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Assumptions 
1.​ Hash functions are ideal (i.e. no collision is possible) 
2.​ Honest validators behave as follows when they receive a message m (i.e block, 

attestation or attester_slashing). ​

 
3.​ Honest nodes do not discard any attestation that they receive regardless of how old it is. 

In other words, the  validate_target_epoch_against_current_time(store, 
attestation) function in the current specs should be regarded as a no-op 

4.​ Honest nodes send AttesterSlashing messages for any couple of slashing 
attestations that they detect. 

5.​ Honest stake is > ⅔ the total stake 
6.​ No bound on the amount of attestations that can be included in a block 

 

Property to Prove 
A distributed system running under the assumptions listed above can never reach a state where 
it is impossible to finalize a new epoch. 

https://github.com/ethereum/consensus-specs/pull/3290


Definitions and Notation 
1.​ For any map m, let m.Keys be the set including all the non-empty keys of map m 
2.​ For any map m such that m.Keys ⊆ store.blocks.Keys, let 

fork_choice_map_filter(store, m) be the subset map of map m including only 
and all the keys k such that store.blocks[k].slot >= 
store.finalized_checkpoint.slot. 

3.​ We say that two honest nodes are fork-choice equivalent if the following fields of their 
respective stores have the same value: 

a.​ justified_checkpoint 
b.​ fork_choice_map_filter(store, blocks) 
c.​ fork_choice_map_filter(store, block_states) 

 
d.​ fork_choice_map_filter(store, unrealized_justifications) 
e.​ finalized_checkpoint 
f.​ checkpoint_states[store.justified_checkpoint] 
g.​ equivocating_indices 
h.​ proposer_boost_root 
i.​ time 
j.​ genesis_time 
k.​ latest_messages for any index not in equivocating indices 

4.​ Let post_state(B) be the state obtained by executing the beacon chain 
state_transition function on all the blocks of the chain headed by B starting from 
the genesis block. 

5.​ Let M(state: BeaconState, other_parameters) be a method that modifies the 
BeaconState state.​
We use the writing M(state, other_parameters). to refer to the modified state.​
For example, process_slots(state, 
current_slot).current_justified_checkpoint corresponds to the value of 
the field current_justified_checkpoint after the state has been modified 
according to the execution of process_slots. 

6.​ Let first_slot(t) == true, where t is any time, iff the slot associated with time t 
is the first slot of an epoch. 

7.​ If t is a time, let epoch(t) be the epoch associated with time t. 
8.​ If t is a block, let  epoch(B) == compute_epoch_at_slot(B.slot) 
9.​ store(v) corresponds to the store of the honest validator v 
10.​[N1, N2] corresponds to the set {x \in Z | N1 <= x <= N2} 
11.​[N1, N2[ corresponds to the set {x \in Z | N1 <= x < N2} 



Proof 

Outline 
The proof follows the following outline 

●​ Prove that after any period of asynchrony, there exists a schedule involving only honest 
validators that lead to all honest validators being fork-choice equivalent 

●​ Prove that there exists a schedule starting from a point where all honest validators are 
fork-choice equivalent such that honest validators keep continuously extending and 
attesting the same chain. 

●​ Leverage on the poofs above to prove deadlock freedom. 

Detailed Proof 
Note: Given that GDoc does not allows numbering Lemmas automatically (at least, as far as I 
know it), Lemmas have been numbered in increments of 10 to allow preserving the logical 
progression of the proof argument according to Lemmas’ ascending numbering  in the case that 
new Lemmas need to be added or existing Lemmas need to be reordered. 
 
Lemma 30 
The blockchain is <⅓-slashable. 
 
Proof.​
Direct consequence of Assumption 5 and the property that honest validators never slash 
themselves. 
 
Q.E.D. 
 
Lemma 35. 
For any honest validator v, store(v).justified_checkpoint.epoch is monotonically 
increasing with time, i.e., let store(v).justified_checkpoint(t) be the value of 
store(v).justified_checkpoint at time t, then for any two times t < t’, we have that 
store(v).justified_checkpoint(t).epoch <= 
store(v).justified_checkpoin(t’).epoch. 
 
Proof. 
Any location in the code where store(v).justified_checkpoint.epoch is set to a 
value x, it is before checked that x > store(v).justified_checkpoint.epoch. 
 
Q.E.D. 
 
Lemma 40. ​
Let M be any set of messages, and v and v’ be any two honest validators. 



If by the time v and v’ execute on_tick_per_slot(, ) in the first slot of the next epoch, i) 
they have both received all and only the messages in the set M and ii) their clocks are perfectly 
synced, then regardless of the order (time) when they received any of the messages in M, after 
executing on_tick_per_slot(, ) v and v’ will be fork-choice equivalent with the only 
exception of the latest_messages fields. 
 
Proof. 
In order to prove the Lemma, we need to establish that some other Store fields, aside from 
those directly involved in the definition of fork-choice equivalence, have the same value for v 
and v’ after they execute on_tick_per_slot(, ) in the first slot of the next epoch.​
​
Let us now look at each field of the Store data structure involved in proving the Lemma. (We 
label those directly involved in the definition of fork-choice equivalence with the notation [FCE]) 

1.​ [FCE] time, genesis_time​
Obviously the same. 

2.​ unrealized_justified_checkpoint 
Every time that on_block(, B) is executed, it executes 
compute_pulled_up_tip(store, block_root) which sets 
store.unrealized_justified_checkpoint to the highest known unrealized 
justified checkpoint so far.​
By Assumption 2, both v and v’ will set their respective 
store.unrealized_justified_checkpoint to the highest unrealized justified 
checkpoint according to the messages in the set M.​
Finally, as a consequence of Lemma 30, the highest unrealized justified checkpoint 
according to the messages is unique. 

3.​ unrealized_finalized_checkpoint 
Every time that on_block(, B) is executed, it executes 
compute_pulled_up_tip(store, block_root) which sets 
store.unrealized_finalized_checkpoint to the highest known unrealized 
finalized checkpoint so far.​
By Assumption 2, both v and v’ will set their respective 
store.unrealized_finalized_checkpoint to the highest unrealized finalized 
checkpoint according to the messages in the set M.​
Finally, as a consequence of Lemma 30, the highest unrealized finalized checkpoint 
according to the messages is unique. 

4.​ [FCE] finalized_checkpoint​
Every time that on_block(, B) is executed, it sets 
store.finalized_checkpoint to the highest known realized finalized checkpoint 
so far.​
When on_tick_per_slot(, ) is executed in the first slot of the next epoch, 
update_checkpoints(store, state.current_justified_checkpoint, 
state.finalized_checkpoint) is executed which sets 



store.finalized_checkpoint to 
store.unrealized_finalized_checkpoint if 
store.unrealized_finalized_checkpoint.epoch > 
store.finalized_checkpoint.​
Given that on the first slot of the next epoch 
store.unrealized_finalized_checkpoint corresponds to the highest realized 
finalized checkpoint, after on_tick_per_slot(, ) is executed, 
store.finalized_checkpoint corresponds to the highest known realized finalized 
checkpoint. ​
By Assumption 2 and point 3 above, both v and v’ will set their respective 
store.finalized_checkpoint to the highest realized finalized checkpoint 
according to the messages in the set M.​
Finally, as a consequence of Lemma 30, the highest finalized checkpoint according to 
the messages is unique. 

