Manual Proof of Deadlock Freedom for
the Ethereum Fork Choice specification

Roberto Saltini Chenyi Zhang
Dependable Distributed Systems Team, ConsenSys R&D
{name}.{surname}@consensys.net

Spec version

https://qgithub.com/ethereum/consensus-specs/pull/3290

Assumptions

1. Hash functions are ideal (i.e. no collision is possible)
2. Honest validators behave as follows when they receive a message m (i.e block,
attestation or attester_slashing).

1. Add message m to the set M (which is a set of messages initialized to empty)
2. while (is there a fork choice handler function that can be called on a message in set M that
does not raise any assertion)

{

2.1. let (m, h) be amessage minMand a fork choice handler function,
respectively, such that calling h on m does not raise any assertion.

2.2. hi{store, m)

2.3. remove m from M

3. Honest nodes do not discard any attestation that they receive regardless of how old it is.
In other words, the validate target epoch against current time (store,
attestation) function in the current specs should be regarded as a no-op

4. Honest nodes send AttesterSlashing messages for any couple of slashing
attestations that they detect.

5. Honest stake is > 7 the total stake

6. No bound on the amount of attestations that can be included in a block

Property to Prove

A distributed system running under the assumptions listed above can never reach a state where
it is impossible to finalize a new epoch.

https://github.com/ethereum/consensus-specs/pull/3290

Definitions and Notation

0.
1.

For any map m, let m. Keys be the set including all the non-empty keys of map m
Forany map m such thatm.Keys & store.blocks.Keys, let
fork choice map filter (store, m) be the subset map of map m including only
and all the keys k such that store.blocks[k].slot >=
store.finalized checkpoint.slot.
We say that two honest nodes are fork-choice equivalent if the following fields of their
respective stores have the same value:

a. justified checkpoint

b. fork choice map filter (store, blocks)

C. fork choice map filter(store, block states)

fork choice map filter (store, unrealized justifications)
finalized checkpoint

checkpoint states[store.justified checkpoint]

equivocating indices

Se@ ~o o

proposer boost root

time

J. genesis time

k. latest messages foranyindex notin equivocating indices
Letpost state (B) be the state obtained by executing the beacon chain
state transition function on all the blocks of the chain headed by B starting from
the genesis block.
LetM(state: BeaconState, other parameters) be a method that modifies the
BeaconState state.
We use the writing M (state, other parameters) . to refer to the modified state.
For example, process slots (state,
current slot).current justified checkpoint corresponds to the value of
the field current justified checkpoint after the state has been modified
according to the execution of process slots.
Let first slot(t) == true, where t is any time, iff the slot associated with time t
is the first slot of an epoch.
If tis atime, let epoch (t) be the epoch associated with time t.
If t is a block, let epoch(B) == compute_epoch_at_slot(B.slot)
store (v) corresponds to the store of the honest validator v
[N1, N2] correspondstotheset {x \in Z | N1 <= x <= N2}
[N1, N2[correspondstotheset {x \in Z | N1 <= x < N2}

Proof

Outline

The proof follows the following outline
e Prove that after any period of asynchrony, there exists a schedule involving only honest
validators that lead to all honest validators being fork-choice equivalent
e Prove that there exists a schedule starting from a point where all honest validators are
fork-choice equivalent such that honest validators keep continuously extending and
attesting the same chain.
e Leverage on the poofs above to prove deadlock freedom.

Detailed Proof

Note: Given that GDoc does not allows numbering Lemmas automatically (at least, as far as |
know it), Lemmas have been numbered in increments of 10 to allow preserving the logical
progression of the proof argument according to Lemmas’ ascending numbering in the case that
new Lemmas need to be added or existing Lemmas need to be reordered.

Lemma 30
The blockchain is <¥s-slashable.

Proof.
Direct consequence of Assumption 5 and the property that honest validators never slash
themselves.

Q.E.D.

Lemma 35.

For any honest validator v, store (v) . justified checkpoint.epoch is monotonically
increasing with time, i.e., let store (v) . justified checkpoint (t) be the value of
store (v) .justified checkpoint attime t, then for any two times t < t’, we have that
store(v) .justified checkpoint (t).epoch <=

store(v) .justified checkpoin(t’) .epoch.

Proof.
Any location in the code where store (v) . justified checkpoint.epochissettoa

value x, it is before checked that x > store (v) .justified checkpoint.epoch.
Q.E.D.

Lemma 40.
Let M be any set of messages, and v and v’ be any two honest validators.

If by the time v and v’ execute on_tick per slot(,) inthe firstslot of the next epoch, i)
they have both received all and only the messages in the set M and ii) their clocks are perfectly
synced, then regardless of the order (time) when they received any of the messages in M, after
executing on_tick per slot(,) vandv’ will be fork-choice equivalent with the only
exception of the latest messages fields.

Proof.

In order to prove the Lemma, we need to establish that some other Store fields, aside from
those directly involved in the definition of fork-choice equivalence, have the same value for v
and v’ after they execute on tick per slot(,) inthe first slot of the next epoch.

Let us now look at each field of the Store data structure involved in proving the Lemma. (We
label those directly involved in the definition of fork-choice equivalence with the notation [FCE])

1. [FCE] time, genesis_time
Obviously the same.

2. unrealized justified checkpoint
Every time that on block(, B) is executed, it executes
compute pulled up tip(store, block root) which sets
store.unrealized justified checkpoint to the highest known unrealized
justified checkpoint so far.
By Assumption 2, both v and v’ will set their respective
store.unrealized justified checkpoint to the highest unrealized justified
checkpoint according to the messages in the set M.
Finally, as a consequence of Lemma 30, the highest unrealized justified checkpoint
according to the messages is unique.

3. unrealized finalized checkpoint
Every time that on_block(, B) is executed, it executes
compute pulled up tip(store, block root) which sets
store.unrealized finalized checkpoint to the highest known unrealized
finalized checkpoint so far.
By Assumption 2, both v and v’ will set their respective
store.unrealized finalized checkpoint to the highest unrealized finalized
checkpoint according to the messages in the set M.
Finally, as a consequence of Lemma 30, the highest unrealized finalized checkpoint
according to the messages is unique.

