Banana Pi Router – BPi–R1

Manual for HW setup and basic router functionalities

Table of contents

```
Information
Instruction about how to use this manual
Prerequisite for beginners
   with LINUX
   with WINDOWS
Prerequisite
nano text-editor tuning
Backup your Image
Configuration files
   swconfig
   wpa supplicant
   isc-dhcp
       Checks:
   interfaces
       Checks:
<u>IPtables</u>
   To secure a little bit the router:
<u>hostapd</u>
       Checks:
before you go for compilation
   compile from Git
hostapd compilation
Compile RealTek WiFi driver
Internet resources
```

version	date	change				
0.1	14. May	initial document release				
0.2	08. June	extended warning overheating				
0.3	09. Aug	updated Information & Internet resources				
0.4	06. Oct	isc-dhcp & interfaces updated				

Information

The BPi-R1 is a special version in the family of Banana's and to make use of its router functionality you have to configure this first.

The A20's uses the BCM53125 (7 port ethernet chip) as PHY.

So physically the SoC (A20) and all 5 external ethernet-ports are interconnected through a simple switch, 6 of them connected (A20 + 5 GBit Ethernet ports).

Switch port 0, 1, 2, 4 will be the LAN, port 3 the WAN. To see this with some graphic

If you want to use it like a classical router with WAN and LAN you must separate it in the configuration. Therefore you have to create a virtual-LAN (VLAN) and a bridge (br0) to connect the VLAN and WLAN. No! firewall configuration with these steps.

Let's think about if we have everything:

Software:

- 1. driver wireless RealTek
- 2. driver BCM53125
- 3. 8021g = VLAN module
- 4. swconfig = to control BCM53125 switch (from OpenWrt) /usr/sbin
- 5. bridge-utils = bring WiFi & Ethernet together
- 6. isc-dhcp = dhcp server
- 7. hostapd = WiFi security /usr/sbin/
- 8. hostapd cli
- 9. IPtables = the Kernel needs to know how to route the traffic

Configuration:

- 1. swconfig
- 2. isc-dhcp
- 3. hostapd
- 4. interfaces
- 5. IPtables

Goal of this document:

Router functionalities, all ports LAN & WLAN shall be connected to each other.

I read somewhere that the MALI GPU does not play nice with other Kernel than 3.4 (Feb. 2015)

About the manual, unless I highlight the text, you have to copy & paste line after line.

Instruction about how to use this manual

By accident you might insert or delete something, then simply press: ctrl + z

Prerequisite for beginners

You can omit these lines and jump to the next page, if you already know how to write the data on the SDcard.

We will Install a fresh <u>Igor's 2.7 k3.4.107.zip</u> on your SDcard (based on Debian 7 wheezy), my old SDcard from 2010 wouldn't boot. Make sure you have two to test in case one doesn't work.

with LINUX

After you have downloaded the .zip file from the link above, you will create a folder on your PC and unzip /unrar the files with your distributions archive program.

After this, which will take some time as it is quite a large zip, you go to the folder with the extracted files, you can try in your file-manager a 'right-click' to open a terminal straight from this location. Or simply open a terminal and go to the directory in which you keep the extracted files.

your extract: Lamobo-r1_Debian_2.7_wheezy_3.4.107.raw Insert your SD card into the card reader

write the image to the SDcard;

As you can see red highlighted, you have to tell the PC to which device /SDcard it shall write to, the number of the partition is not necessary. To find this information you can try the command: df -h

sudo dd if=Lamobo-r1_Debian_2.7_wheezy_3.4.107.raw of=/dev/sdj bs=1M && sync after you entered the password, you will not see a lot. It takes ca. 2min to write. When it has finished, it will write more information in the Terminal.

So you have the time to get some water, the following steps are a complete walk-through and I recommend to work through without interruption. At the end you have a working system.

