running a command.

IV. Project Goals

Our main goal is to build a generic mutation
testing tool that can be used to assess npm-based
JavaScript and Node.js applications’ test suites.

A. Specific goals
●​ Build a generic framework that leverages

npm package.json definition using the npm
test command to execute applications’ test
suites.

●​ Implement a catalog of mutation operators
based on PIT, prior work and new research.

●​ Empirically evaluate Mutode on the top 20
tested npm packages.

V. Methodology

The project is divided in three phases:

A. Phase I

●​ Implement the basic generic framework
core using basic mutation operators
applicable to any programming
language.

●​ Search and review prior work in the
topic.

●​ Implement parallel tests execution.
●​ Implement basic execution

configuration.

B. Phase II

●​ Implement all generic operators based
on PIT.

●​ Search, review and implement
previously defined JavaScript and
Node.js specific mutation operators.

●​ Define and implement new Javascript
and Node.js specific mutation operators.

●​ Create tests to assess the framework and
operators efficacy.

C. Phase III

●​ Empirically evaluate the framework on
the top 20 npm modules with automated
test suites.

●​ Optional: Implement a dashboard and
generate execution reports.

●​ Optional: Save execution state to test
based on code difference.

Project wide, we will document the
implementation process, the code and the results
obtained in tests and the empirical evaluation.

VI. Schedule

Based on proposed tasks in the methodology, the
following schedule is proposed:

Activity/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Generic
framework

X

Prior work X X X X X

Parallel
execution

 X X X

Execution
configuration

 X X

PIT Generic
Operators

 X X X

JS and Node.js
operators in
prior work

 X X X

New JS and
Node.js
Operators

 X X X

Tests X X X X X X

Empirical
evaluation

 X X

Dashboard and
reports

 X X

Execution state X X

Documentation X X X X X X X X X X X X X X X X

VII. Expected Results

At the end of the project, Mutode should be a
working, tested and documented JavaScript
mutation testing tool. It should have an
empirical benchmarking of the top 20 npm
modules which have automated test suites and
also be published as an npm package accessible
to the public.

Expected features

●​ Allow mutants tests to be executed in
parallel, harnessing full CPU and
reducing execution time.

●​ Unit tests to assess the tool’s core and
mutation operators.

●​ Dashboard and execution reports.
●​ Documentation of the tool and its

operators.
●​ Save execution state to improve

performance by reducing generated
mutants based on code difference only.

References

[1]​ Jia, Yue, and Mark Harman. "An analysis

and survey of the development of mutation
testing." IEEE transactions on software
engineering 37.5 (2011): 649-678.

[2]​ Andrews, James H., et al. "Using mutation
analysis for assessing and comparing testing

coverage criteria." IEEE Transactions on
Software Engineering 32.8 (2006): 608-624.

[3]​ Just, René, et al. "Are mutants a valid
substitute for real faults in software
testing?." Proceedings of the 22nd ACM
SIGSOFT International Symposium on
Foundations of Software Engineering.
ACM, 2014.

[4]​ Offutt, A. Jefferson, et al. "An experimental
evaluation of data flow and mutation
testing." Softw., Pract. Exper. 26.2 (1996):
165-176.

[5]​ Coles, Henry. “PIT Mutation Testing”.
http://pitest.org/

[6]​ Schuler, David, and Andreas Zeller.
"Javalanche: efficient mutation testing for
Java." Proceedings of the the 7th joint
meeting of the European software
engineering conference and the ACM
SIGSOFT symposium on The foundations of
software engineering. ACM, 2009.

[7]​ Mateo, Pedro Reales, and Macario Polo
Usaola. "Bacterio: Java mutation testing
tool: A framework to evaluate quality of
tests cases." Software Maintenance (ICSM),
2012 28th IEEE International Conference
on. IEEE, 2012.

[8]​ Madeyski, Lech, and Norbert Radyk.
"Judy–a mutation testing tool for Java." IET
software 4.1 (2010): 32-42.

[9]​ Jia, Yue, and Mark Harman. "MILU: A
customizable, runtime-optimized higher
order mutation testing tool for the full C
language." Practice and Research
Techniques, 2008. TAIC PART'08. Testing:
Academic & Industrial Conference. IEEE,
2008.

[10]​Denisov, Alex, and Stanislav Pankevich.
“Mull: Mutation testing system built on top
of LLVM”.
https://github.com/mull-project/mull

[11]​Lohmann, Niels. “Mutate++: C++ Mutation
Test Environment”.
https://github.com/nlohmann/mutate_cpp

[12]​Trzpil, Piotr. “VisualMutator: Mutation
testing integrated within the .NET
programming environment”.
https://visualmutator.github.io/web/

[13]​Musgrove, David. “NinjaTurtles: .NET
mutation testing”.
http://www.mutation-testing.net/

[14]​Roussel, Tony. “NinjaTurtlesMutation”.
https://github.com/criteo/NinjaTurtlesMutati
on

[15]​Bingham, Austin. “Cosmic Ray: mutation
testing for Python”.
https://cosmic-ray.readthedocs.io/en/latest/

[16]​Hovmöller, Anders. “Mutmut: Mutation
testing lib”.
https://github.com/boxed/mutmut

[17]​Halas, Konrad. “MutPy: mutation testing
tool for Python 3.x source code”.
https://github.com/mutpy/mutpy

[18]​Schirp, Markus.. “Mutant: Mutation testing
for Ruby”. https://github.com/mbj/mutant

[19]​Brady, Pádraic. “Humbug: Mutation Testing
for PHP”.
https://github.com/humbug/humbug

[20]​Rafalko, Maks. “Infection: PHP Mutation
Testing Framework”.
https://github.com/infection/infection

[21]​Linares-Vásquez, Mario, et al. "Enabling
mutation testing for Android apps."
Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering.
ACM, 2017.

[22]​Npm, inc. “About npm”.
https://docs.npmjs.com/company/about

[23]​Voss, Laurie (seldo). "npm users
downloaded 4 billion packages in the last
week, representing more than 12 billion
package installations i…
https://t.co/DmY2ZWPcmj". 08 Feb 2018,
01:45 UTC. Tweet

[24]​Mirshokraie, Shabnam, Ali Mesbah, and
Karthik Pattabiraman. "Efficient JavaScript
mutation testing." Software Testing,
Verification and Validation (ICST), 2013
IEEE Sixth International Conference on.
IEEE, 2013.

[25]​Stryker. http://stryker-mutator.github.io/
[26]​Hartley, Ben. “Mutant: JavaScript

Mutation Testing Framework”.
https://github.com/benhartley/mutant