4. [FCE] finalized checkpoint
Every time that on_block(, B) is executed, it sets
store.finalized checkpoint to the highest known realized finalized checkpoint
so far.
When on tick per slot(,) is executed in the first slot of the next epoch,
update checkpoints(store, state.current justified checkpoint,
state.finalized checkpoint) is executed which sets

store.finalized checkpoint to
store.unrealized finalized checkpoint if
store.unrealized finalized checkpoint.epoch >

store.finalized checkpoint

Given that on the first slot of the next epoch
store.unrealized finalized checkpoint corresponds to the highest realized
finalized checkpoint, after on_tick per slot(,) isexecuted,
store.finalized checkpoint corresponds to the highest known realized finalized
checkpoint.

By Assumption 2 and point 3 above, both v and v’ will set their respective
store.finalized checkpoint to the highest realized finalized checkpoint
according to the messages in the set M.

Finally, as a consequence of Lemma 30, the highest finalized checkpoint according to
the messages is unique.

[FCE] justified checkpoint

Every time that on block(, B) is executed, it sets

store.justified checkpoint to the highest known realized justified checkpoint so
far.

When on tick per slot(,) is executed in the first slot of the next epoch,
update checkpoints (store, state.current justified checkpoint,
state.finalized checkpoint) is executed which sets

store.justified checkpoint to
store.unrealized justified checkpoint if
store.unrealized justified checkpoint.epoch >

store.justified checkpoint

Given that on the first slot of the next epoch

store.unrealized justified checkpoint corresponds to the highest realized
justified checkpoint, after on tick per slot(,) is executed,
store.justified checkpoint corresponds to the highest known realized justified
checkpoint.

By Assumption 2 and point 2 above, both v and v’ will set their respective
store.justified checkpoint to the highest realized justified checkpoint
according to the messages in the set M.

Finally, as a consequence of Lemma 30, the highest justified checkpoint according to the
messages is unique.

[FCE] fork choice map filter (store, blocks)

Due to the points 1 and 4 above, and Assumption 2, any block B such that B.slot >=
finalized_checkpoint.slot that is added to the store of v is also added to the store of v’
as well, and vice versa. Additionally, due to Assumption 1, each key of the map blocks
of the store of either v or v’ , once set to a block B, is never updated to a block different
from B. This concludes the proof for this field.

7.

10.

1.

Q.E.D.

[FCE] fork choice map filter(store, block states)

Every time that a block B is added to the store, its post-state, resulting from executing
the function state transition(store.block states[B.parent root], B,
true), is added to the block states field. Point 6 above, the fact that

state transition is a deterministic function and assumption 1 then conclude the
proof for this field.

[FCE] fork choice map filter(store, unrealized justifications)
Every time that on_block(, B) is executed, it executes

compute pulled up tip(store, block root) which sets
store.unrealized justifications[B] to the highest justified checkpoint
according to all the attestations included in the chain headed by B.

Assumption 1 and 2, point 7 above and the fact that the value of
store.unrealized justifications[B] is uniquely determined by B, after
executing on_tick per slot(,), conclude the proof for this field.

[FCE] proposer boost root.

Setto Root () for both v and v’ in on_tick_per_slot

[FCE] checkpoint states[store.justified checkpoint]

Due to the definition of state transition, both validators have received at least a
block, say B, with an attestation with target store.justified checkpoint.
Therefore, both validators have executed store target checkpoint state(,
store.justified checkpoint).
Given that
a. store.block states isthe same for v and v’
b. any other function executed in store target checkpoint stateisa
deterministic function of store.block states and
store.justified checkpoint
checkpoint states[store.justified checkpoint] isthe same for v and v’
[FC] equivocating indices
v and v’ receive the same set of AttesterSlashing messages.

Hence, v and v’ will detect the same set of equivocating indices

Lemma 50.
Let M be any set of messages, v and v’ be any two honest validators, and e be the current

epoch.

If i) by the time v and v’ execute on_tick per slot(,) inthe first slot of the epoch e+1,
i.a) they have both received all and only the messages in the set M and i.b) their clocks are
perfectly synced, and ii) during epoch e+1 ii.a) message latency is 0, ii.b) their clocks keep

being perfectly synced and ii.c) dishonest validators do not send any messages, then after
executing on_tick per slot(,) inthe firstslot of the epoch e+2, v and v’ will be
fork-choice equivalent.

Proof.

From Lemma 40 it follows that by the time v and v’ execute on tick per slot(,) inthe
first slot of epoch e+1, they are fork-choice equivalent with the only exclusion of

latest messages. Following the reasoning outlined in Lemma 40, one can show that, if in
epoch e+1 i) message latency is 0, ii) the clocks of v and v’ are perfectly synced and iii)
dishonest nodes do not send any message, then after v and v’ execute

on tick per slot(,) inthe first slot of epoch e+2, they will be fork-choice equivalent with
exclusion of latest messages.

Let us now prove that after v and v’ execute on tick per slot(,) in the first slot of
epoch e+2, they will also have the same value of the field store.latest messages forany
index not in equivocating indices.

Due to Assumption 4, by the end of epoch e+1, all equivocating (slashable) attestations
included in the set of messages M will be detected, the corresponding AttesterSlashing
messages sent and received by any honest node. Also, given that only honest nodes are active
during epoch e+1, no further slashable attestations will be sent.

Hence, by the end of epoch e+1, if a dishonest validator b has sent more than one attestation
for the same target epoch, a corresponding AttesterSlashing message will be received by
any honest node and as a consequence of this, any honest node will add the index associated
with b to the set of equivocating indices.

This proves that for any given epoch ea and any validator x whose index is not in equivocating
indices, at most one attestation has been sent by validator x with target ea.

Due to Assumption 3, validate on attestation does notdependon store.time.

Due to Assumption 2, any attestation A that has been received by v (i.e. on_attestation(,
A,) was executed without raising an assertion) is also received by v’ by the time it executes
on_tick per slot(,) inthe firstslot of the epoch e+2, and vice versa.

By following a reasoning similar to the one outlined in Lemma 40 for checkpoint state, one
can conclude that v and v’ compute the same value for target state inside

on attestation when they receive attestation A.

Given i) that we only considering the indices of latest messages that are notin
equivocating indices, ii)that latest messages only keeps the message with highest
target epoch and iii) that, as proved above, for a target epoch there exits only one attestation
sent by a validator whose index is not in equivocating indices, we can conclude that after
v and v’ executes on tick per slot(,) inthe firstslot of epoch e+2, they will also have
the same value of the field store.latest messages for any index notin

equivocating indices.
Q.E.D.