When dd has finished you can remove the card, the sync command made sure that everything from RAM has been written to the devices. Now put the SDcard into your BPi-R1 and turn on the power.

with WINDOWS

After you have downloaded the .zip file from the link above, you will create a folder on your PC and unzip with 'right-click' extract.

your extract:

Lamobo-r1_Debian_2.7_wheezy_3.4.107.raw and the imagewriter.exe

Insert your SD card into the card reader, start the imagewriter.exe

Prerequisite

```
Install a fresh Igor's 2.7 k3.4.107.zip on your SDcard (based on Debian 7 wheezy), put the SDcard
into your BPi-R1 (my old SDcard from 2010 wouldn't boot. Make sure you have two to test in case
one doesn't work) and connect the single WAN port to your current Router.
Go to your Router's Webinterface and find out the IP-Address of BPi-R1. Based on the
MAC-Address I then fixed the IP-Address so it is always the same.
In Linux open a terminal and login with: ssh root@IP-Address - password: 1234
In Windows you need PuTTY if you don't know PuTTY, look here YouTube.
Check internet connection: ping www.google.com (stop with Ctrl + c).
apt-get update
apt-get upgrade
dpkg -l hostapd isc-* dnsmasq vlan iptables-persistent
dpkg -l bridge-utils (un = install it)
apt-get install nethogs bridge-utils isc-dhcp-server
To change some standard settings, see the <u>FAQ on Igor's Website</u>
shutdown -r now (reboot) login with new password;)
ifconfig (LAN)
iwconfig (WLAN)
swconfig dev switch0 show (see what you have)
route -n (do this on the router and on the PC see if it fits - troubleshooting)
dmesg | grep 8021 (VLAN Support)
modinfo 8021q
1 smod (Show the status of modules in the Linux Kernel)
ps -e (to see every process the system is running)
service networking restart restart Network-Services
To copy files use an FTP-client (i.e. gFTP) on your PC and SSH2 or SFTP on Banana Pi
Check your log files:
less /var/log/syslog (type capital G to jump to last entry - q to exit)
less /var/log/messages
tail -f /var/log/syslog (open an additional ssh and let it run to see the current logfile)
You can check the dpkg log files to see which packages you installed recently:
grep 'install ' /var/log/dpkg.log
list all partitions
```

lsblk -o NAME, FSTYPE, SIZE, MOUNTPOINT, LABEL

We will use the nano text editor often and it helps to have different colors in the config files.

nano text-editor tuning

You can turn it on or off at anytime with: Alt + y create nano /usr/share/nano/conf.nanorc and add these lines: # config file highlighting syntax "conf" "(\.(conf|config|cfg|cnf|rc|lst|list|defs|ini|desktop|mime|types|preset| cache|seat|service|htaccess)\$|(^|/)(\w*crontab|mirrorlist|group|hosts|pa sswd|rpc|netconfig|shadow|fstab|inittab|inputrc|protocols|sudoers|interf aces|swconfig|hostapd)\$|conf.d/|.config/)" # default text color magenta "^.*\$" # special values icolor brightblue $"(^|\s|=) (default|true|false|on|off|yes|no) (\s|$)"$ # keys icolor cyan " $^s*(set)?[A-Z0-9 //..%(e+-]+/s*([:]|/>)"$ # commands color blue "^\s*set\s+\<"</pre> # punctuation color blue "[.]" # numbers

```
color red "(^|\s|[[/:|<>(){}=,]|\])[-+]?[0-9](\.?[0-9])*%?($|\>)"
icolor cyan "^\s^*(\sif)?([A-Z0-9 \/\.\%\@+-]|\s)+="
# punctuation
color blue "/"
color green "(\]|[()<>[{},;:=])"
color brightwhite "(^{|\cdot|}_{|\cdot|})\s*-(\s|$)"
# section headings
icolor brightyellow "^\s^*(\[([A-Z0-9 \.-]|\s)+\])+\s^*"
color brightcyan "^\s*((Sub)?Section\s*(=|\>)|End(Sub)?Section\s*$)"
# URLs
icolor green "\b(([A-Z]+://|www[.])[A-Z0-9/:\#?&$= \.\-]+)(\b|$|)"
# XML-like tags
icolor brightcyan
"</?\w+((\s*\w+\s*=)?\s*("[^"]*"|'[^']*'|!?[A-Z0-9 :/]))*(\s*/)?>"
# strings
color yellow "\"(\\.|[^"])*\"" "'(\\.|[^'])*'"
# comments
color white "#.*$"
color blue "^\s*##.*$"
color white "^;.*$"
color white start="<!--" end="-->"
```

Ctrl + o to save the file, Ctrl + x to close the application.

