
SE 101 Introduction to Methods of Software Engineering

Fall 2021

Course Project Final Report

Group Name: Quantum

TeamMember Full Name userID UserName

Valerie Fernandes 20947867 v7fernan

Krish Mehta 20888210 k38mehta

Lauren Rowe 20943384 l5rowe

Krish Shah 20929328 k77shah

Candice Zhang 20939153 c727zhan

Page 1 of 7



1. Introduction

As first year students, we found the task of managing our work load difficult and
overwhelming. Although there exists to-do list applications, it is challenging to do our tasks
in the right order: when we are energetic, we tend to spend time on things we enjoy, such as
games; and when the deadlines approach, we would stay up all night trying to finish our
assignments. Thus, we wanted to create a tool that not only keeps track of our tasks, but
also takes care of managing the scheduling as well. For this we developed a web-app for the
user to input and edit tasks, which connects to a webcam and Raspberry Pi to detect the
users drowsiness levels and sort the tasks accordingly.

Notable links:
Link to Time Turner:
https://timeturner-1a48a.web.app/

Final Video:
https://youtu.be/mR_GNuHS4gs

Prototype Presentation:
https://docs.google.com/presentation/d/1azLLoB-lcgMiuTFG0-zLLqqKaRXL8tlIQATCTHGc
LbQ/edit?usp=sharing

Github for energy detection:
https://github.com/KrishKrosh/timeturner-energy/

Github for front-end web-app:
https://github.com/DjKesu/timeturner

2. Background Research

From the SE101 Time Management Module, specifically the Time Management Is Energy
Management section, we realized the huge impact one’s energy level can make on one’s
productivity and work efficiency. We then established the goal of the project to be mapping
one’s highest energy times to their most difficult tasks, and that by assigning menial work
we could make even low energy times productive.

To detect the user’s energy level, we researched drowsiness
detection algorithms. Specifically, we found that one way to
detect drowsiness was the eye aspect ratio (EAR) of an
individual. We found an algorithm that we could use in order
to compute the EAR, and convert it into an energy level. In
order to implement this, we followed a tutorial from
PyImageSearch (Rosebrock 2021). This tutorial also helped
us in setting up our python environment on our Raspberry Pi, and with OpenCV.

Page 2 of 7

https://timeturner-1a48a.web.app/
https://youtu.be/mR_GNuHS4gs
https://docs.google.com/presentation/d/1azLLoB-lcgMiuTFG0-zLLqqKaRXL8tlIQATCTHGcLbQ/edit?usp=sharing
https://docs.google.com/presentation/d/1azLLoB-lcgMiuTFG0-zLLqqKaRXL8tlIQATCTHGcLbQ/edit?usp=sharing
https://github.com/KrishKrosh/timeturner-energy/tree/master
https://github.com/DjKesu/timeturner


For automatic schedule planning based on long-term data, we researched statistical
methods, and decided to use a linear regression algorithm to model the relationship
between the time of the day and the user’s drowsiness. We also discovered scikit-learn, a
Python library for data analysis. Using its linear regression model, which is based on least
squares linear regression, we can estimate the user’s drowsiness levels for the next day
based on sufficient past data.

3. Implementation

For the web-app’s frontend, we used React and Material-UI to make it functional and user
friendly. To use the web-app, the user will first log-on to the website
(https://timeturner.ml) by entering their email address and password into text fields, and
after authenticating their request with our Firebase database, the main task page is loaded.
If they do not have an account, they can go to the sign-up page to create an account by
providing their name, email address, and password. After signing up, they will be
automatically redirected to the task page.

At the task page, the user then can enter in tasks with dropdown boxes for specified
duration (1-24 hours), enjoyment levels (1-10), and difficulty (1-10). We also created
button components to allow for the adding, removal, and sorting of tasks. For the backend,
we store user info (email, name, and password) as well as their tasks with Firebase. We also
used Firebase to deploy our website. This connection to Firebase enabled us to then edit
tasks and organize them based on our task optimization algorithm.

The task optimization algorithm was implemented in JavaScript for easier integration with
the frontend. The algorithm sorts the tasks by their priority with the following factors:
enjoyment, difficulty, and drowsiness. Each factor also has an impact factor (i.e. how much
they affect a task’s priority). For the priority calculation, since drowsiness has a greater
impact on more difficult tasks, we developed the formula priority = enjoyment - drowsiness *
difficulty, where each factor would also be multiplied by their corresponding impact factor.
In addition, if the user’s energy level is greater than a certain amount (i.e. 80%), then the
tasks would be sorted purely by difficulty, in descending order, allowing the user to
complete the most difficult tasks during their most energetic times.

The drowsiness detection algorithm was implemented in Python, using the OpenCV library.
The main libraries that it used were openCV, dlib, imutils, numpy, and scipy. A lot of these
libraries depend on one another, however, after initializing the webcam as a video input
stream, we used dlib’s facial landmarks to find the coordinates of certain points on the
user’s eyes. Then, we use the EAR (eye aspect ratio) algorithm (shown below), to get a
number that we can then transfer to a user’s energy percentage by multiplying by some
constant. Lastly, we would sum up these energy percentages for every frame in 10 seconds,
take the average, and then push it to our backend in Firebase so that the front end could
access it and sort tasks accordingly.