Lemma 60.
If two honest nodes are fork-choice equivalent, their respective executions of get head return

the same value.

Proof.
Obvious from the fact that get head only depends on the fields included in the definition of

fork-choice equivalence.
Q.E.D.

Lemma 74.

For any honest validator v and block B in store (v) .unrealized justifications,
store(v) .unrealized justifications[B].epoch <=

store(v) .unrealized justified checkpoint.epoch.

Proof.

The only place where store (v) .unrealized justifications is modified is in the
execution of compute pulled up tip.

Moreover, the only element of the map store (v) .unrealized justifications thatis
modified is the one with key block root, where block root is an input parameter to
compute pulled up tip.

Observe that compute pulled up tip always executes

update unrealized checkpoints (store (v),

state.current justified checkpoint, state.finalized checkpoint) with
state.current justified checkpoint ==

store (v) .unrealized justifications[block root].

As a consequence of this, store (v) .unrealized justified checkpoint.epoch is
settomax (store (v) .unrealized justified checkpoint.epoch,

store (v) .unrealized justifications[block root].epoch).

This concludes the proof.

Q.E.D.
Lemma 75.
For any honest validator v, there exists a block B such that

store(v) .unrealized justified checkpoint ==
store(v) .unrealized justifications([B].

Proof.

The only place where store (v) .unrealized justified checkpoiont is modified is in
the execution of update unrealized checkpoints (store(v),

unrealized justified checkpoint, unrealized finalized checkpoint)
where, if set, it is setto unrealized justified checkpoint.

The only place where update unrealized checkpoints is calledisin

compute pulled up tip where the parameter unrealized justified checkpoint
corresponds to store (v) .unrealized justifications[block root] where

block root is a parameter of compute pulled up tip.

This and the fact that store (v) .unrealized justifications is only modified in the
execution of compute pulled up tip conclude the proof.

Q.E.D.

Lemma 76.

For any validator v, let store (v) (B) be the value of store (v) after v receives block B, i.e.
after it executes on_block (store (v), B) without raising exceptions.

If get voting source(store(v) (B), B).epoch >

store(v) .justified checkpoint.epoch, then

get voting source (store(v) (B), B).epoch ==

store(v) (B) .justified checkpoint.epoch.

Proof.
Let us consider two cases.
1. epoch(B) < current epoch
In this case, get voting source (store(v) (B), B) ==
store(v) (B) .unrealized justifications[B].
Therefore, store (v) (B) .unrealized justifications[B].epoch >
store (v) .justified checkpoint.epoch.
Observe that compute pulled up_ tip (which is executed by on block) executes
update checkpoints (store, state.current justified checkpoint,
state.finalized checkpoint) with
state.current justified checkpoint ==
store (v) (B) .unrealized justifications[B] which sets
store(v) (B) .justified checkpoint.epochto
max (store(v) .justified checkpoint.epoch,
store(v) (B) .unrealized justifications[B].epoch).
This concludes the proof of the Lemma for this case.
2. epoch(B) == current epoch

In this case, get voting source (store(v) (B), B) ==
store(v) (B) .block states[B].current justified checkpoint.
Therefore,

store(v) (B) .block states[B].current justified checkpoint.epoch
> store(v) .justified checkpoint.epoch.

Observe that on_block executes update checkpoints (store,
state.current justified checkpoint, state.finalized checkpoint)
with state.current justified checkpoint ==

store (v) (B) .block states[B].current justified checkpoint which
sets store (v) (B) .justified checkpoint.epochto

max (store(v) .justified checkpoint.epoch,store(v) (B) .block state
s[B] .current justified checkpoint).

This concludes the proof of the Lemma for this case.

Q.E.D.

Lemma 77.

For any validator v, let store (v) (B) be the value of store (v) after v receives block B, i.e.
after it executes on_block (store (v), B) without raising exceptions.
Ifget_voting_source(store(v)(B), B) .epoch <=

store (v) .justified checkpoint.epoch, then

store(v) .justified checkpoint.epoch ==

store(v) (B) .jJustified checkpoint.epoch.

Proof.
The Lemma can be proven by following the same reasoning outline in Lemma 76.

Q.E.D.

Lemma 80.

For any honest validator v, at any point in time, there exists at least a leaf block B in
store (v) .blocks such that get _voting source (store(v), B) ==
store(v) .justified checkpoint

Proof.
The proof is by induction.

Base Case. At genesis time.

The store at genesis time corresponds to the execution of

get forkchoice store(genesis state, genesis block).

By the definition of get forkchoice store follows that the Lemma holds for the base case.

Inductive Case. Let store (v) (e) be the value of store (v) after executing the handler for
event e.
We assume that there exists a block B in store (v) .blocks such that

get voting source (store(v), B) == store(v).justified_checkpointand
prove that there exists a block B’ * such that get _voting source (store(v) (e), B’')
== store(v) (e) .justified checkpoint..
We now proceed by cases on the type of event e.
1. on_attester slashingandon attestation
In this case, store (v) (e) satisfies the Lemma as none of these handlers alter any of
the Store fields involved in the Lemma’s statement.
2. on block(store(v), B’).
We distinguish between two sub-cases.
a. get voting source(store(v) (e), B’).epoch >
store(v) .justified checkpoint.epoch
From Lemma 76 it follows that store (v) (e) . justified checkpoint ==
get voting source (store(v) (e), B’).
Therefore the Lemma is proved in this case with B’ 7 == B’.

b. get voting source(store(v) (e), B’).epoch <=
store(v) .justified checkpoint.epoch
By Lemma 77, we have that store (v) (e) .justified checkpoint ==
store (v) .justified checkpoint.
Also, by the definition of on_block, any of the fields involved in computing the
value of get voting source (store(v), B) isunaltered. Therefore,
get voting source(store(v), B) ==
get voting source (store(v) (e), B).
Therefore, the Lemma is proved by this case with B’ * == B.

3. on_tick(store(v), time)

Given that on tick essentially corresponds to a sequential execution of various calls to

on tick per slot, we reduce the proof for this case to the proof that the single

execution of on_tick per slot maintains the invariant stated in the Lemma.

Then let e correspond to the execution of on_tick per slot(, t’).