5.​ [FCE] justified_checkpoint​
Every time that on_block(, B) is executed, it sets 
store.justified_checkpoint to the highest known realized justified checkpoint so 
far.​
When on_tick_per_slot(, ) is executed in the first slot of the next epoch, 
update_checkpoints(store, state.current_justified_checkpoint, 
state.finalized_checkpoint) is executed which sets 
store.justified_checkpoint to 
store.unrealized_justified_checkpoint if 
store.unrealized_justified_checkpoint.epoch > 
store.justified_checkpoint.​
Given that on the first slot of the next epoch 
store.unrealized_justified_checkpoint corresponds to the highest realized 
justified checkpoint, after on_tick_per_slot(, ) is executed, 
store.justified_checkpoint corresponds to the highest known realized justified 
checkpoint.​
By Assumption 2 and point 2 above, both v and v’ will set their respective 
store.justified_checkpoint to the highest realized justified checkpoint 
according to the messages in the set M.​
Finally, as a consequence of Lemma 30, the highest justified checkpoint according to the 
messages is unique. 

6.​ [FCE] fork_choice_map_filter(store, blocks)​
Due to the points 1 and 4 above, and Assumption 2, any block B such that B.slot >= 
finalized_checkpoint.slot that is added to the store of v is also added to the store of v’ 
as well, and vice versa. Additionally, due to Assumption 1, each key of the map blocks 
of the store of either v or v’, once set to a block B, is never updated to a block different 
from B. This concludes the proof for this field. 



7.​ [FCE] fork_choice_map_filter(store, block_states)​
Every time that a block B is added to the store, its post-state, resulting from executing 
the function state_transition(store.block_states[B.parent_root], B, 
true), is added to the block_states field. Point 6 above, the fact that 
state_transition is a deterministic function and assumption 1 then conclude the 
proof for this field. 

8.​ [FCE] fork_choice_map_filter(store, unrealized_justifications)​
Every time that on_block(, B) is executed, it executes 
compute_pulled_up_tip(store, block_root) which sets 
store.unrealized_justifications[B] to the highest justified checkpoint 
according to all the attestations included in the chain headed by B.​
Assumption 1 and 2, point 7 above and the fact that the value of 
store.unrealized_justifications[B] is uniquely determined by B, after 
executing on_tick_per_slot(, ), conclude the proof for this field. 

9.​ [FCE] proposer_boost_root.​
Set to Root() for both v and v’ in on_tick_per_slot 

10.​[FCE] checkpoint_states[store.justified_checkpoint]​
Due to the definition of state_transition, both validators have received at least a 
block, say B, with an attestation with target store.justified_checkpoint. 
Therefore, both validators have executed store_target_checkpoint_state(_, 
store.justified_checkpoint).​
Given that 

a.​ store.block_states is the same for v and v’ 
b.​ any other function executed in store_target_checkpoint_state is a 

deterministic function of store.block_states and 
store.justified_checkpoint 

checkpoint_states[store.justified_checkpoint] is the same for v and v’  
11.​[FC] equivocating_indices​

v and v’ receive the same set of AttesterSlashing messages.​
Hence, v and v’ will detect the same set of equivocating_indices​
 

Q.E.D. 
 
Lemma 50. 
Let M be any set of messages, v and v’ be any two honest validators, and e be the current 
epoch. 
If i) by the time v and v’ execute on_tick_per_slot(, ) in the first slot of the epoch e+1, 
i.a) they have both received all and only the messages in the set M and i.b) their clocks are 
perfectly synced, and ii) during epoch e+1 ii.a) message latency is 0, ii.b) their clocks keep 



being perfectly synced and ii.c) dishonest validators do not send any messages, then after 
executing on_tick_per_slot(, ) in the first slot of the epoch e+2, v and v’ will be 
fork-choice equivalent.​
 
Proof. 
From Lemma 40 it follows that by the time v and v’ execute on_tick_per_slot(, ) in the 
first slot of epoch e+1, they are fork-choice equivalent with the only exclusion of 
latest_messages. Following the reasoning outlined in Lemma 40, one can show that, if in 
epoch e+1 i) message latency is 0, ii) the clocks of v and v’ are perfectly synced and iii) 
dishonest nodes do not send any message, then after v and v’ execute 
on_tick_per_slot(, ) in the first slot of epoch e+2, they will be fork-choice equivalent with 
exclusion of latest_messages. 
 
Let us now prove that after v and v’ execute on_tick_per_slot(, ) in the first slot of 
epoch e+2, they will also have the same value of the field store.latest_messages for any 
index not in equivocating_indices. 
​
Due to Assumption 4, by the end of epoch e+1, all equivocating (slashable) attestations 
included in the set of messages M will be detected, the corresponding AttesterSlashing 
messages sent and received by any honest node. Also, given that only honest nodes are active 
during epoch e+1, no further slashable attestations will be sent. 
​
Hence, by the end of epoch e+1, if a dishonest validator b has sent more than one attestation 
for the same target epoch, a corresponding AttesterSlashing message will be received by 
any honest node and as a consequence of this, any honest node will add the index associated 
with b to the set of equivocating indices. 
This proves that for any given epoch ea and any validator x whose index is not in equivocating 
indices, at most one attestation has been sent by validator x with target ea. 
 
Due to Assumption 3, validate_on_attestation does not depend on store.time. 
Due to Assumption 2, any attestation A that has been received by v (i.e. on_attestation(_, 
A, _) was executed without raising an assertion) is also received by v’ by the time it executes 
on_tick_per_slot(, ) in the first slot of the epoch e+2, and vice versa. 
By following a reasoning similar to the one outlined in Lemma 40 for checkpoint_state, one 
can conclude that v and v’ compute the same value for target_state inside 
on_attestation when they receive attestation A. 
Given i) that we only considering the indices of latest_messages that are not in 
equivocating_indices, ii) that latest_messages only keeps the message with highest 
target epoch and iii) that, as proved above, for a target epoch there exits only one attestation 
sent by a validator whose index is not in equivocating indices, we can conclude that after 
v and v’ executes on_tick_per_slot(, ) in the first slot of epoch e+2, they will also have 
the same value of the field store.latest_messages for any index not in 



equivocating_indices.​
​
Q.E.D. 
 
Lemma 60.​
If two honest nodes are fork-choice equivalent, their respective executions of get_head return 
the same value. 
 