Then you include this configuration to nano. Go to the last line of nano /etc/nanorc file and add:

```
## Configuration files (catch-all syntax)
include "/usr/share/nano/conf.nanorc"
```

In the first codeline, at the end you can add more filename if you miss some. And now it is much easier to read configuration files, as long as you have no inabilities to see colors.

Backup your Image

with Linux

shutdown -h now to turn off the R1 - place the SDcard in your PCs CardReader. dd will not make an image of the size of the sum of the partition. It is fed input data, it delivers output data. It does no interpretation at all.

fdisk -l

i.e. Igor's on 16GB MicroSD

Gerät	boot.	Begin	End	Block	Id	System
/dev/sdj1		2048	4443007	20480	83	Linux
sector siz	ze is given	, 512 bytes				

go to the directory where you want to store the backup, then:

```
dd if=/dev/sdj of=igors_2.7_wheezy_3.4.107_bkup_01.img bs=512 a good chance to grab a bite, it will take around 10min
```

When finished remove the MicroSD from your PCs CardReader, put it in the R1 and turn on power to boot the device.

Configuration files

swconfig

SWITCH configuration - by standard Igor keeps the swconfig in the 'interfaces-file', you get a better overview by keeping it in a separate file. So you create this one:

```
nano /etc/network/if-pre-up.d/swconfig
#!/bin/sh
#----#
# BPI-R1 VLAN configuration #
#----#
# This will create the following ethernet ports:
\# - eth0.101 = WAN (single port)
\# - eth0.102 = LAN (4 port switch)
# You have to adjust your /etc/network/interfaces
# Comment out the next line to enable the VLAN configuration:
# exit 0
ifconfig eth0 up
swconfig dev eth0 set reset 1
swconfig dev eth0 set enable vlan 1
swconfig dev eth0 vlan 101 set ports '3 8t'
swconfig dev eth0 vlan 102 set ports '4 0 1 2 8t'
swconfig dev eth0 set apply 1
note: (wildcat paris armbian forum)
with my 3t
Make the file executable: chmod +x /etc/network/if-pre-up.d/swconfig
```

Remove all rights from other VLAN files, so it is read-only:

```
chmod 0444 /etc/network/if-post-down.d/vlan
chmod 0444 /etc/network/if-pre-up.d/vlan
```

wpa supplicant

It is suitable for both desktop/laptop computers and embedded systems. Supplicant is the IEEE 802.1X/WPA component that is used **in the client stations**. security mechanism - wpa_supplicant is designed to be a "daemon" program that runs in the background and acts as the backend component controlling the wireless connection.

isc-dhcp

This is the server from the Internet Software Consortium's implementation of DHCP.

```
configuration file nano /etc/default/isc-dhcp-server
INTERFACES="br0"
configuration file nano /etc/dhcp/dhcpd.conf
# option definitions common to all supported networks...
#option domain-name "example.org";
#option domain-name-servers nsl.example.org, ns2.example.org;
# the numbers represent seconds
default-lease-time 3601;
max-lease-time 44000;
# Use this to send dhcp log messages to a different log file (you also
# have to hack syslog.conf to complete the redirection).
log-facility local7;
# This is a very basic subnet declaration, with Google for DNS (8.8.8.8)
subnet 192.168.9.0 netmask 255.255.255.0 {
 range 192.168.9.150 192.168.9.250;
option routers 192.168.9.2;
option domain-name-servers 8.8.8.8;
# I use this instead of above, 192.168.10.1 is my NETGEAR router connected to the modem.
subnet 192.168.9.0 netmask 255.255.255.0 {
  range 192.168.9.150 192.168.9.250;
  option routers 192.168.9.2;
  option domain-name-servers 192.168.10.1;
Checks:
service isc-dhcp-server status
Location of the IP-Address lease file:
cd /var/lib/dhcp/
less dhclient.eth0.101.leases
```

less dhcpd.leases (WLAN, actually br0)

interfaces

by standard Igor keeps several interface files for differents devices. We will now remove all these files and create a new one:

```
cd /etc/network/
rmdir interfa*
rm interfa*
```

Bridge, will be used to bridge the Ethernet and Wireless interfaces.