We distinguish between two cases

a. first slot (t’)==true
We distinguish between three sub-cases.
i. store(v) (e) .justified checkpoint.epoch >

store (v) .justified checkpoint.epoch
The only place where justified checkpoint could have been
updated is in the execution of update checkpoints (store,
store.unrealized justified checkpoint,
store.unrealized finalized checkpoint). which would set
store (v) (e) .justified checkpoint ==
store(v) (e) .unrealized justified checkpoint
From Lemma 75 it follows that there exists a block B 7 such that

store(v) (e) .justified checkpoint ==
store (v) (e) .unrealized justifications[B’’].
Giventhat first slot (t’)==true, we musthave that epoch (B’ ")
< epoch (t’) and therefore get voting source (store(v) (e),
B’’) == store(v) (e) .unrealized justifications[B’']
which proves the Lemma for this case.
ii.. store(v) (e) .justified checkpoint.epoch ==
store (v) .justified checkpoint.epoch
Giventhat on tick per slot does not alter any of the fields involved
in the execution of get voting source, the Lemma is proved in this
case.
iii. store (v) (e) .justified checkpoint.epoch <
store (v) .justified checkpoint.epoch.
Impossible due to Lemma 35.
b. first slot(t’)==false
In this case, we have that store (v) (e) .justified checkpoint.epoch
== store(v) .justified checkpoint.epoch
Giventhaton tick per slot does not alter any of the fields involved in the
execution of get voting source, the Lemma is proved in this case.

Q.E.D.

Lemma 90.
For any honest validators v and leaf block B in store (v) .blocks,
store(v) .justified checkpoint.epoch >= get voting source (store(v),

B) .epoch.

Proof.
The proof is by induction.

Base Case.

The store at genesis time corresponds to the execution of

get forkchoice store(genesis state, gensis block).

By the definition of get forkchoice store follows that the Lemma holds for the base case.

Inductive Case. Let store (v) (e) be the value of store (v) after executing the handler for
event e.

We assume that for any honest validators v and leaf block B in store (v) .blocks,
store(v) .justified checkpoint.epoch >= get voting source (store(v),
B), and prove that for any block B in store (v) (e) .blocks,

store(v) (e) .justified checkpoint.epoch >=

get voting source (store(v) (e), B)

Q.E.D.

on attester slashingandon attestation
In this case, store (v) (e) satisfies the Lemma as none of these handlers alter any of
the Store fields involved in the Lemma’s statement.
on block(store(v), B’).
Let B be any leaf block in store (v) (e) .blocks.
We consider two sub-cases
a. B isalreadyin store (v) .blocks
No line of code executed by on _block (store (v), B’) affects the result of
get_voting_source(store(v), B)..
This, together with Lemma 35, implies the Lemma for this case.
b. B isnotin store (v) .blocks
In this case, B = B’.
By Lemma 76, if get _voting source (store(v) (e), B).epoch >
store(v) .justified checkpoint.epoch, then
get voting source(store(v), B) ==
store(v) (e) .justified checkpoint.epoch.
This concludes the proof for this case.

on_tick(store(v), time)
Given that on_tick essentially corresponds to a sequential execution of various calls to
on tick per slot, we reduce the proof for this case to the proof that the single
execution of on_tick per slot maintains the invariant stated in the Lemma.
Then let e correspond to the execution of on _tick per slot(, t’).
We distinguish between two cases
first slot (t’)==true
Let B be any leaf block in store (v) (e) .blocks.
Giventhat first slot (t’)==true, we musthave that epoch (B) <
epoch (t) and therefore get voting source (store(v) (e), B) ==
store(v) (e) .unrealized justifications[B].
Also, given that first slot (t’)==true, update checkpoints(store,
store.unrealized justified checkpoint,
store.unrealized finalized checkpoint) is executed which sets
store(v) (e) .justified checkpoint.epoch >=
store (v) (e) .unrealized justified checkpoint
Lemma 74 then concludes the proof for this case.
a. first slot (t’)==false
In this case, none of the Store’s fields involved in the Lemma’s statement are
changed. Therefore, the Lemma still holds for store (v) (e).

Lemma 100.
For any honest validator v,
1. get filtered block tree(store(v)) != {1}, and
2. anyleaf block Binget filtered block tree (store (v)) satisfies at least one of
the two following conditions
a. get voting source(store(v), B).epoch ==
store(v) .justified checkpoint.epoch
or
b. (
B in store(v) .unrealized justifications and
store(v) .unrealized justifications[B].epoch >=
store(v) .justified checkpoint.epoch and
get voting source(store(v), B).epoch + 2 >=
store (v) .current epoch

)

Proof.
Let us prove the two conditions separately.

e Condition 1.
From Lemma 80, it follows that there exists at least one leaf block B that satisfies the
following filtering condition inside get filtered block tree:
get voting source(store(v), B).epoch ==
store(v) .justified checkpoint.epoch

From Lemma 30 it follows that B also satisfies the following filtering condition
store.finalized checkpoint.root == get ancestor (store,
block root, finalized slot)

e Condition 2.
Given the definition of get filtered block tree, all we need to show is that
store (v) .justified checkpoint.epoch == GENESIS EPOCH implies

get voting source (store(v), B).epoch ==

store (v) .justified checkpoint.epoch

This follows from Lemma 90 and the fact that get voting source (store (v),
B) .epoch >= GENESIS EPOCH.

Q.E.D.

Lemma 102.
For any block B,
process justification and finalization(post state(B)) .current justifi

ed checkpoint.epoch >=
post state(B) .current justified checkpoint.epoch

Proof.

Due to its definition, process justification and finalization can only increase the
epoch of current justified checkpoint.

Q.E.D.

Lemma 103.

For any blocks Bp and B, such that Bp is an ancestor of B and epoch (Bp) < epoch (B),
post state(B) .current justified checkpoint.epoch >=

process justification and finalization (post state (Bp)).current justif

ied checkpoint.epoch.

Proof.
Given that B is from an epoch higher than Bp, post state (B) already accounts for all the
justifications included in Bp.

Q.E.D.

Lemma 104.
For any block B, store.unrealized justifications[B].epoch >=
store.block states[B].current justified checkpoint.epoch.

Proof.

Observe that store.block states[B] corresponds to post state (B) and
store.unrealized_justifications[B]CONeSpondsto

process justification and finalization(post state(B)) .current justifi
ed_checkpoint.