Proof. 
Obvious from the fact that get_head only depends on the fields included in the definition of 
fork-choice equivalence. 
​
Q.E.D. 
 
Lemma 74.​
For any honest validator v and block B in store(v).unrealized_justifications, 
store(v).unrealized_justifications[B].epoch <= 
store(v).unrealized_justified_checkpoint.epoch.​
 
Proof. 
The only place where store(v).unrealized_justifications is modified is in the 
execution of compute_pulled_up_tip.​
Moreover, the only element of the map store(v).unrealized_justifications that is 
modified is the one with key block_root, where block_root is an input parameter to 
compute_pulled_up_tip.​
Observe that compute_pulled_up_tip always executes 
update_unrealized_checkpoints(store(v), 
state.current_justified_checkpoint, state.finalized_checkpoint) with 
state.current_justified_checkpoint == 
store(v).unrealized_justifications[block_root].​
As a consequence of this, store(v).unrealized_justified_checkpoint.epoch is 
set to max(store(v).unrealized_justified_checkpoint.epoch, 
store(v).unrealized_justifications[block_root].epoch).​
This concludes the proof. 
 
Q.E.D. 
 
Lemma 75.​
For any honest validator v, there exists a block B such that 
store(v).unrealized_justified_checkpoint == 
store(v).unrealized_justifications[B]. 
 
Proof. 



The only place where store(v).unrealized_justified_checkpoiont is modified is in 
the execution of update_unrealized_checkpoints(store(v), 
unrealized_justified_checkpoint, unrealized_finalized_checkpoint) 
where, if set, it is set to unrealized_justified_checkpoint. 
The only place where update_unrealized_checkpoints is called is in 
compute_pulled_up_tip where the parameter unrealized_justified_checkpoint 
corresponds to store(v).unrealized_justifications[block_root] where 
block_root is a parameter of compute_pulled_up_tip.​
 
This and the fact that store(v).unrealized_justifications is only modified in the 
execution of compute_pulled_up_tip conclude the proof.​
​
Q.E.D. 
 
Lemma 76. 
For any validator v, let store(v)(B) be the value of store(v) after v receives block B, i.e. 
after it executes on_block(store(v), B) without raising exceptions. 
If get_voting_source(store(v)(B), B).epoch > 
store(v).justified_checkpoint.epoch, then 
get_voting_source(store(v)(B), B).epoch == 
store(v)(B).justified_checkpoint.epoch. 
 
Proof. 
Let us consider two cases. 

1.​ epoch(B) < current_epoch​
In this case, get_voting_source(store(v)(B), B) == 
store(v)(B).unrealized_justifications[B].​
Therefore, store(v)(B).unrealized_justifications[B].epoch > 
store(v).justified_checkpoint.epoch.​
Observe that compute_pulled_up_tip (which is executed by on_block) executes 
update_checkpoints(store, state.current_justified_checkpoint, 
state.finalized_checkpoint) with 
state.current_justified_checkpoint == 
store(v)(B).unrealized_justifications[B] which sets 
store(v)(B).justified_checkpoint.epoch to 
max(store(v).justified_checkpoint.epoch, 
store(v)(B).unrealized_justifications[B].epoch).​
This concludes the proof of the Lemma for this case. 

2.​ epoch(B) == current_epoch​
In this case, get_voting_source(store(v)(B), B) == 
store(v)(B).block_states[B].current_justified_checkpoint.​
Therefore, 



store(v)(B).block_states[B].current_justified_checkpoint.epoch 
> store(v).justified_checkpoint.epoch.​
Observe that on_block executes update_checkpoints(store, 
state.current_justified_checkpoint, state.finalized_checkpoint) 
with state.current_justified_checkpoint == 
store(v)(B).block_states[B].current_justified_checkpoint which 
sets store(v)(B).justified_checkpoint.epoch to 
max(store(v).justified_checkpoint.epoch,store(v)(B).block_state
s[B].current_justified_checkpoint).​
This concludes the proof of the Lemma for this case. 

 
Q.E.D. 
 
Lemma 77. 
For any validator v, let store(v)(B) be the value of store(v) after v receives block B, i.e. 
after it executes on_block(store(v), B) without raising exceptions. 
If get_voting_source(store(v)(B), B).epoch <= 
store(v).justified_checkpoint.epoch, then 
store(v).justified_checkpoint.epoch == 
store(v)(B).justified_checkpoint.epoch. 
 
Proof.​
The Lemma can be proven by following the same reasoning outline in Lemma 76. 
 
Q.E.D. 
 
Lemma 80. 
For any honest validator v, at any point in time, there exists at least a leaf block B in 
store(v).blocks such that get_voting_source(store(v), B) == 
store(v).justified_checkpoint 
 
Proof. 
The proof is by induction. 
 
Base Case. At genesis time.​
The store at genesis time corresponds to the execution of 
get_forkchoice_store(genesis_state, genesis_block). 
By the definition of get_forkchoice_store follows that the Lemma holds for the base case.​
 
 
Inductive Case. Let store(v)(e) be the value of store(v) after executing the handler for 
event e. ​
We assume that there exists a block B in store(v).blocks such that 



get_voting_source(store(v), B) == store(v).justified_checkpoint and 
prove that there exists a block B’’ such that get_voting_source(store(v)(e), B’’) 
== store(v)(e).justified_checkpoint.. 
We now proceed by cases on the type of event e. 

1.​ on_attester_slashing and on_attestation​
In this case, store(v)(e) satisfies the Lemma as none of these handlers alter any of 
the Store fields involved in the Lemma’s statement. 

2.​ on_block(store(v), B’).​
We distinguish between two sub-cases. 

a.​ get_voting_source(store(v)(e), B’).epoch > 
store(v).justified_checkpoint.epoch​
From Lemma 76 it follows that store(v)(e).justified_checkpoint == 
get_voting_source(store(v)(e), B’).​
Therefore the Lemma is proved in this case with B’’ == B’.​
 

b.​ get_voting_source(store(v)(e), B’).epoch <=  
store(v).justified_checkpoint.epoch​
By Lemma 77, we have that store(v)(e).justified_checkpoint == 
store(v).justified_checkpoint.​
Also, by the definition of on_block, any of the fields involved in computing the 
value of get_voting_source(store(v), B) is unaltered. Therefore, 
get_voting_source(store(v), B) == 
get_voting_source(store(v)(e), B).​
Therefore, the Lemma is proved by this case with B’’ == B.​
 

3.​ on_tick(store(v), time)​
Given that on_tick essentially corresponds to a sequential execution of various calls to 
on_tick_per_slot, we reduce the proof for this case to the proof that the single 
execution of on_tick_per_slot maintains the invariant stated in the Lemma.​
Then let e correspond to the execution of on_tick_per_slot(, t’).​
We distinguish between two cases 

a.​ first_slot(t’)==true​
We distinguish between three sub-cases. 