Lines starting with '#' are ignored. Note that end-of-line comments are NOT supported, comments must be on a line of their own.

```
nano /etc/network/interfaces
```

```
# interfaces(5) file used by ifup(8) and ifdown(8)
# auto = Start the interface(s) at boot.
# iface = interface
auto lo
iface lo inet loopback
```

allow-hotplug <interface> - Start the interface when a "hotplug" event is detected.

In real world, this is used on the same situations of auto but the difference is that it will wait an event like "plug the cable" on ethernet interfaces.

```
allow-hotplug eth0
allow-hotplug wlan0
```

```
# receive IP-Address from your DSL- or cablemodem
auto eth0.101
```

```
iface eth0.101 inet dhcp
```

generate IP-Address for connected devices

```
auto eth0.102
     iface eth0.102 inet manual
```

generate IP-Address for connected devices

```
auto wlan0
      iface wlan0 inet manual
# post-down, actions taken right after the iface is down
      post-down rm -rf /run/hostapd/wlan0
```



```
auto br0
     iface br0 inet static
     bridge ports eth0.102 wlan0
     bridge waitport 0
     address 192.168.9.2
     network 192.168.9.0
     netmask 255.255.255.0
```

adjust the gateway to your configuration, my gateway is my NETGEAR router. Comment (#) if your R1 is directly connected to the DSL- or cablemodem.

```
gateway 192.168.10.1
```

Make the file executable: chmod +x /etc/network/interfaces

Checks:

```
netstat -uap Active Internet connections
ip r
ip link (successor of ifconfig)
ifconfig -a
ifconfig eth0.101
brctl show
brctl showmacs br0
less /var/log/syslog (type capital G to jump to last entry - q to exit)
less /var/log/messages
```

IPtables

iptables are used to set up, maintain, and inspect the tables of IPv4 packet filter rules in the Linux kernel. Several different tables may be defined.

Each table contains a number of built-in chains and may also contain user-defined chains.

Each chain is a list of rules which can match a set of packets.

Each rule specifies what to do with a packet that matches. This is called a `target', which may be a jump to a user-defined chain in the same table. man iptables

http://ubuntuforums.org/showthread.php?t=716192

```
iptables --list-rules (see what you have)
iptables --list --line-numbers
```

For bridged interfaces you need these:

```
iptables -A FORWARD -i br0 -s 192.168.9.0/255.255.255.0 -j ACCEPT iptables -A FORWARD -i eth0.101 -d 192.168.9.0/255.255.255.0 -j ACCEPT iptables -A POSTROUTING -o eth0.101 -t nat -j MASQUERADE mkdir -m 755 /etc/iptables/iptables/rules.v4
```

nano /etc/network/if-pre-up.d/iptablesload

```
#!/bin/sh
iptables-restore --counters < /etc/iptables/rules.v4
exit 0</pre>
```

Make the file executable: chmod +x /etc/network/if-pre-up.d/iptablesload

And we need to turn on IP forwarding in the Kernel:

```
less /proc/sys/net/ipv4/ip_forward (0)
echo 1 > /proc/sys/net/ipv4/ip_forward
less /proc/sys/net/ipv4/ip_forward (1)
```

to make this change permanent edit nano /etc/sysctl.conf and uncomment line net.ipv4.ip_forward=1

To secure a little bit the router:

- these steps are not necessary, but you can if you want to -

Be careful to understand what a rule does, before you apply it. If you are connected to your Banana via SSH you might lose your connection and have to edit files directly with HDMI monitor and USB-Keyboard or put the SDcard in your PC to correct a wrong rule.

These lines allow incoming connection to loopback and br0 (the 4 LAN and WLAN if you followed this tutorial):

```
iptables -I INPUT 1 -i lo -j ACCEPT
iptables -I INPUT 1 -i br0 -j ACCEPT
iptables -A INPUT -m state --state ESTABLISHED, RELATED -j ACCEPT
iptables-save > /etc/iptables/rules.v4
```

These lines defines the default policy.

In this case to DROP every packet that is not explicitly told to be accepted.

