
FLIP-485: UDF metrics

Table of Contents

Table of Contents​ 1
Motivation​ 1
Public Interface​ 1
Proposed Change​ 1

Implementation​ 2
Rejected Alternatives​ 3
Testing​ 3

Motivation
User-defined functions (UDFs) are widely used in data processing systems to allow custom
computations, but they introduce significant challenges when it comes to debugging and performance
optimization. UDFs often act as black boxes, making it difficult to trace issues or identify the root
causes of failures, especially when exceptions occur. The lack of dedicated metrics to quantify critical
aspects such as processing time and exception count complicates debugging as well as performance
tuning and resource allocation. In addition, UDF metrics act as a critical identifier for autosizer so
having those metrics available are critical in ensuring the stability and health for the entire platform.

Public Interface
Additional config to enable / disable UDF metrics.

Proposed Change
The following metrics will be added and available to all user UDFs. Since per-message metrics can
significantly affect performance, those metrics should only be enabled via config and should be
disabled by default.

Metric Name Type Description

UDFprocessingTime Gauge Measures the per record
processing time for UDF at per TM

None

level

UDFexceptionCount Counter Count the number of exceptions, it
will be a Gauge in the code but in
Observe we use regex to get the
delta per minute. In the end Flink
and user will get the exception
count per minute

Implementation
To get UDF metrics at per TM UDF level, we define UdfMetricGroup with the following hierarchy and all
metrics under this group should have the suffix “UDF”.

TaskManagerMetricGroup

-​ TaskManagerJobMetricGroup
-​ TaskMetricGroup

-​ UdfMetricGroup

Since per message metrics can impact performance, introduce enableUdfMetrics config and set the
value to false by default. When initializing TM metrics through the
instantiateTaskManagerMetricGroup method, we would only instantiate and register UdfMetricGroup if
the config is set to true.

instantiateTaskManagerMetricGroup() {
 ...
 if (enableUdfMetrics) {
​ MetricGroup udfMetrics = xxx;
 instantiateProcessTime()
 instantiateExceptionCount();
 }
 ...
}

Registration for the metrics will be done via MetricRegistry and will be reported through
MetricReporter.

With UDFs, we expect user to extend the UDF base classes and most of the time they will override the
execution methods (ie. open()) in UDF base class. Therefore the measurement of exception count or
processing time cannot be added to those methods directly. To overcome this, we set the value for
those metrics at CodeGen, so that these metrics are always available regardless of function overrides.

The following Scala classes are entrypoint to UDF CodeGen, and each of them will need to have access
to runtimeContext since getMetricGroup() method can only be called if a method extends RichFunction
and has access to runtimeContext. Access to context info is needed in order to get UDF metrics for
each TM and set the value for those.

CommonExecMatch.java (pass in Flink context classLoader to MatchCodeGenerator)

 -> MatchCodeGenerator.scala

 ​ -> ExprCodeGenerator.scala

 ​ ​ -> TableFunctionCallGen.scala

 ​ ​ -> ScalarFunctionCallGen.scala

Note that we will need to get runtimeContext via reflection.

The implementation for setting / incrementing metric values is trivial.

Rejected Alternatives
For this solution, we add metrics directly into each of the UDF base classes

Pros Cons

-​ Logic is straightforward
and implementation
would be fast and simple

-​ Maintenance overhead: for each of the new UDF base
added we need to add metrics

-​ Limited options to user and we will consistently need to
add additional classes to address user needs

Testing
1.​ Unit test
2.​ Test branch in LinkedIn OSS version and will roll out to LinkedIn internal users
3.​ [Stretch] Performance test

a.​ Need to enhance benchmark services to measure performance downgrade

	FLIP-485: UDF metrics
	Table of Contents
	Motivation
	Public Interface
	Proposed Change
	Implementation

	Rejected Alternatives
	Testing