i.​ store(v)(e).justified_checkpoint.epoch > 
store(v).justified_checkpoint.epoch​
The only place where justified_checkpoint could have been 
updated is in the execution of update_checkpoints(store, 
store.unrealized_justified_checkpoint, 
store.unrealized_finalized_checkpoint). which would set 
store(v)(e).justified_checkpoint == 
store(v)(e).unrealized_justified_checkpoint.​
From Lemma 75 it follows that there exists a block B’’ such that 



store(v)(e).justified_checkpoint == 
store(v)(e).unrealized_justifications[B’’].​
Given that first_slot(t’)==true, we must have that epoch(B’’) 
< epoch(t’) and therefore get_voting_source(store(v)(e), 
B’’) == store(v)(e).unrealized_justifications[B’’] 
which proves the Lemma for this case. 

ii.​ store(v)(e).justified_checkpoint.epoch == 
store(v).justified_checkpoint.epoch​
Given that on_tick_per_slot does not alter any of the fields involved 
in the execution of get_voting_source, the Lemma is proved in this 
case. 

iii.​ store(v)(e).justified_checkpoint.epoch < 
store(v).justified_checkpoint.epoch.​
Impossible due to Lemma 35. 

b.​ first_slot(t’)==false​
In this case, we have that store(v)(e).justified_checkpoint.epoch 
== store(v).justified_checkpoint.epoch​
Given that on_tick_per_slot does not alter any of the fields involved in the 
execution of get_voting_source, the Lemma is proved in this case.​
 

​
Q.E.D. 
 
Lemma 90. 
For any honest validators v and leaf block B in store(v).blocks, 
store(v).justified_checkpoint.epoch >= get_voting_source(store(v), 
B).epoch.​
 
Proof. 
The proof is by induction.​
​
Base Case. 
The store at genesis time corresponds to the execution of 
get_forkchoice_store(genesis_state, gensis_block). 
By the definition of get_forkchoice_store follows that the Lemma holds for the base case. 
 
Inductive Case.  Let store(v)(e) be the value of store(v) after executing the handler for 
event e. ​
We assume that for any honest validators v and leaf block B in store(v).blocks, 
store(v).justified_checkpoint.epoch >= get_voting_source(store(v), 
B), and prove that for any block B in store(v)(e).blocks, 
store(v)(e).justified_checkpoint.epoch >= 
get_voting_source(store(v)(e), B) 



 
1.​ on_attester_slashing and on_attestation​

In this case, store(v)(e) satisfies the Lemma as none of these handlers alter any of 
the Store fields involved in the Lemma’s statement. 

2.​ on_block(store(v), B’).​
Let B be any leaf block in store(v)(e).blocks.​
We consider two sub-cases 

a.​ B  is already in store(v).blocks ​
No line of code executed by on_block(store(v), B’) affects the result of 
get_voting_source(store(v), B)..​
This, together with Lemma 35, implies the Lemma for this case. 

b.​ B  is not in store(v).blocks​
In this case, B = B’.​
By Lemma 76, if get_voting_source(store(v)(e), B).epoch > 
store(v).justified_checkpoint.epoch, then 
get_voting_source(store(v), B) == 
store(v)(e).justified_checkpoint.epoch.​
This concludes the proof for this case.​
 

3.​ on_tick(store(v), time)​
Given that on_tick essentially corresponds to a sequential execution of various calls to 
on_tick_per_slot, we reduce the proof for this case to the proof that the single 
execution of on_tick_per_slot maintains the invariant stated in the Lemma.​
Then let e correspond to the execution of on_tick_per_slot(, t’).​
We distinguish between two cases 

first_slot(t’)==true​
Let B be any leaf block in store(v)(e).blocks.​
Given that first_slot(t’)==true, we must have that epoch(B) < 
epoch(t) and therefore get_voting_source(store(v)(e), B) == 
store(v)(e).unrealized_justifications[B].​
Also, given that first_slot(t’)==true, update_checkpoints(store, 
store.unrealized_justified_checkpoint, 
store.unrealized_finalized_checkpoint) is executed which sets 
store(v)(e).justified_checkpoint.epoch >= 
store(v)(e).unrealized_justified_checkpoint.​
Lemma 74 then concludes the proof for this case. 

a.​ first_slot(t’)==false​
In this case, none of the Store’s fields involved in the Lemma’s statement are 
changed. Therefore, the Lemma still holds for store(v)(e).​
 

​
Q.E.D. 



 
Lemma 100. 
For any honest validator v,  

1.​ get_filtered_block_tree(store(v)) != {}, and  
2.​ any leaf block B in get_filtered_block_tree(store(v)) satisfies at least one of 

the two following conditions 
a.​ get_voting_source(store(v), B).epoch == 

store(v).justified_checkpoint.epoch​
or 

b.​ (​
   B in store(v).unrealized_justifications and 

               store(v).unrealized_justifications[B].epoch >= 

store(v).justified_checkpoint.epoch and 

               get_voting_source(store(v), B).epoch + 2 >= 

store(v).current_epoch 

       ) 
 
Proof. 
Let us prove the two conditions separately. 
 

●​ Condition 1.​
From Lemma 80, it follows that there exists at least one leaf block B that satisfies the 
following filtering condition inside get_filtered_block_tree:​
get_voting_source(store(v), B).epoch == 
store(v).justified_checkpoint.epoch​
​
From Lemma 30 it follows that B also satisfies  the following filtering condition​
store.finalized_checkpoint.root == get_ancestor(store, 
block_root, finalized_slot)​
 

●​ Condition 2.​
Given the definition of get_filtered_block_tree, all we need to show is that 
store(v).justified_checkpoint.epoch == GENESIS_EPOCH implies 
get_voting_source(store(v), B).epoch == 
store(v).justified_checkpoint.epoch​
This follows from Lemma 90 and the fact that get_voting_source(store(v), 
B).epoch >= GENESIS_EPOCH.​
 

Q.E.D. 
 
Lemma 102. 
For any block B, 
process_justification_and_finalization(post_state(B)).current_justifi



ed_checkpoint.epoch >= 
post_state(B).current_justified_checkpoint.epoch 
 
Proof. 
Due to its definition, process_justification_and_finalization can only increase the 
epoch of current_justified_checkpoint. 
Q.E.D. 
 
Lemma 103. 
For any blocks Bp and B, such that Bp is an ancestor of B and epoch(Bp) < epoch(B), 
post_state(B).current_justified_checkpoint.epoch >= 
process_justification_and_finalization(post_state(Bp)).current_justif
ied_checkpoint.epoch. 
 
Proof. 
Given that B is from an epoch higher than Bp, post_state(B) already accounts for all the 
justifications included in Bp. 
 
Q.E.D. 
 
