
The Boon boolean expression format

Introduction
Boon is a text format that facilitates the interchange and storage of boolean logic in the form of
expressions. This interchange may be between processes or across user interfaces. Boon is
entirely language agnostic. Consisting of operators, identifiers and parentheses boon describes
the boolean relationship between separate values. This relationship is defined independently of
the actual value of each identifier.

to_boon OR NOT to_boon

The language’s form is inspired by common boolean expression pseudo notation and uses the
widely understood infix notation. As such it should feel familiar to most users. The intention is
that Boon is readable, not only by technically trained individuals, but also by people who have
less experience with software.

Boon syntax describes a sequence of characters (Unicode code points). These characters can
be combined to form one of a set of tokens. These tokens are arranged to form an expression
using a context free grammar.

Although there are security concerns generally with executing arbitrary code, the logic described
in Boon is sufficiently limited to prevent this being an issue. Boon is an abbreviation of boolean
expression. Throughout this document “Boon” is capitalised for ease of reading.

A boon expression
A Boon expression is a sequence of tokens conforming to the Boon grammar. These tokens
may represent operators, identifiers or structural characters. Boon also supports comments.
These are strings that can be used to describe or explain an expression without affecting
evaluation.

Operators
Operators are used to reduce one or two boolean values into another boolean value according
to a truth table. These truth tables are not supplied here but are easily retrievable online. They
must be separated from their operand(s) by at least one separating character or a comment.
Boon supports the following operators.

Boon token Logical notation Unicode Precedence Arity

NOT ¬ U+004E U+004F U+0054 0 1

XOR ⊕ U+0058 U+004F U+0052 1 2

AND ∧ U+0041 U+004E U+0044 2 2

OR ∨ U+004F U+0052 3 2

Note that operators must be uppercase.

one XOR another

Identifiers
Identifiers are a sequence of Unicode code points. Identifiers can be constructed in 2 forms.
Unquoted and quoted. Identifiers must have a length of more than 0.

Unquoted identifiers are delimited by a structural or separating character. Unquoted identifiers
are intended to be the standard format for identifiers. However there are some limitations to
their usage.

-​ Separators, structural characters and “#” (U+0023) may not be used in unquoted
identifiers

-​ Any sequence of code points that is a valid Boon operator is invalid as an unquoted
identifier

-​ Unquoted identifiers may not start with a quotation mark (U+0022)

an-identifier OR anIdentifier OR AN_IDENTIFIER

Quoted identifiers are delimited by a structural or separating character as well. However, they
also have a leading and trailing quotation mark (U+0022). Between quotation marks any
Unicode code point is valid except a quotation mark itself (U+0022). However, a backslash
(U+005C) followed by a quotation mark (U+005C) will resolve to the quotation mark (U+005C).
"Mr Boole \"George\"" evaluates to Mr Boole "George". The leading and trailing
quotation are not included in the grammatical token.

"A whole sentence." AND "#html-id"

Structural characters
There are 2 structural characters in Boon.

Boon token Unicode

(U+0028

) U+0029

NOT (this OR that)

Separators
Boon recognises the following characters as separators.

Name Unicode code point

Space U+0020
Character tabulation U+0009
Line feed (new line) U+000A
Carriage return U+000D

These separators are used to delimit grammatical tokens and facilitate formatting for ease of
reading.

one XOR (
 two AND (
 three OR four AND five
)
)

Comments
Boon expressions can be prefixed or suffixed with a comment. Comments can also be inserted
between other tokens. Comments are delimited by a “#” (U+0023) at the start of the comment
and a new line (U+000A or U+000D, U+000A) at the end. Unless a comment is at the start of
the expression it must be preceded by at least one separating character. The terminating new
line is not required for suffixed comments.

Prefixed comment
apples
 AND oranges
 AND pears
 AND bananas # For scale
Suffixed comment. This comment
is too long for one line

Conformance
To conform to the Boon standard a text must be a series of Unicode code points conforming to
the Boon syntax defined in this specification. A processor must accept all inputs that conform
and must not accept any input that does not. Likewise a constructor must produce only
conforming text. Constructors should default to using unquoted identifiers but redundant
parentheses are acceptable.

Any evaluator of a Boon expression must accept a predefined data structure indicating values
that can be mapped to the identifiers in a given expression. It should emit a boolean indicating
how the expression evaluates once the identifiers are mapped. Evaluation must use the logical
operators as defined below and must respect the respective precedence of those operators. A
lower precedence indicates an operator that should be executed first. When the precedence of
two subsequent operators is equal they must be executed in order of appearance.

If Boon is stored in a file the extension used should be “.boon”. Note that Boon does not have a
syntax for supporting multiple expressions in a single input. To store multiple Boon expressions
in a single file or string they should be nested inside a data serialisation such as JSON.

Simple grammar
Boon can be generated from the following set of symbols. Boon also supports comments but
they are not included here to simplify the description.

Symbol Short notation Terminal

Start symbol S No

Operand O No

Additional logic A No

Nested Expression E No

Operator o Yes

Identifier i Yes

Negation n Yes

Left parenthesis l Yes

Right parenthesis r Yes

The following production rules define all valid boon expressions.

S → O

S → OA

A → oO

A → oOA

O → i

O → ni

O → E

O → nE

E → lSr

Also visualised as.

Full syntax

The syntax of Boon can be defined using the following EBNF.

boon_expression = [separator], operand , { separator , additional_logic }, [
separator]

additional_logic = operator , separator , operand

operand = [negation , separator], (identifier | nested_expression)

nested_expression = left_parenthesis , boon_expression , right_parenthesis

left_parenthesis = "("

right_parenthesis = ")"

negation = "NOT"

operator = "XOR" | "AND" | "OR"

separator = ({ separator }, whitespace_character) | (separator , comment , [
separator]) | ? the start of the string ?

identifier = unquoted_identifier | quoted_identifier

unquoted_identifier = (first_unquoted_character , { unquoted_character }) - (
operator | negation)

quoted_identifier = '"' , (quoted_character | '\"'), { quoted_character | '\"' },
'"'

comment = "#" , { comment_character }, eol_character

whitespace_character = ? one of these unicode code points: U+0020, U+0009, U+000A,
U+000D ?

first_unquoted_character = ? any unicode code point except: U+0020, U+0009, U+000A,
U+000D, U+0022, U+0028, U+0029, U+0023 ?

unquoted_character = ? any unicode code point except: U+0020, U+0009, U+000A, U+000D,
U+0028, U+0029, U+0023 ?

quoted_character = ? any unicode code point except U+0022 ?

comment_character = ? any unicode code point except: U+000A, U+000D ?

eol_character = ? the following unicode code points: an optional U+000D followed by
U+000A. Or the end of the string ?

	The Boon boolean expression format
	Introduction
	A boon expression
	Operators
	Identifiers
	Structural characters
	Separators
	Comments

	Conformance
	Simple grammar
	Full syntax