Lemma 102 then implies the Lemma.
Q.E.D.

Lemma 105.
For any blocks Bp and B, such that Bp is an ancestor of B, get voting source (store,
Bp) .epoch <= get voting source (store, B).epoch.

Proof.
Let us proceed by cases.
1. epoch(Bp) == epoch(B) == current epoch
In this case, get voting source for B and Bp reduces to
post_state(B).current_justified_checkpointand

Q.E.D.

post state (Bp) .current justified checkpoint respectively.

Due to the way post _state is defined, we have that

post state(B) .current justified checkpoint.epoch >=

post state (Bp) .current justified checkpoint.epoch which concludes
the proof for this case

epoch (Bp) <= epoch (B) < current epoch

In this case, get voting source for B and Bp reduces to

process justification and finalization (post state(B)) .current j
ustified checkpoint and

process justification and finalization (post state(Bp)) .current
justified checkpoint respectively.

Due to the way post state and process justification and finalization
are defined, we have that

process justification and finalization(post state(B)).current j
ustified checkpoint.epoch >=

process justification and finalization(post state(Bp)).current
justified checkpoint.epoch which concludes the proof for this case.

epoch (Bp) < epoch(B) == current epoch

Due to Lemma 104 and the way get voting source is defined, it suffices to prove
that store.block states[B].current justified checkpoint.epoch ==
post state(B) .current justified checkpoint.epoch >=
store.unrealized justifications[Bp].epoch ==

process justification and finalization(post state(Bp)).current
justified checkpoint.epoch.

Lemma 103 concludes the proof for this case.

Lemma 110.
For any validator v, let store (v) (B) be the value of store (v) after v receives block B, i.e.
after it executes on_block (store (v), B) without raising exceptions.

If B is a child of get head (store(v)), then get head(store(v) (B)) = B.
Proof.
LetBp = get head(store(v)).

Assume that B is a child of Bp.

We first prove the following condition
a)Bisincluded in get filtered block tree(store(v) (B))
Let us proceed by cases.

1.

get voting source(store(v) (B), B).epoch >
store(v) .justified checkpoint.epoch
From Lemma 76 it follows thatget voting source (store(v) (B), B).epoch ==

store (v) (B) .justified checkpoint.epoch. Condition a) follows directly from
this.

2. get voting source(store(v) (B), B).epoch <=
store(v) .justified checkpoint.epoch
We distinguish two sub-cases based on the fact that Bp is a leaf block of store (v) and
Lemma 100:

a. get voting source(store(v), Bp).epoch ==
store(v) .justified checkpoint.epoch
From Lemma 105, we have that get voting source (store(v) (B),

B) .epoch >= get voting source (store (v) (B),Bp) .epoch. This
implies that get _voting source (store (v) (B) .epoch ==
store (v) .justified checkpoint which, in turn, implies condition a).

b. get voting source(store(v), Bp).epoch >= current epoch - 2
Given, that on_block does not change current epoch and that, due to
Lemma 105, get _voting source (store(v) (B), B).epoch >=
get voting source (store(v) (B), Bp) .epoch, condition a)is true in

this case.
Given that
e by assumption, Bp is the block with the highest weight between any of its (filtered)
siblings

e B has no siblings as Bp was a leaf block in store (v)
it follow that B = get head(store (v) (B))

Q.E.D.

Lemma 120.
For any honest validator v, let store (v) (t) be the value of the store (v) after executing
on_tick(store(v), t).
If fist slot(t) == true, then for any leaf block B in
get filtered block tree(store(v) (t)), we have that
1. get voting source(store(v), B).epoch ==
store(v) (t) .justified checkpoint.epoch.
2. store(v) (t) .unrealized justifications[B] ==
store(v) (t) .unrealized justified checkpoint
Proof.
Giventhat fist slot(t) == true,update checkpoints(store,
store.unrealized justified checkpoint,
store.unrealized finalized checkpoint) is executed which sets

store.justified checkpoint.epoch >=

store.unrealized justified checkpoint.epoch.

DuetoLemma 74, if Bisin get filtered block tree(store(v) (t)), thenthe
condition 2.b of Lemma 100 can only be satisfied if

store (v) .unrealized justifications[B].epoch ==

store (v) .justified checkpoint.epoch which is the same condition that satisfied
condition 2.a of Lemma 100. This concludes the proof for condition 1 of the Lemma.

We have that
store(v) (t) .unrealized justifications[B].epoch ==
store (v) (t) .unrealized justified checkpoint.epoch due the following facts:
e store.justified checkpoint.epoch >=
store.unrealized justified checkpoint.epoch
e store(v).unrealized justifications[B].epoch ==
store (v) .justified checkpoint.epoch
e lLemma 74

Lemma 30 then implies condition 2 of the Lemma.

Q.E.D.

Lemma 130.
Assume the following conditions
1. at the beginning of epoch e all honest validators are fork-choice equivalent
2. message are delivered in time 0 during epoch e
3. the clocks of all honest validators are perfectly synchronized since the beginning of
epoch e
4. no dishonest message is sent in epoch e
5. no message for an epoch previous to e is ever received by any of the honest validator
during epoch e
For any slot s, let tp (s) be the time when an honest node is supposed to propose in slot s,
ta (s) the time when an honest validator is supposed to attest in slot s, store (v) (t) be the
store of validator v at time t and p (s) be the proposer for slot s.
Let us enumerate the slots by assigning 0 to the first slot of epoch e.
Let P (s) be defined as follows
e P (-1) =the result of any honest validator v executing
get head(store(v) (tp(0)))
e f the proposer p (s) of slot s is honest then P (s) corresponds to the block proposed by
p(s) in slot s.
e if the proposer p (s) of slot s is dishonest, then P (s) = P(s-1)
The following conditions hold for any slot s

honest validators are fork-choice equivalent at time tp (s)

honest validators are fork-choice equivalent at time ta (s)

P (s) isadescendentof P (s-1)

At time ta (s), honest validator attests for block P (s)

For any honest validator v, get _voting source (store(v) (ta(s)),
P(s)) .epoch == store(v) (ta(s)).justified checkpoint.epoch
6. For any honest validator v,

store(v) (ta(s)) .unrealized justified checkpoint ==
store(v) (ta(s)) .unrealized justifications[P(s)]

ok owbd=

Proof.
The proof is by induction.