Lemma 104. 
For any block B, store.unrealized_justifications[B].epoch >= 
store.block_states[B].current_justified_checkpoint.epoch. 
 
Proof. 
Observe that store.block_states[B] corresponds to post_state(B) and 
store.unrealized_justifications[B] corresponds to 
process_justification_and_finalization(post_state(B)).current_justifi
ed_checkpoint. 
 
Lemma 102 then implies the Lemma. 
 
Q.E.D. 
 
Lemma 105. 
For any blocks Bp and B, such that Bp is an ancestor of B, get_voting_source(store, 
Bp).epoch <= get_voting_source(store, B).epoch. 
 
Proof. 
Let us proceed by cases. 

1.​ epoch(Bp) == epoch(B) == current_epoch​
In this case, get_voting_source for B and Bp reduces to 
post_state(B).current_justified_checkpoint and 



post_state(Bp).current_justified_checkpoint respectively.​
Due to the way post_state is defined, we have that 
post_state(B).current_justified_checkpoint.epoch >= 
post_state(Bp).current_justified_checkpoint.epoch which concludes 
the proof for this case 

2.​ epoch(Bp) <= epoch(B) < current_epoch​
In this case, get_voting_source for B and Bp reduces to 
process_justification_and_finalization(post_state(B)).current_j
ustified_checkpoint and 
process_justification_and_finalization(post_state(Bp)).current_
justified_checkpoint respectively.​
Due to the way post_state and process_justification_and_finalization 
are defined, we have that 
process_justification_and_finalization(post_state(B)).current_j
ustified_checkpoint.epoch >= 
process_justification_and_finalization(post_state(Bp)).current_
justified_checkpoint.epoch which concludes the proof for this case. 

3.​ epoch(Bp) < epoch(B) == current_epoch​
Due to Lemma 104 and the way get_voting_source is defined, it suffices to prove 
that store.block_states[B].current_justified_checkpoint.epoch == 
post_state(B).current_justified_checkpoint.epoch >= 
store.unrealized_justifications[Bp].epoch == 
process_justification_and_finalization(post_state(Bp)).current_
justified_checkpoint.epoch.​
Lemma 103 concludes the proof for this case. 

 
Q.E.D. 
 
Lemma 110. 
For any validator v, let store(v)(B) be the value of store(v) after v receives block B, i.e. 
after it executes on_block(store(v), B) without raising exceptions. 
If B is a child of get_head(store(v)), then get_head(store(v)(B)) = B. 
 
Proof. 
Let Bp = get_head(store(v)). 
Assume that B is a child of Bp. 
 
We first prove the following condition​
a) B is included in get_filtered_block_tree(store(v)(B)) 
Let us proceed by cases.  

1.​ get_voting_source(store(v)(B), B).epoch > 
store(v).justified_checkpoint.epoch​
From Lemma 76 it follows thatget_voting_source(store(v)(B), B).epoch == 



store(v)(B).justified_checkpoint.epoch. Condition a) follows directly from 
this. 

2.​ get_voting_source(store(v)(B), B).epoch <= 
store(v).justified_checkpoint.epoch​
We distinguish two sub-cases based on the fact that Bp is a leaf block of store(v) and 
Lemma 100: 

a.​ get_voting_source(store(v), Bp).epoch == 
store(v).justified_checkpoint.epoch​
From Lemma 105, we have that get_voting_source(store(v)(B), 
B).epoch >= get_voting_source(store(v)(B),Bp).epoch. This 
implies that get_voting_source(store(v)(B).epoch == 
store(v).justified_checkpoint which, in turn, implies condition a). 

b.​ get_voting_source(store(v), Bp).epoch >= current_epoch - 2​
Given, that on_block does not change current_epoch and that, due to 
Lemma 105, get_voting_source(store(v)(B), B).epoch >= 
get_voting_source(store(v)(B), Bp).epoch, condition a) is true in 
this case.​
 

 
Given that 

●​ by assumption, Bp is the block with the highest weight between any of its (filtered) 
siblings 

●​ B has no siblings as Bp was a leaf block in store(v) 
it follow that B = get_head(store(v)(B)) 
 
 
Q.E.D. 
 
Lemma 120. 
For any honest validator v, let store(v)(t) be the value of the store(v) after executing 
on_tick(store(v), t). 
If fist_slot(t) == true, then for any leaf block B in 
get_filtered_block_tree(store(v)(t)), we have that  

1.​ get_voting_source(store(v), B).epoch == 
store(v)(t).justified_checkpoint.epoch. 

2.​ store(v)(t).unrealized_justifications[B] == 
store(v)(t).unrealized_justified_checkpoint 

 
Proof. 
Given that fist_slot(t) == true, update_checkpoints(store, 
store.unrealized_justified_checkpoint, 
store.unrealized_finalized_checkpoint) is executed which sets 



store.justified_checkpoint.epoch >= 
store.unrealized_justified_checkpoint.epoch.​
​
Due to Lemma 74, if B is in get_filtered_block_tree(store(v)(t)), then the 
condition 2.b of Lemma 100 can only be satisfied if 
store(v).unrealized_justifications[B].epoch == 
store(v).justified_checkpoint.epoch which is the same condition that satisfied 
condition 2.a of Lemma 100. This concludes the proof for condition 1 of the Lemma. 
 
We have that 
store(v)(t).unrealized_justifications[B].epoch == 
store(v)(t).unrealized_justified_checkpoint.epoch due the following facts: 

●​ store.justified_checkpoint.epoch >= 
store.unrealized_justified_checkpoint.epoch 

●​ store(v).unrealized_justifications[B].epoch == 
store(v).justified_checkpoint.epoch 

●​ Lemma 74 
 
Lemma 30 then implies condition 2 of the Lemma. 
 
 
Q.E.D. 
 
Lemma 130. 
Assume the following conditions 

1.​ at the beginning of epoch e all honest validators are fork-choice equivalent 
2.​ message are delivered in time 0 during epoch e 
3.​ the clocks of all honest validators are perfectly synchronized since the beginning of 

epoch e 
4.​ no dishonest message is sent in epoch e 
5.​ no message for an epoch previous to e is ever received by any of the honest validator 

during epoch e 
For any slot s, let tp(s) be the time when an honest node is supposed to propose in slot s, 
ta(s) the time when an honest validator is supposed to attest in slot s, store(v)(t) be the 
store of validator v at time t and p(s) be the proposer for slot s. 
Let us enumerate the slots by assigning 0 to the first slot of epoch e. 
Let P(s) be defined as follows 

●​ P(-1) = the result of any honest validator v executing 
get_head(store(v)(tp(0)))  

●​ if the proposer p(s) of slot s is honest then P(s) corresponds to the block proposed by 
p(s) in slot s. 

