1.

a. For the complex number z = -2 + 5i, find:

i.
$$|z|$$

ii.
$$\arg(z)$$
, where $-\pi < \arg(z) \leqslant \pi$

(1)

b. State the modulus and argument of z^*

(2)

2.

On an Argand diagram, illustrate the locus of points z that satisfy the inequality

$$3<|z-3+4\mathrm{i}|\leqslant 5$$

(4)

3.

On an Argand diagram, represent the region defined by the inequalities

$$0$$

(4)

4.

The complex number 3-3i is denoted by a

a. Find |a| and arg(a)

(2)

b. Sketch on a single Argand diagram the loci given by

i.
$$|z-a|=3\sqrt{2}$$

ii.
$$rg (z-a)=rac{\pi}{4}$$

(2)

c. Indicate, by shading, the region of the Argand diagram for which

$$|z-a|\geqslant 3\sqrt{2}$$
 and $0\leqslant rg{(z-a)}\leqslant rac{\pi}{4}$

(1)

5.

Let
$$z_1=rac{\sqrt{6}+\mathrm{i}\sqrt{2}}{2},\,\mathrm{and}\,z_2=1-\mathrm{i}$$

- a. Find the value of $\frac{z_1}{z_2}$ in the form $a+b{\rm i}$, where a and b are to be determined exactly in surd form.
- b. Show that $rac{z_1}{z_2}=\cos\left(rac{5\pi}{12}
 ight)+\mathrm{i}\sin\left(rac{5\pi}{12}
 ight)$
- b. Show that $z_2 = \cos \left(\frac{12}{2} \right)^{-1} \sin \left(\frac{12}{2} \right)$ (2)

6.

By considering the product $(2+\mathrm{i})(3+\mathrm{i})$, show that $\arctan\frac{1}{2}+\arctan\frac{1}{3}=\frac{\pi}{4}$

(4)

7.

Complex number z and w are given by

$$z=2\Bigl(\cosrac{\pi}{3}-\mathrm{i}\sinrac{\pi}{3}\Bigr), \qquad w=\sqrt{3}\Biggl(\cosrac{5\pi}{6}-\mathrm{i}\sinrac{5\pi}{6}\Bigr)$$

a. Find the value for $\frac{z}{w}$

(1)

b. Sketch on the same Argand diagram for z, w and z - w

(3)

c. Show that $|z-w|=\sqrt{7}$

(2)

8.

- a. Find the Cartesian equation of:
 - i. the locus of points representing $|z-3+\mathrm{i}|=|z-1-\mathrm{i}|$
 - ii. the locus of points representing $|z-2|=2\sqrt{2}$

(6)

b. Find the two values of z that satisfy both $|z-3+i|=|z-1-\mathrm{i}|$ and $|z-2|=2\sqrt{2}$

(2)

The region R is defined by the inequalities $|z-3+i|\geqslant |z-1-\mathrm{i}|$ and $|z-2|\leqslant 2\sqrt{2}$

c. Show the region R on an Argand diagram.

(4)