Page 3 of 7

https://timeturner.ml


The hardware components of the project include a Raspberry Pi and a webcam. For the
Raspberry Pi, we connected a monitor to display information and a webcam to provide data,
as demonstrated in our block diagram below:

Page 4 of 7



4. Groupmembers’ Contribution

For the task distribution, we would meet every Thursday for around 8 hours to work on our
project together so that if anyone needed help, it was quickly accessible. In our meetings,
we would split up the given tasks for the week. Although we generally worked on all tasks
together, the breakdown of each individual’s main focus is as follows:

Lauren Rowe: task page, login/sign-up page for the web-app
Krish Mehta: setting up the general schema (firebase, and login/sign up page)
Valerie Fernandes: task page, login/sign-up page for the web-app
Candice Zhang: task optimization algorithm, task page for the web-app
Krish Shah: firebase authentication, drowsiness detection

Signatures (in the same order as above):

5. Final Product Evaluation

Originally, our vision was ambitious. We thought that we could make an entirely new task
managing system based off of hardware and software that we would build from scratch.
And luckily, for the most part, that worked! We were able to organize daily tasks based on
energy levels that would be detected based off of a camera processing system connected to
a Raspberry Pi. We were even able to connect this to a web-app that we made using ReactJS,
as well as connect both systems to a backend infrastructure that we set up.

Displaying our demo to the TA, we were proud to demonstrate what we had accomplished.
However, we still had a lot more in mind: adding speakers, a microphone, sleep tracking,
and much more. Eventually, we realized the true work that it would take to create a
commercial product, and understood that although these would have been great additions
to our project, it was not necessary for the core goal that we were trying to accomplish.
Additionally, while we would have loved to have them, it was beyond our capabilities in the
time given.

One more difficulty that we encountered was addressing the bugs that we saw in our
software. For example, we were only displaying the user’s account information (email) at
first; however, by better understanding how information is received by the backend, we
managed to achieve our goal of Username’s[to do list]. Another large source of issues was
buttons, in that we could not get them both functional and fitting the theme. By reading a
lot of React and Material-UI tutorials, we were able to solve these issues. However, our
sorting function would only work after pressing a sequence of buttons on the front end, so
that it would connect to the database, as we were only able to get one button to connect to

Page 5 of 7



our backend. We did not have enough time to fix this bug, and as a result, it hinders the
user-friendliness of our final project. Another example is taking into account the user’s
natural eyes when utilizing the energy detection algorithm, since some people have
naturally smaller or bigger eyes compared to our default value. We actually brainstormed a
solution for this (which is to initially scan the users eyes when they open their eyes as wide
as possible), but we were unable to implement this in time.

Overall, taking into account what we completed, what we still wish to complete in the
future, and the bugs that we could not tend to, compared to our original vision, we would
give our final product a (solid) 7/10.

6. Design Trade-offs

In the end, we chose to not implement the speaker or mic add-ons due to the lack of time.
Since we adapted the agile development methodology, these features are independent from
the functionality of the overall product, hence this did not further affect other aspects of the
project.

In addition, uploading and running the drowsiness detection program on the Raspberry Pi
turned out to be slower than what we expected because of a low grade Raspberry Pi. Taking
the performance of the raspberry pi into consideration, we increased the interval between
each facial scan from 5 seconds to 10 seconds.

Finally, we did not implement a long-term drowsiness tracker with the statistical methods
we researched, due to insufficient data and time. Instead, we aimed for a more accurate and
functional program for daily tasks, and used a basic averaging algorithm to calculate the
user’s usual drowsiness.

7. FutureWork

In the future, we would like to implement a working speaker to remind the user to take a
break when they get drowsy instead of showing a warning only on the website.

We would also like to implement speech to text functionality with a microphone connected
to the raspberry pi in order for the user to add tasks via voice command.

Additionally, we would like to add visual sentiment analysis to rearrange tasks more
effectively by assessing the users mood as well as drowsiness level.

Finally, we would also like to add smart scheduling, so that we would use data collected
overtime in order to accurately schedule an entire day with one initial scan, based on past
results.

Page 6 of 7



8. References

akshaybahadur21. “Akshaybahadur21/drowsiness_detection: A Simple Drowsiness
Detection Module for Humans.” GitHub,
https://github.com/akshaybahadur21/Drowsiness_Detection.

Brownlee, Jason. “Linear Regression for Machine Learning.”Machine Learning Mastery, 14
Aug. 2020,
https://machinelearningmastery.com/linear-regression-for-machine-learning/.

Soukupova, Tereza, and Jan Cech. “Real-Time Eye Blink Detection Using Facial Landmarks.”
Machine Vision Laboratory, Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague, Feb. 2016,
https://vision.fe.uni-lj.si/cvww2016/proceedings/papers/05.pdf.

Rosebrock, Adrian. “Raspberry Pi: Facial Landmarks + Drowsiness Detection with Opencv
and Dlib.” PyImageSearch, 17 Apr. 2021,
http://www.pyimagesearch.com/2017/10/23/raspberry-pi-facial-landmarks-drowsi
ness-detection-with-opencv-and-dlib/.

“Sklearn.linear_model.Linearregression.” Scikit,
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegre
ssion.html.

“Time Management Modules.” SE 101 - Fall 2021, LEARN,
learn.uwaterloo.ca/d2l/le/content/709291/viewContent/3910593/View .

Page 7 of 7