●​ if the proposer p(s) of slot s is dishonest, then P(s) = P(s-1) 
The following conditions hold for any slot s 



1.​ honest validators are fork-choice equivalent at time tp(s)  
2.​ honest validators are fork-choice equivalent at time ta(s) 
3.​ P(s) is a descendent of P(s-1) 
4.​ At time ta(s), honest validator attests for block P(s) 
5.​ For any honest validator v, get_voting_source(store(v)(ta(s)), 

P(s)).epoch == store(v)(ta(s)).justified_checkpoint.epoch 
6.​ For any honest validator v, 

store(v)(ta(s)).unrealized_justified_checkpoint == 
store(v)(ta(s)).unrealized_justifications[P(s)] 

 
Proof. 
 
The proof is by induction. 
 
Base Case. Slot 0. 
Let us look at each condition separately. 

1.​ Condition 1.​
Follows directly from the Lemma’s assumptions. 

2.​ Condition 2.​
By time ta(s), all honest validators have received the block proposed by p(s), if p(s) 
is honest, or no message otherwise. Therefore, they are fork-choice equivalent. 

3.​ Condition 3.​
Let us consider two cases. 

a.​ p(s) is honest​
The block proposed by p(s) is a child of get_head(store(v)(tp(0))) == 
P(-1). Hence, condition 3 holds in this case. 

b.​ p(s) is dishonest​
By definition, we have that P(0) = P(-1). Hence, condition 3 holds in this 
case. 

4.​ Condition 4.​
Let us consider two cases. 

a.​ p(s) is honest​
By time ta(s), all honest validators have received the block proposed by p(s). 
Lemma 110 then implies this Condition. 

b.​ p(s) is dishonest.​
In this case, no block is sent and, therefore, get_head(store(v)(tp(0)) = 
get_head(store(v)(ta(0)) which implies the Condition. 

5.​ Condition 5.​
Implied by Lemma 120 condition 1, the definition of P(s) and the Lemma’s assumption 
on fork-choice equivalence. 

6.​ Condition 6.​
Observe that P(-1) corresponds to the result of p(s) executing get_head after 
executing on_tick in the first slot of epoch e.​



Lemma 120 condition 2 therefore implies that 
store(v)(tp(0)).unrealized_justifications[P(-1)] == 
store(v)(tp(0)).unrealized_justified_checkpoint for any honest 
validator v​
As established by condition 3, P(0) is a descendant of P(-1). Hence, when by time 
ta(s) any honest validator v has received P(0), we have that 
store(v)(ta(0)).unrealized_justifications[P(0)].epoch >= 
store(p(s))(ta(0)).unrealized_justifications[P(-1)].epoch.​
As a consequence of this, compute_pulled_up_tip (via 
update_unrealized_checkpoints) sets 
store(p(s))(ta(0)).unrealized_justifications[P(0)] == 
store(p(s))(ta(0)).unrealized_justified_checkpoint which concludes 
the proof for this condition. 

 
Inductive Case. 
We assume that the Lemma holds for slot s and prove that it also holds for slot s’ = s + 1 
Let us look at each condition separately. 

1.​ Condition 1.​
By inductive hypothesis, all validators are fork-choice equivalent at time ta(s). By the 
Lemma’s assumption, by time tp(s’) they all receive the same set of messages (i.e. 
the attestations sent at time ta(s)). The Condition follows directly from this. 

2.​ Condition 2.​
Can be concluded with a reasoning similar to the one outlined for Condition 2 of the 
Base Case. 

3.​ Condition 3.​
Let us consider two cases. 

a.​ p(s’) is honest.​
By inductive hypothesis, get_head(store(p(s’))(ta(s))) = P(s) and 
any message sent between ta(s) and tp(s’) is an attestation message for 
P(s). Hence, get_head(store(p(s’))(tp(s’))) = P(s). Given that 
p(s’) is honest, P(s’) is a child of P(s) proving the Condition. 

b.​ p(s’) is dishonest.​
By definition of P, P(s’) = P(s) which proves the Condition. 

4.​ Condition 4.​
Can be concluded with a reasoning similar to the one outlined for Condition 4 of the 
Base Case. 

5.​ Condition 5.​
The inductive hypothesis and the conditions above imply that between time ta(s) and 
time ta(s’), honest validators receive at most block P(s’) and attestations for block 
P(s).​
Attestation messages do not alter any of the fields involved in the definition of Condition 
5.​



Due to the fact that  P(s’) is not from a previous epoch, s’ is not the first slot of the 
epoch, we have that get_voting_source(store(v)(ta(s’)), P(s’)) == 
get_voting_source(store(v)(ta(s’)), P(s)), which also implies that 
store(v)(ta(s’)).justified_checkpoint == 
store(v)(ta(s)).justified_checkpoint which concludes the proof for this 
Condition. 

6.​ Condition 6.​
Given that by condition 3, we have that P(s’) is a descendant of P(s), we have that 
store(v)(ta(s’)).unrealized_justifications[P(s’)].epoch >= 
store(v)(ta(s)).unrealized_justifications[P(s)] == 
store(v)(ta(s’)).unrealized_justifications[P(s)].​
Given that by inductive hypothesis 
store(v)(ta(s)).unrealized_justified_checkpoint == 
store(v)(ta(s)).unrealized_justifications[P(s)] and that the only block 
received between ta(s) and ta(s’) is P(s’), due to the execution of 
compute_pulled_up_tip (via update_unrealized_checkpoints) we have that 
store(p(s))(ta(s)).unrealized_justifications[P(s’)] == 
store(p(s))(ta(s)).unrealized_justified_checkpoint which concludes 
the proof for this condition. 
 

 
Q.E.D. 
 
Lemma 135. 
For any honest validator v, store(v).unrealized_justified_checkpoint.epoch >= 
store(v).justified_checkpoint.epoch.​
​
Proof. 
The proof is by induction.​
 
Base Case. At genesis time.​
The store at genesis time corresponds to the execution of 
get_forkchoice_store(genesis_state, genesis_block). 
By the definition of get_forkchoice_store follows that the Lemma holds for the base case.​
 
 
Inductive Case. Let store(v)(e) be the value of store(v) after executing the handler for 
event e. ​
 
We now proceed by cases on the type of event e. 

1.​ on_attester_slashing and on_attestation​
In this case, store(v)(e) satisfies the Lemma as none of these handlers alter any of 
the Store fields involved in the Lemma’s statement. 



2.​ on_block(store(v), B).​
In this case, we have that  

●​ store(v)(e).justified_checkpoint.epoch == 
max(store(v).justified_checkpoint.epoch, 
post_state(B).current_justified_checkpoint) and 

●​ store(v)(e).unrealized_justified_checkpoint.epoch == 
max(store(v).unrealized_justified_checkpoint.epoch, 
process_justification_and_finalization(post_state(B)).curr
ent_justified_checkpoint). 