Base Case. Slot 0.
Let us look at each condition separately.

1. Condition 1.
Follows directly from the Lemma’s assumptions.
2. Condition 2.

By time ta (s), all honest validators have received the block proposed by p (s), if p (s)
is honest, or no message otherwise. Therefore, they are fork-choice equivalent.
3. Condition 3.
Let us consider two cases.
a. p(s) is honest
The block proposed by p(s) is a child of get _head (store (v) (tp(0))) ==
P (-1) . Hence, condition 3 holds in this case.
b. p(s) is dishonest
By definition, we have that P (0) = P (-1). Hence, condition 3 holds in this
case.
4. Condition 4.
Let us consider two cases.
a. p(s) is honest
By time ta (s), all honest validators have received the block proposed by p (s) .
Lemma 110 then implies this Condition.
b. p(s) is dishonest.
In this case, no block is sent and, therefore, get head (store (v) (tp(0)) =
get head (store(v) (ta (0)) which implies the Condition.
5. Condition 5.
Implied by Lemma 120 condition 1, the definition of P (s) and the Lemma’s assumption
on fork-choice equivalence.
6. Condition 6.
Observe that P (-1) corresponds to the result of p (s) executing get head after
executing on_tick in the first slot of epoch e.

Lemma 120 condition 2 therefore implies that

store (v) (tp(0)) .unrealized justifications[P(-1)] ==

store (v) (tp(0)) .unrealized justified checkpoint for any honest
validator v

As established by condition 3, P (0) is a descendant of P (-1) . Hence, when by time
ta (s) any honest validator v has received P (0) , we have that

store(v) (ta(0)) .unrealized justifications[P(0)].epoch >=
store(p(s)) (ta(0)) .unrealized justifications[P(-1)].epoch.

As a consequence of this, compute pulled up tip (via

update unrealized checkpoints) sets

store(p(s)) (ta(0)) .unrealized justifications[P(0)] ==
store(p(s)) (ta(0)) .unrealized justified checkpoint which concludes
the proof for this condition.

Inductive Case.
We assume that the Lemma holds for slot s and prove that it also holds forslot s’ = s + 1
Let us look at each condition separately.

1.

Condition 1.
By inductive hypothesis, all validators are fork-choice equivalent at time ta (s) . By the
Lemma’s assumption, by time tp (s’) they all receive the same set of messages (i.e.
the attestations sent at time ta (s)). The Condition follows directly from this.
Condition 2.
Can be concluded with a reasoning similar to the one outlined for Condition 2 of the
Base Case.
Condition 3.
Let us consider two cases.

a. p(s’) is honest.

By inductive hypothesis, get head (store(p(s’)) (ta(s))) = P(s) and
any message sent between ta (s) and tp (s’) is an attestation message for
P (s).Hence, get head(store(p(s’)) (tp(s’))) = P(s).Given that

p(s’) ishonest, P (s’) is a child of P (s) proving the Condition.
b. p(s’) is dishonest.

By definition of P, P (s’) = P (s) which proves the Condition.
Condition 4.
Can be concluded with a reasoning similar to the one outlined for Condition 4 of the
Base Case.
Condition 5.
The inductive hypothesis and the conditions above imply that between time ta (s) and
time ta (s’), honest validators receive at most block P (s’) and attestations for block
P(s).
Attestation messages do not alter any of the fields involved in the definition of Condition
5.

Due to the fact that P (s’) is not from a previous epoch, s’ is not the first slot of the
epoch, we have that get voting source (store(v) (ta(s’)), P(s’)) ==
get voting source (store(v) (ta(s’)), P(s)),which alsoimplies that

store(v) (ta(s’)) .justified checkpoint ==
store (v) (ta(s)) .justified checkpoint which concludes the proof for this
Condition.

6. Condition 6.
Given that by condition 3, we have that P (s’) is a descendant of P (s), we have that
store(v) (ta(s’)) .unrealized justifications[P(s’)].epoch >=
store(v) (ta(s)) .unrealized justifications[P(s)] ==
store (v) (ta(s’)) .unrealized justifications[P(s)].
Given that by inductive hypothesis
store (v) (ta(s)) .unrealized justified checkpoint ==

store (v) (ta(s)) .unrealized justifications[P (s)] and thatthe only block
received between ta(s) and ta(s’) is P(s’), due to the execution of

compute pulled up tip (viaupdate unrealized checkpoints)we have that
store(p(s)) (ta(s)) .unrealized justifications[P(s’)] ==
store(p(s)) (ta(s)) .unrealized justified checkpoint which concludes
the proof for this condition.

Q.E.D.

Lemma 135.
For any honest validator v, store (v) .unrealized justified checkpoint.epoch >=
store(v) .justified checkpoint.epoch.

Proof.
The proof is by induction.

Base Case. At genesis time.

The store at genesis time corresponds to the execution of

get forkchoice store(genesis state, genesis block).

By the definition of get forkchoice store follows that the Lemma holds for the base case.

Inductive Case. Let store (v) (e) be the value of store (v) after executing the handler for
event e.

We now proceed by cases on the type of event e.
1. on attester slashingandon attestation
In this case, store (v) (e) satisfies the Lemma as none of these handlers alter any of
the Store fields involved in the Lemma’s statement.

2. on block(store(v), B).
In this case, we have that

® store(v) (e) .justified checkpoint.epoch ==
max (store(v) .justified checkpoint.epoch,
post state (B) .current justified checkpoint) and

® store(v) (e) .unrealized justified checkpoint.epoch ==
max (store(v) .unrealized justified checkpoint.epoch,
process justification and finalization(post state(B)) .curr
ent justified checkpoint).

Let us consider the following two sub-cases:

a. store(v) (e).justified checkpoint.epoch ==
store(v) .justified checkpoint.epoch
Given that store (v) .justified checkpoint.epoch <=
store(v) .unrealized justified checkpoint.epoch <=
store(v)(e).unrealized_justified_checkpoint.epoctheLemnm
is proved in this sub-case.

b. store(v) (e) .justified checkpoint.epoch ==
post state(B) .current justified checkpoint
Given that post state (B) .current justified checkpoint <=
process justification and finalization(post state(B)) .curr
ent justified checkpoint <=
store (v) (e) .unrealized justified checkpoint.epoch, the Lemma
is proved in this sub-case.