So before you apply these rules, read below: open a specific port

```
iptables -P INPUT DROP
iptables -P FORWARD DROP
iptables -P OUTPUT ACCEPT
```

If you need, you can open a specific port:

```
iptables --append INPUT -i eth0.101 -p 1 --dport 2 -j ACCEPT
```

allow incoming SSH connection to WAN port and give the rule priority (no WiFi).

```
iptables --append INPUT -i eth0.101 -p tcp --dport 22 -j ACCEPT
```

1: tcp or udp

2: the port to open

to check your configuration:

```
iptables --list-rules
iptables --list --line-numbers
iptables -L -t nat
```

hostapd

Host AccessPoint Daemon

Nice information: http://wiki.gentoo.org/wiki/Hostapd

hostapd; is a daemon that handles access point management and authentication

Which hostapd do you have installed:

hostapd -v (returns the version)

by standard Igor keeps two hostapd files for different devices. We will now remove all these files and create a new one:

cd /etc/

rm hostap* it will only remove the .conf file, not the directory.

nano /etc/default/hostapd

activate the daemon, set the absolute path to your hostapd configuration

DAEMON CONF="/etc/hostapd/hostapd.conf" # point to configuration file

nano /etc/init.d/hostapd

DAEMON_SBIN=/usr/sbin/hostapd-rt
DAEMON CONF=/etc/hostapd/hostapd.conf

hostapd.conf

nano /etc/hostapd/hostapd.conf

interface=wlan0
bridge=br0

driver=rtl871xdrv

This advertises the country_code and the set of allowed channels and transmit power

country code=DE

ieee80211d=1

Maximum data rate 54Mbps in 802.11g and 300Mbps in 802.11n

The RTL8192CU provides simple legacy and 20MHz/40MHz co-existence mechanisms to ensure backward and network compatibility. Maximum PHY data rate up to 144.4Mbps using 20MHz bandwidth, 300Mbps using 40MHz bandwidth

if you don't have a wireless N capable device = 0

ieee80211n=1

2,4GHz bandwidth

channel=4
hw_mode=g
wmm_enabled=1
ht capab=[SHORT-GI-20][SHORT-GI-40][HT40]

Identification and Login

```
ssid=bpir1
wpa_passphrase=supersecret
wpa key mgmt=WPA-PSK
```

```
wpa pairwise=TKIP CCMP
#rsn pairwise=CCMP
auth algs=1
wpa=2
macaddr acl=0
beacon int=100
max num sta=8
ignore broadcast ssid=0
ctrl interface=/run/hostapd
noscan=1
Make the file executable: chmod +x /etc/hostapd/hostapd.conf
Checks:
check your config file: hostapd-rt -dd /etc/hostapd/hostapd.conf
is the service running? service hostapd status
ps ax | grep [h]ostapd | grep -v grep
less /var/log/daemon.log
find / -name hostapd (to find all files with this name)
scan networks: iwlist wlan0 scan
show available channels: iwlist wlan0 channel
find least used channel: cat /proc/net/rtl819xC/wlan0/best channel
How much traffic do you have per process?
nethogs eth0.101 q to quit
shutdown -h now -> it's time for a Backup now, before you really start to gamble ;)
i.e.:
dd if=/dev/sdj of=igors 2.7 wheezy 3.4.107 bkup 02.img bs=512
```

!! You now have a working BPi-R1!! and you have a backup.

One last word, the housing is tight - make sure the temperature will not rise to high. The board should stand vertically, instead of horizontally (with the smallest face at the bottom), to allow convention.

The acrylic case takes away any little ventilation possible and makes things even worse. Out of the 4 lateral sides of the acrylic case, I just kept the 2 smallest faces, used to mount the antennas, but removed others to allow for more ventilation.

before you go for compilation

```
apt-get update
apt-get install build-essential git

Install the Kernel source:
apt-get install linux-headers-$(uname -r)

symlink, copy both line as one (it is a long command)
ln -s /usr/src/linux-headers-3.4.107-lamobo-r1/arch/arm//usr/src/linux-headers-3.4.107-lamobo-r1/arch/armv7l

cd /usr/src/linux-headers-3.4.107-lamobo-r1/
make modules_prepare (may return an error)
make headers_check
make headers_install
make scripts/kallsyms
```

compile from Git

```
create a directory: mkdir -m 755 /home/git
cd /home/git
git clone https: the git you want to get
make
make dkms
```

hostapd compilation

It is written in several posts, that the DEBIAN RealTek driver 8192cu v3.3.2 doesn't perform well. Neither does the DEBIAN 1.0 hostapd play nice - it won't let you connect (a daemon that handles access point management and authentication (wpa2)).