Let us consider the following two sub-cases: 
a.​ store(v)(e).justified_checkpoint.epoch == 

store(v).justified_checkpoint.epoch​
Given that store(v).justified_checkpoint.epoch <= 
store(v).unrealized_justified_checkpoint.epoch <= 
store(v)(e).unrealized_justified_checkpoint.epoch, the Lemma 
is proved in this sub-case. 

b.​ store(v)(e).justified_checkpoint.epoch == 
post_state(B).current_justified_checkpoint​
Given that post_state(B).current_justified_checkpoint <= 
process_justification_and_finalization(post_state(B)).curr
ent_justified_checkpoint <= 
store(v)(e).unrealized_justified_checkpoint.epoch, the Lemma 
is proved in this sub-case.​
 

3.​ on_tick(store(v), time)​
Given that on_tick essentially corresponds to a sequential execution of various calls to 
on_tick_per_slot, we reduce the proof for this case to the proof that the single 
execution of on_tick_per_slot maintains the invariant stated in the Lemma.​
Then let e correspond to the execution of on_tick_per_slot(, t’).​
We distinguish between two cases 

●​ first_slot(t’)==true​
In this case, store(v)(e).justified_checkpoint.epoch == 
max(store(v).justified_checkpoint.epoch, 
store(v).unrealized_justified_checkpoint.epoch).​
Let us consider two cases.​
We distinguish between three sub-cases. 

i.​ store(v)(e).justified_checkpoint.epoch == 
store(v).justified_checkpoint.epoch.​
Given that store(v).justified_checkpoint.epoch <= 
store(v).unrealized_justified_checkpoint.epoch == 
store(v)(e).unrealized_justified_checkpoint.epoch, the 
Lemma is proved in this case.  



ii.​ store(v)(e).justified_checkpoint.epoch == 
store(v).unrealized_justified_checkpoint.epoch.​
This case implies the Lemma directly.​
 

●​ first_slot(t’)==false​
In this case, none of the Store’s fields involved in the Lemma’s statement are 
changed. Therefore, the Lemma still holds for store(v)(e).​
 

 
Q.E.D. 
 
Lemma 140. 
Assume the following conditions 

1.​ at the beginning of epoch e all honest validators are fork-choice equivalent 
2.​ message are delivered in time 0 during epoch e 
3.​ the clocks of all honest validators are perfectly synchronized since the beginning of 

epoch e 
4.​ no dishonest message is sent in epoch e. 
5.​ no message for an epoch previous to e is ever received by any of the honest validator 

during epoch e 
Let tp(s), ta(s), p(s) and P(s) be defined as per Lemma 130.​
Let store(v)(e+1) be the store of an honest validator v after executing 
on_tick(store(v), t) with epoch(t) == e+1 and first_slot(t) == true.​
Then, the following condition holds: 
get_head(store(v)(e+1)) == P(SLOTS_PER_EPOCH). 
 
Proof. 
Let t be such that epoch(t) == e+1 and first_slot(t) == true. 
In alignment with the Lemma statement, we use store(v) to refer to the value of the Store of 
v before executing on_tick. 
Observe that: 

●​ Given that epoch(P(SLOTS_PER_EPOCH)) < epoch(t), we have that 
get_voting_source(store(v)(e+1), P(SLOTS_PER_EPOCH)) == 
store(v)(e+1).unrealized_justifications[P(SLOTS_PER_EPOCH)]. 

●​ Given that on_tick does not alter unrealized_justifications, we have that 
store(v)(e+1).unrealized_justifications[P(SLOTS_PER_EPOCH)]  == 
store(v)(ta(SLOTS_PER_EPOCH)).unrealized_justifications[P(SLOTS
_PER_EPOCH)]. 

●​ Given that no block is received since ta(SLOTS_PER_EPOCH), we have that 
store(v).unrealized_justified_checkpoint == 
store(v)(ta(SLOTS_PER_EPOCH)).unrealized_justified_checkpoint. 



Let us now prove that P(SLOTS_PER_EPOCH) is in 
get_filtered_block_tree(store(v)(e+1)) by considering two cases: 

1.​ store(v)(e+1).unrealized_justifications[P(SLOTS_PER_EPOCH)] >= 
store(v).justified_checkpoint.epoch​
Due to the fact that update_checkpoints(store, 
store.unrealized_justified_checkpoint, 
store.unrealized_finalized_checkpoint) is executed in 
on_tick_per_slot, we have that ​
store(v)(e+1).justified_checkpoint.epoch == 
max(store(v).justified_checkpoint, 
store(v).unrealized_justified_checkpoint).​
Lemma 135 then implies that store(v)(e+1).justified_checkpoint.epoch 
== store(v).unrealized_justified_checkpoint.​
Condition 6 of Lemma 130 implies that 
store(v)(e+1).justified_checkpoint.epoch == 
store(v)(e+1).unrealized_justifications[P(SLOTS_PER_EPOCH)].​
Lemma 100 then concludes the proof for this case. 

2.​ store(v)(e+1).unrealized_justifications[P(SLOTS_PER_EPOCH)] < 
store(v).justified_checkpoint.epoch​
This would imply 
store(v)(e).unrealized_justifications[P(SLOTS_PER_EPOCH)] < 
store(v).justified_checkpoint.epoch.​
Then condition 5 of Lemma 130 then implies that this case is impossible. 

1.​  
 
Then the Lemma follows from the following conditions: 

1.​ No additional branch is added to the set 
get_filtered_block_tree(store(v)(e+1)) compared to the set 
get_filtered_block_tree(store(v)) (as on_tick(store(v), t) executes 
pull_up_tip only on block P(SLOTS_PER_EPOCH) 

2.​ P(SLOTS_PER_EPOCH) is the block with the highest weight amongst its (filtered) 
siblings at time ta(SLOTS_PER_EPOCH) 

3.​ Between time ta(SLOTS_PER_EPOCH) and the beginning of epoch e+1, the only 
messages sent are attestations for block P(SLOTS_PER_EPOCH). 

 
Q.E.D. 
​
 
Lemma 150. 
Assume the following conditions 

1.​ at the beginning of epoch e all honest validators are fork-choice equivalent 
2.​ message are delivered in time 0 in epoch e to epoch ef (with ef >  e) 



3.​ the clocks of all honest validators are perfectly synchronized since the beginning of 
epoch e 

4.​ no dishonest message is sent in epoch e to epoch ef  
5.​ no message for an epoch previous to e is ever received by any of the honest validator 

during epoch e up until at least epoch ef 
Let tp(s), ta(s), p(s) and P(s) be defined as per Lemma 130.​
The following conditions hold for any slot s in epochs [e, ef] 

1.​ honest validators are fork-choice equivalent at time tp(s)  
2.​ honest validators are fork-choice equivalent at time ta(s) 
3.​ P(s) is a descendent of P(s-1) 
4.​ At time ta(s), honest validators attests for block P(s) 
5.​ For any honest validator v, get_voting_source(store(v)(ta(s)), 

P(s)).epoch == store(v)(ta(s)).justified_checkpoint.epoch 
6.​ For any honest validator v, store(v)(ta(s)).unrealized_justified_checkpoint == 

store(v)(ta(s)).unrealized_justifications[P(s)] 
 
Proof. 
The proof is by induction.​
​
Base Case. The epoch e which corresponds to the range [e, e].​
The base case follows from Lemma 130. 
 
