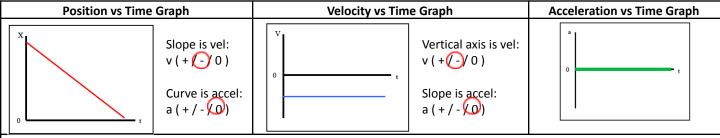

Graphing	Matching	Lab

Name


LEVEL ONE (1)

Pre-Lab – Motion Graph Rules Graphic Organizer.

Direction: Follow the example to complete the rest of the graph tables. Hints are gradually omitted as you progress.

Example: Circle the correct description of velocity and acceleration given what you notice in PT & VT graphs. Then interpret the motion of the object. Hints such as "slope is velocity on PT graph" are given on the side of each graph.

Write a brief description of the motion of the object. Then move the car in front of the motion detector in such a way that would render these graphs.

Description: the object is traveling with constant, negative velocity, going in the negative direction (towards the motion detector)

Draw a motion map for this motion:

Your Turn: Now complete the rest of the graphs. Notice hints are removed gradually as you progress.

Position vs Time Graph	Velocity vs Time Graph	Acceleration vs Time Graph	
Slope = v: v(+/-/0) Curve = a: a(+/-/0)	Vertical axis = v: v (+/-/0) Slope = a: a (+/-/0)	Draw the acceleration vs time graph	

Write a brief description of the motion of the object. Then move the car in front of the motion detector in such a way that would render these graphs.

Sketch a motion map for this motion:

Position vs Time Graph	Velocity vs Time Graph	Acceleration vs Time Graph
Slope = v: v (+/-/0) Curve = a: a (+/-/0)	Vertical v (+/- Slope = a (+/-	a:

Write a brief description of the motion of the object. Then move the car in front of the motion detector in such a way that would render these graphs.

Sketch a motion map for this motion:

Position vs Tim	e Graph	Velocity vs Time Graph	Acceleration vs Time Graph
x	Slope = v: v (+ / - / 0)	Draw the velocity vs time graph	0 t
0 ,	Curve = a: a (+ / - / 0)		

Write a brief description of the motion of the object. Then move the car in front of the motion detector in such a way that would render these graphs.

Sketch a motion map for this motion:

Position vs Time Graph	Velocity vs Time Graph		Graph Velocity vs Time Graph Acceleration vs Time Gr		Acceleration vs Time Graph
< Assume x ₀ = 0 > Draw the position vs time graph	0	Vertical axis = v: v (+/-/0) Slope = a: a (+/-/0)	0 t		

Write a brief description of the motion of the object. Then move the car in front of the motion detector in such a way that would render these graphs.

Sketch a motion map for this motion:

Position vs Time Graph	Velocity vs Tim	ne Graph	Acceleration vs Time Graph
< Assume x_0 is positive, i.e. +50m > Draw the position vs time graph	V t	Vertical axis = v: v (+ / - / 0) Slope = a: a (+ / - / 0)	Draw the acceleration vs time graph
Write a brief description of the motion of the render these graphs.	he object. Then move the ca	r in front of the moti	on detector in such a way that would
Sketch a motion map for this motion:			