So you would get the original hostapd & driver from RealTek, compile it and you are done. **Unfortunately**, according to several posts - this driver v4.0.2 does may be work in combination with a modified hostapd well, but not with 0.8 included.

So what we need is a working hostapd for WiFi! You can find several source files on Git. The following line's suppose you've done the preparation above: 'before you go for compilation'

jekader - just hostapd-2.4 for the RTL driver v4.0.2 jekader's mixture

Jens hostapd (and the RealTek driver is enough?) http://www.jenssegers.be/blog/43/realtek-rtl8188-based-access-point-on-raspberry-pi https://github.com/jenssegers/RTL8188-hostapd

create the driver with this git and use the hostapd from RealTek Wannabe Nerd Randomness https://github.com/dz0ny/rt8192cu v4.0.2 may be modifed

kernel.org about rtl819x https://wireless.wiki.kernel.org/en/users/drivers/rtl819x driver rtl8188C 8192C 8192D usb linux v3.4.2

Compile RealTek WiFi driver

While you are testing, do a reboot from now and then shutdown -r now sometimes it helps;)

To get hostapd running with rtl871xdrv you need the proprietary kernel module 8192cu (without rtl*)

For the proprietary 8192cu you have to set driver=rtl871xdrv

nano /etc/hostapd/hostapd.conf

The binary from Debian's repository doesn't include the latest driver so we have to download it from Realtek's website and compile it ourselves. I downloaded it on my PC, unzipped it and with gFTP I copied it to the 'home' directory on the SDcard - or simply put the SDcard into your PC to copy. http://www.realtek.com/downloads/downloads/downloadsView.aspx?Langid=1&PNid=48&PFid=48&Level=5&Conn=4&DownTypeID=3&GetDown=false&Downloads=true#2772 (10MB)

The following line's suppose you've done the preparation above: 'before you go for compilation'

```
mkdir -m 755 /home/RTL81xxxxx

cd /home/RTL81xxxxx
ls -la
chmod 775 install.sh
./install.sh (get a tea or coffee, takes about 2min)
```

The driver is compiled and can be found:

/lib/modules/3.4.107-lamobo-r1/kernel/drivers/net/wireless/

To rename the existing, old driver, follow these steps:

```
cd /lib/modules/3.4.107-lamobo-r1/kernel/drivers/net/wireless/rt18192cu/
```

copy three lines as one (it is a long command, rename the current (old) driver)

mν

```
/lib/modules/3.4.107-lamobo-r1/kernel/drivers/net/wireless/rt18192cu/819 2cu.ko 8192cu.ko.old
```

depmod creates a list of module dependencies by reading each module under /lib/modules/version and determining what symbols it exports and what symbols it needs.

```
/sbin/depmod -a 3.4.104-bananian
```

of course, you don't have to, but consider how many hours I have invested into this document. So if you have login for lemaker.org - I would appreciate it

if this manual was helpful for you, please leave a 'l like' at http://forum.lemaker.org/forum.php?mod=viewthread&tid=15458&fromuid=72927

Internet resources

BananaPi as a fileserver -- some personal thoughts and experiences. http://forum.lemaker.org/thread-7102-1-1-.html

Banana Pi R1 as firewall /router - short but well explained in each detail http://rolfebozier.com/archives/51

Configuring a Linux home internet gateway - well explained what you need each part for http://www.freesoftwaremagazine.com/articles/home internet gateway

Realtek RTL8188 based access point on Raspberry Pi http://www.jenssegers.be/blog/43/realtek-rtl8188-based-access-point-on-raspberry-pi

Banana Pro – WLan-AccessPoint (german) http://frank-mankel.de/?p=401

Netzwerk unter Linux (german)
http://www.stefanux.de/wiki/doku.php/linux/netzwerke

Housing for BPi - R1

on <u>Google+</u> add files to the print and diagrams in one month (approx end of April '15) Files for 3D printing available on http://www.thingiverse.com/thing:735741 this is an early version.

Access Point - Bash Script http://crunchbang.org/forums/viewtopic.php?id=35427