Inductive Case.​
We assume that the Lemma holds for any epoch in the range [e, e’] and prove that it also 
holds for any epoch in the range [e, e’’] with e’’ = e’ + 1. 
Let s’ be the last slot of epoch e’ and s’’ be the first slot of epoch e’’.​
Lemma 130 implies that to prove the above it suffices to prove the following two conditions:: 

1.​ At the beginning of epoch e’’, all honest validators are fork-choice equivalent 
2.​ P(s’’) is a descendent of P(s’). 

​
Let us prove each condition separately. 

1.​ Condition 1.​
From the inductive hypothesis, we know that at time ta(s’), all honest validators are 
fork-choice equivalent. Given the Lemma’s assumption, by the end of slot s’ they will 
have received the same set of messages and therefore they are fork-choice equivalent. 
A reasoning similar to the one used in Lemma 50 can be used to show that the 
execution of on_tick at the beginning of slot s’’ preserves fork-choice equivalence. 

2.​ Condition 2.​
Let us consider two cases. 

a.​ The proposer p(s’’) is honest.​
In this case, from Lemma 140 follows that p(s’’) proposes a block with parent 
P(s’). 



b.​ The proposer p(s’’) is dishonest.​
No block is proposed in slot s’’ and therefore P(s’’) = P(s’) which implies 
the Condition. 

 
The two conditions above and Lemma 130 then imply the Lemma. 
 
Q.E.D.​
 
Lemma 155.​
Honest validators never commit slashable violations. 
 
Proof. 
The proof of this Lemma can be found here. 
Q.E.D.​
 
Lemma 160. 
Let T be any finite value. Let network and nodes be asynchronous up to time T and let S be any 
possible state that a distributed system running under the assumptions listed at beginning of this 
document may end up at at time T. 
There exists a possible sequence of events starting from state S that does not involve any 
dishonest node and that leads to justifying a checkpoint for an epoch <= epoch(T) + 2. 
 
scheduling  
Proof.​
Let M be the set of all messages sent by time T.​
 
Let E be any sequence of events induced by the following constraints: 

1.​ At time T, all honest validators receive any of the messages in the set M that they have 
not yet received. 

2.​ From time T onwards 
a.​ dishonest validators do not send any message. 
b.​ messages are delivered in time 0 
c.​ honest validators clocks are perfectly synced​

 
We now show that the sequence of events E leads to justifying a checkpoint for an epoch <= 
epoch(T) + 2. 
 
Lemma 40 and Lemma 50 imply that honest validators are fork-choice equivalent at the 
beginning of epoch epoch(T)+2. 
Let B' = get_head(store(v)) at the beginning of epoch epoch(T)+2 for any honest 
validator v. Given that honest validators are fork-choice equivalent, the value of B' is uniquely 
determined.​
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According to Lemma 150, any block proposed from epoch epoch(T)+2 onwards is for a 
descendent of B'. 
Let p' be the proposer for the first slot of epoch epoch(T)+2. 
Let C' be the checkpoint in epoch epoch(T)+2.​
If p' is honest, then C' corresponds to the block proposed by p'. Otherwise, C' corresponds to 
B'. 
According to Lemma 150, any attestation cast from epoch epoch(T)+2 onwards is for a 
descendent of C'.​
Lemma 155 implies that none of these attestations are slashable. 
Hence, by the end of epoch epoch(T)+2, enough attestations to justify C' have been sent. 
 
Q.E.D. 
 
Lemma 170. 
Let T be any finite value. Let network and nodes be asynchronous up to time T and let S be any 
possible state that a distributed system running under the assumptions listed at beginning of this 
document may end up at at time T. 
Let eh be the first epoch > epoch(T)+2 such that the proposer of its first slot is honest. 
There exists an admissible sequence of events starting from state S that does not involve any 
dishonest node and that leads to finalizing a new checkpoint for an epoch <= eh-1 
 
Proof. 
Let M be the set of all messages sent by time T.​
 
Let E be any sequence of events induced by the following constraints: 

1.​ At time T, all honest validators receive any of the messages in the set M that they have 
not yet received. 

2.​ From time T onwards 
a.​ dishonest validators do not send any message. 
b.​ messages are delivered in time 0 
c.​ honest validators clocks are perfectly synced 

 
We now show that the sequence of events E leads to finalizing a new checkpoint for an epoch 
<= eh-1. 
 
From Lemma 160, we know that an epoch e’ <= epoch(T)+2 will be justified. 
Let us consider two cases. 

1.​ The block proposed by the last honest proposer of epoch e’ includes enough 
attestations to justify epoch e’.​
After executing on_tick at the beginning of epoch e’+1, all honest validators will 
therefore set store(v).justified_checkpoint to checkpoint C' (see Lemma 160 
for the definition of C').​



Any attestation cast in epoch e’+1 will therefore have C' as the source.​
Let B’’ = get_head(store(v)) at the beginning of epoch e’+1 for any honest 
validator v. Given that honest validators are fork-choice equivalent, the value of B’’ is 
uniquely determined.​
Let C’’ be the checkpoint for epoch e’+1.​
If the proposer p’’ of the first block of epoch e’+1 is honest, then C’’ corresponds to 
the block proposed by p’’. Otherwise, C’’ corresponds to B’’.​
According to Lemma 150, any attestation cast from epoch e’+1 onwards is for a 
descendent of C’’. 
Hence, by the end of epoch e’+1, enough attestations to justify C’’ have been sent.​
This, in turn, finalizes checkpoint C' in epoch e’ which, by definition, is <= eh -1 

2.​ The block proposed by the last honest proposer of epoch e’ does not include enough 
attestations to justify epoch e’.​
Let ph be the proposer of the first slot of epoch eh, which, by assumption is honest.​
By following a reasoning similar to the one of Lemma 160, one can prove that epoch 
eh-1 will be justified.​
ph includes any vote for epoch eh-1. Therefore, after honest validators receive the 
block proposed by ph, they set store(v).justified_checkpoint to a checkpoint 
for epoch eh-1.​
Following a reasoning similar to the one for the case above, one can prove that epoch 
eh will be justified which in turns finalizes epoch eh-1. 

 
Q.E.D. 
 
Corollary 180. 
A distributed system running under the assumptions listed at the beginning of this document can 
never reach a state where it is impossible to finalize a new epoch. 
 
Proof. 
Follows from Lemma 170. 
 
Q.E.D. 
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