3. on _tick(store(v), time)
Given that on_tick essentially corresponds to a sequential execution of various calls to
on_tick per slot, we reduce the proof for this case to the proof that the single
execution of on_tick per slot maintains the invariant stated in the Lemma.
Then let e correspond to the execution of on tick per slot(, t’).
We distinguish between two cases
e first slot(t’)==true
In this case, store (v) (e) .justified checkpoint.epoch ==
max (store(v) .justified checkpoint.epoch,
store (v) .unrealized justified checkpoint.epoch).
Let us consider two cases.
We distinguish between three sub-cases.
i store(v) (e) .justified checkpoint.epoch ==
store (v) .justified checkpoint.epoch.
Given that store (v) .justified checkpoint.epoch <=
store(v) .unrealized justified checkpoint.epoch ==
store(v) (e) .unrealized justified checkpoint.epoch, the
Lemma is proved in this case.

ii. store(v) (e) .justified checkpoint.epoch ==
store(v) .unrealized justified checkpoint.epoch.
This case implies the Lemma directly.

e first slot(t’)==false
In this case, none of the Store’s fields involved in the Lemma’s statement are
changed. Therefore, the Lemma still holds for store (v) (e).

Q.E.D.

Lemma 140.

Assume the following conditions
1. at the beginning of epoch e all honest validators are fork-choice equivalent
2. message are delivered in time 0 during epoch e

3. the clocks of all honest validators are perfectly synchronized since the beginning of
epoch e

4. no dishonest message is sent in epoch e.
5. no message for an epoch previous to e is ever received by any of the honest validator
during epoch e
Lettp(s), ta(s),p(s) and P (s) be defined as per Lemma 130.
Let store (v) (e+1) be the store of an honest validator v after executing

on tick(store(v), t) withepoch(t) == e+l and first slot(t) == true
Then, the following condition holds:

get head(store(v) (e+l)) == P(SLOTS PER EPOCH).

Proof.

Let t be such that epoch (t) == e+l and first slot(t) == true

In alignment with the Lemma statement, we use store (v) to refer to the value of the Store of
v before executing on_tick.
Observe that:

e Given that epoch (P (SLOTS PER EPOCH)) < epoch (t), we have that
get voting source (store(v) (e+l), P(SLOTS PER EPOCH)) ==
store (v) (e+l) .unrealized justifications[P(SLOTS_ PER EPOCH)].

e Giventhaton tick does notalter unrealized justifications, we have that
store (v) (e+l) .unrealized justifications[P(SLOTS PER EPOCH)] ==
store(v) (ta (SLOTS PER EPOCH)) .unrealized justifications[P (SLOTS
_PER_EPOCH)].

e Given that no block is received since ta (SLOTS PER EPOCH), we have that
store (v) .unrealized justified checkpoint ==
store (v) (ta (SLOTS PER EPOCH)) .unrealized justified checkpoint.

Let us now prove that P (SLOTS PER_EPOCH) isin
get filtered block tree(store(v) (e+1l)) by considering two cases:
1. store(v) (e+l) .unrealized justifications[P(SLOTS PER EPOCH)] >=
store(v) .justified checkpoint.epoch
Due to the fact that update checkpoints (store,
store.unrealized justified checkpoint,
store.unrealized finalized checkpoint) is executed in
on tick per slot, we have that
store(v) (e+l) .justified checkpoint.epoch ==
max (store(v) .justified checkpoint,
store(v) .unrealized justified checkpoint).
Lemma 135 then implies that store (v) (e+1) .justified checkpoint.epoch
== store(v) .unrealized justified checkpoint
Condition 6 of Lemma 130 implies that
store(v) (e+l) .justified checkpoint.epoch ==
store(v) (e+l) .unrealized justifications[P(SLOTS PER EPOCH)].
Lemma 100 then concludes the proof for this case.
2. store(v) (e+l) .unrealized justifications[P(SLOTS PER EPOCH)] <
store (v) .justified checkpoint.epoch

This would imply
store(v) (e) .unrealized justifications[P(SLOTS PER EPOCH)] <

store (v) .justified checkpoint.epoch.
Then condition 5 of Lemma 130 then implies that this case is impossible.

Then the Lemma follows from the following conditions:

1. No additional branch is added to the set
get filtered block tree(store(v) (e+l)) compared to the set
get_filtered_block_tree(store(v))(aSon_tick(store(v), t) executes
pull up tiponlyonblock P(SLOTS PER EPOCH)

2. P(SLOTS PER EPOCH) is the block with the highest weight amongst its (filtered)
siblings at time ta (SLOTS PER_EPOCH)

3. Between time ta (SLOTS PER EPOCH) and the beginning of epoch e+1, the only
messages sent are attestations for block P (SLOTS PER EPOCH).

Q.E.D.

Lemma 150.

Assume the following conditions
1. at the beginning of epoch e all honest validators are fork-choice equivalent
2. message are delivered in time 0 in epoch e to epoch ef (withef > e)

3. the clocks of all honest validators are perfectly synchronized since the beginning of
epoch e
4. no dishonest message is sent in epoch e to epoch ef
5. no message for an epoch previous to e is ever received by any of the honest validator
during epoch e up until at least epoch ef
Lettp(s), ta(s), p(s) and P (s) be defined as per Lemma 130.
The following conditions hold for any slot s in epochs [e, ef]
honest validators are fork-choice equivalent at time tp (s)
honest validators are fork-choice equivalent at time ta (s)
P (s) isadescendentof P (s-1)
Attime ta (s), honest validators attests for block P (s)
For any honest validator v, get _voting source (store(v) (ta(s)),
P(s)) .epoch == store(v) (ta(s)).justified checkpoint.epoch
6. For any honest validator v, store(v)(ta(s)).unrealized_justified_checkpoint ==
store(v)(ta(s)).unrealized_justifications[P(s)]

ok~

Proof.
The proof is by induction.

Base Case. The epoch e which corresponds to the range [e, e].
The base case follows from Lemma 130.

Inductive Case.
We assume that the Lemma holds for any epoch in the range [e, e’] and prove that it also
holds for any epoch intherange [e, e’’] withe’’ = e’ + 1.
Let s’ be the last slot of epoch e’ and s’ 7 be the first slot of epoch e’ .
Lemma 130 implies that to prove the above it suffices to prove the following two conditions::
1. At the beginning of epoch e’ 7, all honest validators are fork-choice equivalent
2. P(s’’) isadescendentof P(s’).

