
Separate vs same API for Logs and Events
The following table captures arguments in favour of 2 different approaches that Log SIG is discussing for
Log and Events APIs.

One API (LoggerProvider, Logger,
logBuilder/eventBuidler, etc)

Separate APIs (LoggerProvider, Logger,
EventEmitterProvider, EvenEmitter, etc)

More consistent with the rest of OpenTelemetry,
where each signals has one entry point
(Tracer/Meter/Logger)

Less consistent with the rest of OpenTelemetry,
Logger and EventEmitter are both entry points
into the same signal (from data model
perspective)

More consistent with data model ideology. Data
emitted through Logger is Log Record.

Less consistent with data model ideology. Data
emitted through EventEmitter and Logger is Log
Record. May confuse people who don't know that
EventEmitter emits Log Records.

Less specific API for events, does not help
prevent mistakes. event.domain may easily be
forgotten when creating the Logger.

More specialized API for events which enforces
and prevents mistakes, e.g. by requiring
event.domain value when the EventEmitter is
created.

More intuitive to users of Events API, who may
not be very familiar with OpenTelemetry. On the
other hand, less intuitive to Log Appender
authors, but this is mitigated by the smaller size
and closer relation of this group to the project.

Log API is exposed to instrumentations and end
user code, which is conflicting with the desire to
not compete with existing logging libraries.

Each API is used only in the context for which it is
intended - log API for appenders, event API for
instrumentations

Events will always be tied to the Log data model Separate Event API is an abstraction for events
and can use different data model behind the
scenes, e.g. span events

"Event" concept in isolation seems to be confused
with the Span Event.

https://github.com/jack-berg/opentelemetry-java/pull/1/files
https://github.com/jack-berg/opentelemetry-java/pull/2/files