Let us prove each condition separately.
1. Condition 1.
From the inductive hypothesis, we know that at time ta (s’), all honest validators are
fork-choice equivalent. Given the Lemma’s assumption, by the end of slot s’ they will
have received the same set of messages and therefore they are fork-choice equivalent.
A reasoning similar to the one used in Lemma 50 can be used to show that the
execution of on_tick at the beginning of slot s’ * preserves fork-choice equivalence.
2. Condition 2.
Let us consider two cases.
a. The proposerp (s’) is honest.
In this case, from Lemma 140 follows that p (s’ /) proposes a block with parent
P(s’).

b. The proposer p (s’ ’) is dishonest.
No block is proposed in slot s’ * and therefore P (s’ ’) = P (s’) which implies
the Condition.

The two conditions above and Lemma 130 then imply the Lemma.
Q.E.D.

Lemma 155.
Honest validators never commit slashable violations.

Proof.
The proof of this Lemma can be found here.
Q.E.D.

Lemma 160.

Let T be any finite value. Let network and nodes be asynchronous up to time T and let S be any
possible state that a distributed system running under the assumptions listed at beginning of this
document may end up at at time T.

There exists a possible sequence of events starting from state s that does not involve any
dishonest node and that leads to justifying a checkpoint for an epoch <= epoch (T) + 2.

sehedtting
Proof.
Let M be the set of all messages sent by time T.

Let E be any sequence of events induced by the following constraints:
1. Attime T, all honest validators receive any of the messages in the set M that they have
not yet received.
2. From time T onwards
a. dishonest validators do not send any message.
b. messages are delivered in time 0
c. honest validators clocks are perfectly synced

We now show that the sequence of events E leads to justifying a checkpoint for an epoch <=
epoch (T) + 2.

Lemma 40 and Lemma 50 imply that honest validators are fork-choice equivalent at the
beginning of epoch epoch (T) +2.

LetB' = get head(store(v)) atthe beginning of epoch epoch (T) +2 for any honest
validator v. Given that honest validators are fork-choice equivalent, the value of B' is uniquely
determined.

https://docs.google.com/document/d/12dF-84w6G62KH68L2dO_ym7RGXEZ0k9d7mOksgzp3Ls/edit#heading=h.atlerocivxn4

According to Lemma 150, any block proposed from epoch epoch (T) +2 onwards is for a
descendentof B'.

Let p' be the proposer for the first slot of epoch epoch (T) +2.

Let C' be the checkpoint in epoch epoch (T) +2.

If p' is honest, then C' corresponds to the block proposed by p'. Otherwise, C' corresponds to
B'.

According to Lemma 150, any attestation cast from epoch epoch (T) +2 onwards is for a
descendentof C'.

Lemma 155 implies that none of these attestations are slashable.
Hence, by the end of epoch epoch (T) +2, enough attestations to justify C' have been sent.

Q.E.D.

Lemma 170.

Let T be any finite value. Let network and nodes be asynchronous up to time T and let S be any
possible state that a distributed system running under the assumptions listed at beginning of this
document may end up at at time T.

Let eh be the first epoch > epoch (T) +2 such that the proposer of its first slot is honest.

There exists an admissible sequence of events starting from state s that does not involve any
dishonest node and that leads to finalizing a new checkpoint for an epoch <= eh-1

Proof.
Let M be the set of all messages sent by time T.

Let E be any sequence of events induced by the following constraints:
1. Attime T, all honest validators receive any of the messages in the set M that they have
not yet received.
2. From time T onwards
a. dishonest validators do not send any message.
b. messages are delivered in time 0
c. honest validators clocks are perfectly synced

We now show that the sequence of events E leads to finalizing a new checkpoint for an epoch
<= eh-1.

From Lemma 160, we know that an epoch e’ <= epoch (T) +2 will be justified.
Let us consider two cases.
1. The block proposed by the last honest proposer of epoch e’ includes enough
attestations to justify epoch e’ .
After executing on_tick at the beginning of epoch e’ +1, all honest validators will
therefore set store (v) . justified checkpoint to checkpoint C' (see Lemma 160
for the definition of C').

Any attestation cast in epoch e’ +1 will therefore have C' as the source.
LetB’’ = get head(store (v)) atthe beginning of epoch e’ +1 for any honest
validator v. Given that honest validators are fork-choice equivalent, the value of B’ 7 is
uniquely determined.
Let ¢’ 7 be the checkpoint for epoch e’ +1.
If the proposer p’ 7 of the first block of epoch e’ +1 is honest, then C’ ’ corresponds to
the block proposed by p’ * . Otherwise, C’ ’ corresponds to B’ /.
According to Lemma 150, any attestation cast from epoch e’ +1 onwards is for a
descendentof C’ 7.
Hence, by the end of epoch e’ +1, enough attestations to justify C’ ’ have been sent.
This, in turn, finalizes checkpoint C' in epoch e’ which, by definition, is <= eh -1

2. The block proposed by the last honest proposer of epoch e’ does not include enough
attestations to justify epoch e’ .
Let ph be the proposer of the first slot of epoch eh, which, by assumption is honest.
By following a reasoning similar to the one of Lemma 160, one can prove that epoch
eh-1 will be justified.
ph includes any vote for epoch eh-1. Therefore, after honest validators receive the
block proposed by ph, they set store (v) . justified checkpoint to a checkpoint
for epoch eh-1.
Following a reasoning similar to the one for the case above, one can prove that epoch
eh will be justified which in turns finalizes epoch eh-1.

Q.E.D.
Corollary 180.
A distributed system running under the assumptions listed at the beginning of this document can

never reach a state where it is impossible to finalize a new epoch.

Proof.
Follows from Lemma 170.

Q.E.D.

Acknowledgements

We thank Mikhail Kalinin and Alex Vlasov from ConsenSys, Aditya Asgaonkar, Francesco
D’Amato and Luca Zanolini from the Ethereum Foundation for their reviews and insightful
comments.

	Manual Proof of Deadlock Freedom for the Ethereum Fork Choice specification
	Spec version
	Assumptions
	Property to Prove
	Definitions and Notation
	Proof
	Outline
	Detailed Proof

	Acknowledgements

